低温影响水稻发育机理及调控途径研究进展
2022-03-17徐青山黄晶孙爱军洪小智朱练峰曹小闯孔亚丽金千瑜朱春权张均华
徐青山 黄晶 孙爱军 洪小智 朱练峰 曹小闯 孔亚丽 金千瑜 朱春权, * 张均华, *
低温影响水稻发育机理及调控途径研究进展
徐青山1, #黄晶1, #孙爱军2洪小智2朱练峰1曹小闯1孔亚丽1金千瑜1朱春权1, *张均华1, *
(1中国水稻研究所 水稻生物学国家重点实验室, 杭州 310006;2蚌埠市亿丰生物有机肥有限公司, 安徽 蚌埠 233300;*通信联系人, E-mail: zhuchunquan@caas.cn, zhangjunhua@caas.cn)
早稻育秧期间低温频发,严重影响水稻秧苗质量,抑制水稻在大田期间的生长发育,导致水稻减产。深入研究低温对水稻生长发育的影响及适宜的外源调控途径对保障我国早稻生产具有重要意义。本文综述了低温对早稻秧苗期、营养生长期与生殖生长期的影响,概括了水稻响应低温胁迫的生理、生化和分子机制,包括抗氧化系统、低温应答基因表达等。最终提出了运用耐低温水稻品种筛选、外源激素施加和合理施肥等提高水稻耐低温胁迫的措施,并指出未来应加强筛选优良抗寒水稻品种和集成农艺栽培配套技术等措施提高水稻低温耐性和扩大我国早稻面积。
早稻;低温;育秧;基因;生长发育;调控
我国早稻种植面积约有473万hm2,产量可达2729万t,湖南、湖北、江西等地是我国早稻主产省份。2020年中央“一号文件”聚焦“三农”,鼓励稻农扩大早稻面积,确保我国粮食安全。早稻生产过程中,频繁的“倒春寒”导致水稻秧苗素质降低,引起烂种、烂秧、死苗等现象。随着全球气候变化,我国长江中下游及华南地区早稻和双季稻的育种时间普遍前移,甚至部分地区的育秧时间由4月中旬提前到3月初,进一步增加了水稻育秧期间遭遇低温的可能。国家统计局数据显示,2014—2018年,我国近一半年份的早稻生产会遭到大面积低温冷害,受害面积分别为21.3万hm2、9.0万hm2、28.8万hm2、5.25万hm2和34.1万hm2。遭受低温胁迫时,水稻的吸水能力和蒸腾作用下降,并且吸水受阻程度高于蒸腾作用,破坏水稻植株的水分代谢平衡,导致水稻细胞失水。同时低温会使水稻体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性下降[1],活性氧含量急剧上升,最终导致细胞膜脂质过氧化、蛋白质氧化变性、核酸损伤和酶失活,激活细胞程序性死亡。低温还间接导致水稻秧苗的株高和根长生长受抑制、光合效率和结实率下降,植株能量消耗变大,延长水稻生育期[2],增加了水稻减产的风险。本文综述了低温对水稻全生育期生理生化途径的影响机制、水稻低温信号传导途径以及增强水稻耐低温性能的外源调控措施,并对未来水稻抗寒育种和栽培技术的发展做出了展望,以期为我国早稻安全生产和水稻耐低温育种提供参考。
1 水稻温度适应性
水稻是喜高温、多湿、短日照的作物。水稻发芽的最低温度为10~12℃,最适温度为18~33℃[3]。温度过低影响水稻发芽率和发芽速度,引起水稻发芽不齐,同时增强水稻幼苗呼吸作用,增大对胚乳消耗,不利于水稻幼苗后期生长。水稻从发芽至3叶期,31℃属于最适宜的温度。早稻育秧期间温度持续低于12℃,水稻秧苗会停止生长,低温持续超过3 d,秧苗易感染绵腐病,出现烂秧、死苗现象。在水稻分蘖期,水温对植株的影响大于气温,这一时期最适宜的水温为32~34℃,以最高不超过40℃,最低不低于16℃为宜[4]。适宜温度范围内,温度越高,水稻分蘖期发生的时间越早,分蘖数量也较多。水稻孕穗期发育要达到临界温度18℃,如果达不到该温度,幼穗的生长发育将会停止。水稻灌浆期对温度及温差的要求较高,光合产物运输及转移的最适宜温度为21~30℃[5]。在适宜温度范围内,随着温度升高灌浆天数缩短。
在水稻生长发育过程中,低温胁迫主要发生在早稻芽期和苗期,晚稻孕穗期、抽穗扬花期和灌浆期。低温会直接抑制水稻的发芽[6]。苗期低温导致秧苗叶片失绿、发僵,同时降低水稻分蘖数,延迟水稻生长,降低水稻产量[7]。孕穗期遭受低温导致水稻花粉败育,进而影响水稻正常开花授粉,造成水稻结实率降低,比如孕穗期连续5 d遭遇15℃低温使水稻穗粒数降低13.1%,结实率降低5.1%,空壳率上升8%[8, 9]。抽穗扬花期遭受低温导致水稻包颈,花药不能正常开裂散粉,或者掉落到柱头上的花粉萌发授精异常,导致稻株结实率下降,比如水稻开花期遭遇15℃低温导致花药开裂率降低19.9%~44.0%,花粉萌发率降低36.9%~74.1%[10]。同时,低温胁迫还造成花粉可育率降低,水稻受精结实差,结实率降低,空壳率上升,并且低温持续时间越长,空壳率越高[11]。灌浆期遭受低温导致水稻光合功能与产物运输功能受到损害,导致籽粒灌浆不佳,产量性状与品质性状下降[12]。
2 低温对水稻生化特征的影响
2.1 低温对水稻秧苗素质的影响
根系是水稻养分和水分吸收的直接器官,也是多种物质的合成与转化场所。低温条件下,水稻秧苗的最长根长、根数、根系吸收面积、根系活力等指标均会下降,并且随着处理时间延长,各指标降低幅度逐渐增大[13]。低温胁迫导致水稻细胞失水,细胞内水势升高,渗透势降低,同时导致水稻根尖薄壁细胞形状不规则、维管束结构不清晰、木质部排列紊乱,从而引起水稻根系输导功能障碍,水稻地上部得不到充足的水分和养分供应,引起水稻地上部失水萎蔫[14]。
低温情况下,水稻幼苗出现发芽慢、出苗慢、生长慢、抗性降低、易发病和秧苗素质降低等症状。低温对水稻光合作用和呼吸作用均有不利影响。低温导致水稻叶绿体合成受阻、功能紊乱,细胞膜透性增大,秧苗生长缓慢、矮小,使水稻秧苗生长周期延长,不仅影响秧苗素质,且对水稻大田生育进程也有较大影响,甚至降低水稻产量。低温还降低了水稻叶片的净光合速率、蒸腾速率与气孔导度,引起叶片初始最小荧光(o)与光合系统Ⅱ非调控能量耗散系数升高,叶片光合系统Ⅱ最大潜在光化学效率(v/m)与光化学转换的实际量子效率(PSⅡ)的降低[15]。水稻叶片呼吸速率()与光合速率(o)关系密切,低温胁迫下,温度越低,o/的比值越大,说明呼吸作用降低越明显,对水稻秧苗危害也就越大[16]。Jia等[17]研究发现,苗期低温处理,会使秧苗叶片叶绿素含量下降,光合速率下降,根系活力下降和分蘖成穗减少,导致水稻植株鲜质量及干质量均下降,水稻生长停滞。除此之外,低温易引起水稻根系的营养物质大量外渗,为疫霉、霜霉、腐霉和丝核病菌等霉菌的生长和传播提供有利的条件,引起立枯病和青枯病,导致植株黄化和矮化,甚至死亡,最终影响水稻秧苗的成苗率[18]。
2.2 低温对水稻大田生长发育影响
低温对水稻大田营养生长期的影响主要发生在水稻分蘖期和拔节期。水稻分蘖期,低温不仅导致水稻生长受到明显抑制,株高及其生长速度下降、分蘖减缓、最高分蘖数减少,而且会导致水稻后期叶面积指数和有效叶面积率降低,同时还影响该时期叶片干物质积累与转运,延长水稻生长周期,降低产量。在水稻拔节期,低温导致茎鞘干质量、叶片干质量和叶面积下降,使水稻叶片、茎秆干物质积累量减少,水稻生育期延长。但也有相关研究发现,在水稻拔节期用低于外界5℃的温度进行处理,其稻米蛋白质含量增加3.45%,糙米率减少0.7个百分点,垩白粒率减少33.3个百分点,表明适度低温有利于提高水稻养分含量,减少糙米率,改善稻谷外观品质[19]。
低温对水稻生殖生长期的影响主要发生在孕穗期。水稻幼穗期遭遇低温,导致叶绿素含量及RuBP酶活性降低、净光合速率下降、淀粉和蔗糖的累积减少。谭孟祥等[20]研究发现,早稻幼穗分化期对低温的耐受能力最弱,可能是该时期连续低温导致水稻花粉母细胞发育受阻、颖花退化,造成空壳率增加而造成减产。水稻孕穗期低温对产量的影响主要表现为结实率降低,比如,水稻孕穗期连续7 d遭遇13℃低温,导致水稻47.1%~60.6%的空壳率,同时叶片枯死率达50.1%,穗长减少16.2%[21]。水稻花粉母细胞在减数分裂期和小孢子形成初期遇低温冷害,可导致花药中绒毡层细胞异常肥大,引起细胞功能降低和紊乱,花药不能供给花粉足够养分,影响受精结实。水稻抽穗扬花期遇低温冷害,影响花粉成熟和花粉发芽,使受精后的合子停止发育而造成秕粒,降低产量[22]。水稻穗分化期低温试验发现,在有害低温范围内,连续5 d内,水稻穗分化期平均气温每降低1℃,空壳率约上升4.3个百分点,引起水稻大幅度减产,且低温持续时间越长,冷害减产越严重[23]。
3 低温对水稻抗氧化系统影响
正常情况下水稻体内活性氧的产生与清除处于动态平衡状态。在低温胁迫下,水稻体内活性氧含量急剧上升,导致细胞膜脂质过氧化、蛋白质氧化变性、核酸损伤和酶失活[24],并且使POD、CAT、SOD的活性降低,加快细胞衰老,激活细胞程序性死亡[25]。长期低温会产生大量的膜脂过氧化产物丙二醛(MDA),同时提高根系相对电导率,并且随着低温时间的延长,水稻根系MDA含量和相对电导率增幅逐步增大。
水稻靠两套活性氧清除系统来清除细胞内的过量活性氧。一是酶促清除系统,它是活性氧清除系统的第一道防线,主要靠SOD、POD和CAT起作用。SOD可有效清除水稻体内的氧自由基。POD可以防止羟基在水稻体内的积累。CAT则是一种酶类清除剂,又称为触酶,它是以铁卟啉为辅基的结合酶,是生物防御体系的关键酶之一[26]。另一类为非酶促清除系统,包括维生素E、A、C,辅酶Q、硒、抗坏血酸、抗坏血酸硫基化合物(谷胱甘肽、半胱氨酸等)。维生素E抗氧化作用机制是它能给脂类的自由基提供一个氢离子,与游离的电子发生作用,抑制自由基,从而制止脂质氧化的链式反应[27]。谷胱甘肽过氧化物酶将过氧化物转化为相关的醇类(或水)并能清除自由基,硒是其重要组成成分[28]。抗坏血酸能与活性氧反应后形成单脱氢抗坏血酸和脱氢抗坏血酸。脱氢抗坏血酸可分解为酒石酸和草酰乙酸;而单脱氢抗坏血酸还原酶和脱氢抗坏血酸还原酶可以利用还原性辅酶(NADPH)或谷胱甘肽提供的还原力将单脱氢抗坏血酸和脱氢抗坏血酸氧化为抗坏血酸,从而形成抗坏血酸的循环。谷胱甘肽(glutathione,GSH)能直接作为自由基清除剂与单线态氧、超氧化物阴离子和羟自由基发生化学反应,能除去过氧化反应形成的酰基过氧化物而稳定膜结构,同时能作为抗坏血酸循环中的还原剂,使抗坏血酸再生。
4 水稻应对低温胁迫的内在适应性
低温导致水稻细胞原生质流动减慢或停止,水分平衡失调(蒸腾大于吸水),光合速率减弱,呼吸速率起落大,代谢紊乱。水稻在长期进化过程中,也产生了一系列感应低温信号的传导机制。水稻感应低温的信号传导途径是由多种途径相互关联、共同作用的过程。
到目前为止,已经发现了水稻体内较多与低温胁迫相关的基因,这些基因可以分为两类。第一类是直接保护水稻细胞免受低温胁迫的功能成分,即代谢途径中的酶。第二类是在应激反应中调控基因表达的信号分子,即信号转导成分和转录因子(transcription factors, TFs)。TFs可与靶基因共同构成调控因子,参与低温应激反应相关基因的激活或抑制信号转导。
冷害应激反应是由细胞膜上的膜受体感知的,用于信号转导。来自细胞膜的信号通过钙调磷酸酶B类蛋白(CBL)、CPKs、CIPKs、CDPKs来诱导cAMP、Ca2+和活性氧(ROS)调控信号传导。CBL、CPKs、CIPKs、CDPKs通过ICECBF/DREB转录因子调控路径传达到细胞核。转录因子、、、和调节基因表达,从而激活应激反应基因,如等[29]。
同时CBF/DREB1转录调节子被认为在植物忍受低温胁迫过程中起着重要作用。在低温条件下,基因的诱导蛋白ICE1受到泛素化修饰,结合到基因启动子序列中的MYC元件上,诱导基因表达[30]。类基因的编码产物能特异性地结合到包含CRT/DRE顺式作用元件的启动子上,启动下游功能基因的表达,从而提高植物的低温耐性[31]。
脱落酸(ABA)是植物体内一种多功能植物激素。在植物抵抗非生物逆境胁迫、衰老、分化发育等过程中起着重要作用。水稻感受低温胁迫时,ABA是感受低温信号传导的重要物质。ABA信号传导通路由ABA受体PYR/PYL/RCAR(pyrabactin resistance/pyrabactin resistance-like/regulatory component of abscisic acid receptor)、负调控因子2C类蛋白磷酸酶(type 2C protein phosphatase,PP2C)、正调控因子SNF1相关的蛋白激酶(SNFl related protein kinase 2,SnRK2)和转录因子AREB/ABF等4个核心组分共同组成一个双重负调控系统[32],低温下水稻内源ABA升高,与PYR/PYL/RCAR和PP2C相结合,SnRK2磷酸化下游转录因子如AREB/ABF等,进一步激活下游ABA响应低温应答基因表达,从而提高水稻对低温的耐受性[33]。
Ca2+在植物生长发育的整个生育期及植物对生物和非生物胁迫响应的过程中均起着极其重要的作用。Ca2+通道位于水稻细胞内膜和质膜上。当水稻感受到低温时,Ca2+通道打开,使胞外或胞内的Ca2+进入到胞质中,细胞内Ca2+浓度升高,进而通过诱导水稻体内抗氧化基因的表达和脱落酸含量的升高等一系列应答反应来提高水稻植株的低温抗性。水稻细胞内Ca2+浓度的变化主要是通过体内Ca2+转运系统调节实现的,Ca2+转运系统包括Ca2+通道、Ca2+-ATPase(Ca泵)和Ca2+/H+反向转运蛋白等[34]。低温还诱导水稻细胞中多个Ca2+感受器基因或与Ca2+感受器相互作用的编码基因表达。在低温胁迫下,水稻体内基因可调控激活G蛋白和GTPase,而蛋白与G蛋白相互作用可激活Ca2+通道,使水稻根细胞中的Ca2+流快速增加,激活Ca2+信号通路,从而增强水稻低温耐性[35]。
CDPKs家族也存在一些参与水稻低温应答的基因。当水稻受到低温刺激或用赤霉素(GA3)处理时,蛋白基因表达和蛋白积累量都增多,且转基因水稻品系在受低温伤害时植株恢复率比对照品系高,表达的水稻品种低温耐性比敏感水稻品种强,研究结果也说明可能是水稻低温应答信号网络的重要蛋白[36]。
近些年来,[37]和[38]基因也被发现在提高水稻耐冷性方面有着重要作用。当水稻遇到冷胁迫时,会诱导bZIP73Jap形成异源二聚体,从而抑制ABA生物合成基因和和激活过氧化物酶基因的表达,最终提高苗期的抗寒性。在生殖期,bZIP71:bZIP73Jap形成异源二聚体,激活、单糖转运基因和和细胞壁转化酶基因的转录,促进可溶性糖从花药向花粉的转运,从而提高低温胁迫下水稻结实率[39](图1)。
除此之外,还有一些基因也被发现能够提高水稻低温耐性。基因编码一种定位于质膜和内质网(ER)的G蛋白信号调节因子。在低温条件下,它能与G蛋白α亚基相互作用,激活Ca2+低温感应通道,同时提高G蛋白的GTPase酶活性[40]。是水稻体内与编码Ca2+依赖蛋白激酶(CDPK)有关的基因,当基因过表达时,显著缓解水稻遭受的冷胁迫[41]。在水稻遭受冷胁迫时可以保护质膜在低温胁迫下的完整性[41]。可以通过增强水稻的抗氧化系统提高水稻对低温的耐受性[42]。同时还有一些在水稻不同生长时期所表现的耐低温相关基因(表1)和调控水稻低温代谢类型各种基因(表2)也被逐步发现。
5 提高水稻低温耐性途径
5.1 耐低温水稻品种筛选
提高水稻在低温下的抗性,首先要培育抗低温品种。一方面可以利用传统杂交、芽变、诱变等常规育种途径选育出良好的抗低温水稻品种。另一方面可以利用基因工程技术导入耐低温基因,例如()基因是从拟南芥中克隆到的、能调节植株耐冷性的转录因子,在低温条件下可以活化ICE1蛋白,进而激活基因表达;CBF3蛋白通过调控基因下游低温应答基因的表达,从而增强拟南芥的抗低温性能。将拟南芥中的基因转入到水稻细胞中,水稻过量表达基因,可通过减轻膜脂过氧化程度与调整抗氧化酶活性来增强转基因水稻的低温耐性[85]。同时还可以向水稻细胞中导入抗渗透胁迫相关基因、抗冻蛋白基因、脂肪酸去饱和代谢关键酶基因、SOD等抗氧化系统的基因和与植物激素调节有关的基因,或者使水稻细胞内的抗低温基因过表达来提高水稻的耐低温胁迫能力。例如[86]和[87]都被证明在水稻抗低温过程中起重要作用,在水稻感受低温时过表达这部分基因,将显著增强水稻的抗寒性。同时也可敲除低温敏感基因使水稻对低温的感受能力降低,从而提高水稻的抗寒性,如[88],[62]和[89]。
图1 bZIP73Jap介导的水稻苗期和繁殖期耐冷性的分子机制[39]
Fig. 1. Molecular mechanism of-mediated cold tolerance at seedling and breeding stages in rice[39].
表1 水稻不同时期的耐低温基因
表2 不同基因调控水稻低温耐性代谢类型
5.2 外源激素调控
水稻低温耐受性不仅受品种本身遗传特性影响,与低温条件下的栽培措施也密切相关。通过研究抗寒剂,可提高水稻在低温条件下的抗性。比如,吡咯喹啉醌(PQQ)可通过提高水稻幼苗中抗氧化酶的活性来提高水稻秧苗的抗低温能力[90];烯唑醇(S08)和水杨酸(SA)复配可提高水稻秧苗叶片中SOD、CAT和可溶性糖的含量来提高水稻秧苗叶片的抗氧化能力,减轻低温下细胞膜过氧化伤害,提高叶片的光合能力,最终增强秧苗的耐冷性[91]。在低温条件下,用公主岭霉素处理的水稻秧苗,稻种萌发的临界温度降低4.1%,SOD和多酚氧化酶(PPO)的活性分别比对照提高57.2%和28.5%,同时还会调控部分抗寒基因(例如、和)的过量表达,加快低温胁迫的响应速度及提高幼苗体内防御酶的活性,增强水稻幼苗耐冷性[92]。
低温条件下,喷施0.001 μmol/L2, 4-表油菜素内酯(2, 4-epibrassinolide, EBR)能使水稻的可溶性蛋白含量增加14.2%,根中MDA含量降低22.7%,水稻幼苗根系的SOD、POD和CAT活性较低温对照组增加14.88%~73.92%,从而减轻低温胁迫对水稻幼苗生长的抑制作用,增强其低温耐受能力[93]。同时Bergonci等[94]研究发现EBR还能通过与生长素互作,调节侧根发育,促进细胞的纵向生长,缓解低温胁迫对水稻植株的损伤。对开花期水稻喷施外源脱落酸发现,水稻开花期喷施外源脱落酸能够有效增加低温条件下水稻叶鞘可溶性糖、脯氨酸含量,降低MDA含量和相对电导率,同时提高保护酶活性,从而达到抵御低温、降低伤害的作用[95-96]。低温条件下对玉米幼苗喷施ABA能够提高玉米叶片中内源ABA含量和基因表达量。基因表达量的提升,也会促进内源ABA的合成,因此认为外源ABA可能作为植物体内ABA合成过程中的正向调控因子,从而发挥抵御低温的调节效应[97]。对烟草施加促进乙烯合成的1-氨基-环丙烷-1-羧酸(ACC,1-aminocyclopropane-1-carboxylic acid),植株的耐低温性增强,施加抑制乙烯合成的2-氨基乙氧基乙烯甘氨酸(AVG,aminoethoxyvinylglycine)或乙烯受体拮抗剂硝酸银,植株的低温耐性减弱[98]。
我们在水稻苗期低温调控方面也做了很多尝试。在早稻低温育秧期间,与营养土育秧相比,无土基质育秧和发酵基质育秧会显著提高水稻秧苗的氮、磷、钾养分含量和水稻秧苗叶片中超氧化物歧化酶、过氧化氢酶活性、脯氨酸含量和可溶性蛋白含量,同时、、和四个抗寒基因的表达也明显提高,表明无土基质和发酵基质通过调控水稻秧苗体内的生理生化反应和相关基因表达,提高秧苗耐低温胁迫能力[99]。在此基础上,采用发酵基质外源添加植物激素褪黑素和茉莉酸甲酯后显著增加水稻在低温条件下的发芽率,促进了水稻幼苗在低温条件下的生长,进一步研究发现褪黑素和茉莉酸甲酯均能通过调控水稻体内抗氧化系统酶活性、渗透物质含量、叶绿素含量、植物激素含量(ABA和GA3)和耐冷基因表达提高水稻耐低温胁迫能力(未发表)。
5.3 合理施肥
肥料的合理利用也是提高水稻抗寒性的途径之一。有很多研究表明增加矿质营养可以有效提高水稻植株的抗寒性。双季早稻幼穗分化期遭遇低温,叶面喷施0.3%的磷酸氢二钾,可使水稻叶片中SOD和POD的活性分别增加23.1%和52.7%,并且每穗总粒数、结实率、千粒重均有明显提高[100]。在寒冷稻作区的低温年,增加氮肥用量,水稻抽穗期与成熟期都适当延迟,产量构成因素中的颖花量增加,结实率下降[101]。在低温条件下,减施氮肥,增施钾肥和磷肥,会减小水稻体内脯氨酸增幅并增强水稻根系活力,水稻抽穗加速,提高结实率及产量[102]。除此之外,增施钼肥也可增加水稻植株的抗寒性,其主要原因是钼通过醛氧化酶(Aldehyde oxidase, AO)调节ABA的生物合成,植物激素ABA介导低温响应基因的表达,从而提高水稻植株的抗性[103]。在低温胁迫条件下,适当浓度的Ca2+(0.5~1.0 mmol/L)可降低水稻幼苗电解质渗透率和MDA含量,提高SOD、POD和CAT活性,保护叶绿体、线粒体免遭破坏,从而提高水稻植株的抗寒性[104-105]。
5.4 其他途径
在易发低温冷害区选育优良的抗寒水稻品种,在苗期对秧苗进行低温锻炼,诱导相关抗冷基因的表达,也可以增加低温条件下水稻抗寒性,降低后期冷害所带来的危害[106]。地膜覆盖也是有效减少低温危害的农艺措施之一,用覆膜种植,能使土壤日平均增温2.8℃,同时提升土壤肥力,培育壮苗,缩短水稻的生育期[107]。针对早稻苗期育秧,可采用大棚室内秧盘育秧,对于秧盘基质种类的选择,要选择保温保湿性能好,养分均衡的基质,从而减少早稻育秧期间低温冷害对于早稻秧苗的伤害。对于已经播种到大田的秧苗,在遭受低温时,可采用控制水层的方法来减少低温对秧苗的伤害。水的比热容较大、导热能力弱,在遇到低温天气时用水调温可以有效改变稻田的小气候。在我国北方寒带稻作区,秧苗遇到10~12℃低温时,只要灌薄水就可以防御冷害[108]。温度越低所需的水层就越高,但最好不要超过叶尖,高水层时应频繁换水以保证水中的含氧量。当气温在10℃以下时,灌水深度以叶尖露出水面为宜。在连续低温危害时,每隔2~3 d更换田水一次,以补充水中氧气,天气转暖后逐渐排除田水。当气温在16℃以下时,田间灌水4~10 cm,比不灌水的土温提高3~5℃,对冷害防御效果十分明显。
6 研究展望
低温灾害频发及水稻播种期的前移已成为我国水稻产量的重要限制因素之一。目前虽然对于水稻低温信号传导机制研究有了一定进展,但对于水稻低温信号传导的复杂结构网络仍需要有进一步的认识。对低温信号传导的ABA途径和Ca2+途径虽然有了较为清晰的认识,但对于低温信号如何传递到水稻细胞核和低温信号如何调控水稻细胞做出生理反应的研究仍需要不断探索。选育耐低温水稻品种是解决水稻冷害的主要途径。相关研究表明,野生稻中含有丰富的耐冷基因,即使环境温度在0℃以下,野生稻仍保持有顽强的生命力[109]。因此可以利用对野生稻耐冷基因的定位与克隆,辅以转基因技术,将其耐冷基因转到传统水稻上,进而提高水稻品种的抗寒性。
除了优良抗寒水稻品种,成熟的农艺栽培配套技术也是提高水稻抗寒性的重要措施之一。苗期的抗寒训练,增加磷钾肥和矿质营养,都有利于提高水稻的抗寒性。同时利用遥感技术,对极端低温天气进行有效的预测和预防,减少低温对水稻植株的损伤。新型抗寒剂的使用,也是低温条件下提高水稻抗性的重要措施之一。目前已有抗寒剂都有一定局限性。以脱落酸为主要成分的抗寒剂虽然调控效果较好,但价格昂贵,目前主要用于实验室研究,难于大面积推广。以水杨酸为主要成分的抗寒剂,虽然价格便宜,但抗寒效果不显著,难以满足生产需要。一些化学合成类抗寒剂,对于环境和生态系统会产生一定负面作用。因此,寻找一种价格低廉、效果显著、绿色环保的新型抗寒剂也显得尤为重要。未来抗寒剂要从植物本身去寻找,最大限度地减轻对环境的危害。在发展抗寒剂的同时,注重多功能试剂的研发,以利于水稻在不同逆境中积极做出生理调整。
[1] 徐伟豪, 柳洪良, 朴雪梅, 韩云哲, 王亮, 张基德, 具红光. 不同生育时期低温胁迫对水稻保护酶的影响[J]. 现代农业研究, 2020, 26(5): 49-53.
Xu W H, Liu H L , Pu X M, Han Y Z, Wang L, Zhang J D, Ju H G. Effects of low temperature stress on protective enzymes in rice leaves at different growth stages[J]., 2020, 26(5): 49-53.(in Chinese with English abstract)
[2] 孙擎, 杨再强, 高丽娜, 殷剑敏, 王学林, 李伶俐. 低温对早稻幼穗分化期叶片生理特性的影响及其与产量的关系[J]. 中国生态农业学报, 2014, 22(11): 1326-1333.
Sun Q, Yang Z Q, Gao L N, Yin J M, Wang X L, Li L L. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice[J]., 2014, 22(11): 1326-1333.(in Chinese with English abstract)
[3] 余保生, 王万福, 谢保忠. 极端温度对水稻生产的影响[J]. 现代农业科技, 2010(24): 92, 98.
Yu B S, Wang W F, Xie B Z. Effect of extreme temperature on rice production[J]., 2010(24): 92, 98.(in Chinese)
[4] 王芹. 气候条件对水稻生长的影响[J]. 现代农业科技, 2012(22): 242.
Wang Q. Effects of Climatic conditions on the growth of rice[J]., 2012(22): 244.(in Chinese with English abstract)
[5] 陶乐圆, 刘智蕾, 刘婷婷, 于彩莲, 王伟, 李奕, 彭显龙. 营养生长期低温持续时间与水稻生长恢复的关系[J]. 生态学杂志, 2018, 37(12): 3610-3616.
Tao L Y, Liu Z L, Liu T T, Yu C L, Wang W, Li Y, Peng X L. The relationship between low temperature duration and growth recovery of rice during the vegetative growth stage[J]., 2018, 37(12): 3610-3616.(in Chinese with English abstract)
[6] 杨志涛, 李媛, 张少红, 杨梯丰, 赵均良, 董景芳, 陈光辉, 刘斌. 377份多样性国际稻种低温发芽力评价[J]. 广东农业科学, 2017, 44(4): 1-6.
Yang Z T, Li Y, Zhang S H, Yang D F, Zhao J L, Dong J F, Chem G H, Liu B. Evaluation of low temperature germination ability of 377 diversity international rice varieties[J].2017(4): 1-6.(in Chinese with English abstract)
[7] 肖宇龙, 邱在辉, 林洪鑫, 胡启锋, 王晓玲, 雷建国, 王智权, 熊宏亮, 余传元. 苗期低温对早稻品种产量相关性状的影响[J]. 江西农业学报, 2014, 26(7): 1-4.
Xiao Y L, Qiu Z H, Lin H X, Hu Q F, Wang X L, Lei J G, Wang Z Q, Xiong H L, Yu C Y. Effects of low temperature at seedling stage on yield-related traits of early rice varieties[J]., 2014, 26(7): 1-4.(in Chinese with English abstract)
[8] 李健陵, 霍治国, 吴丽姬, 朱庆华, 胡飞. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学, 2014, 28(3): 277-288.
Li L J, Huo Z G, Wu L J, Zhu Q H, Hu F. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage[J]., 2014, 28(3): 277-288. (in Chinese with English abstract)
[9] 张金恩, 聂秋生, 李迎春, 田俊, 王尚明, 陆魁东. 颖花分化期低温处理对早稻叶片光合能力和产量的影响[J]. 中国农业气象, 2014, 35(4): 410-416.
Zhang J E, Nie Q S, Li Y C, Tian J, Wang S M, Lu K D. Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at the spikelet differentiation stage[J]., 2014, 35(4): 410-416. (in Chinese with English abstract)
[10] 张荣萍, 马均, 蔡光泽, 孙永健. 开花期低温胁迫对四川攀西稻区水稻开花结实的影响[J]. 作物学报, 2012, 38(9): 1734-1742.
Zhang R P, Ma J, Cai G Z, Sun Y J. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi region[J]., 2012, 8(9): 1734-1742. (in Chinese with English abstract)
[11] 钟楚, 朱颖墨, 朱勇, 朱斌, 张茂松, 徐梦莹. 云南不同类型一季稻产量形成及其与气象因子的关系[J]. 应用生态学报, 2013, 24(10): 2831-2842.
Zhong C, Zhu Y M, Zhu Y, Zhu B, Zhang M S, Xu M Y. Yield formation of different single-season rice (L.) types and its relationships with meteorological factors in Yunnan Province of Southwest China[J]., 2013,24(10):2831-2842. (in Chinese with English abstract)
[12] 龚金龙, 张洪程, 胡雅杰, 龙厚元, 常勇, 王艳, 邢志鹏, 霍中洋. 灌浆结实期温度对水稻产量和品质形成的影响[J]. 生态学杂志, 2013, 32(2): 482-491.
Long J L, Zhang H C, HuY J, Long H Y, Chang Y, Wang Y, Xing Z P, Huo Z Y. Effects of air temperature during rice grain-filing period on the formation of rice grain yield and its quality[J]., 2013, 32(2): 482-491. (in Chinese with English abstract)
[13] 吴立群, 蔡志欢, 张桂莲, 刘逸童, 赵瑞. 低温对不同耐冷性水稻品种秧苗生理特性及根尖解剖结构的影响[J]. 中国农业气象, 2018, 39(12): 805-813.
Wu L Q, Cai Z H, Zhang G L, Liu Y D, Zhao R. Effects of Low temperature on physiological characteristics of rice seedlings with different cold tolerance and anatomical structure of root tip[J]., 2018, 39(12): 805-813. (in Chinese with English abstract)
[14] 王国莉, 郭振飞. 低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J]. 中国水稻科学, 2005, 19(4): 381-383.
Wang G L, Guo Z F. Effects of chilling stress on photosynthetic rate and the parameters of chlorophyll fluorescence in two rice varieties differing in sensitivity[J]., 2005, 19(4): 381-383. (in Chinese with English abstract)
[15] 王亚男, 范思静. 低温胁迫对水稻幼苗叶片生理生化特性的影响[J]. 安徽农业科学, 2017, 45(5): 8-13.
Wang Y N, Fan S J. Effects of low-temperature stress on the physiological and biochemical characteristics of rice seedling leaves[J]., 2017, 45(5): 8-13. (in Chinese with English abstract)
[16] 王艳春, 王士强, 赵海红. 寒地水稻冷害减产原因与生理机制的研究进展[J]. 现代化农业, 2009(9): 7-8.
Wang Y C, Wang S Q, Zhao H H. Research progress on yield reduction causes and physiological mechanism of rice chilling injury in cold regions[J].,2009(9): 7-8. (in Chinese)
[17] Yan J, Zou D T, Wang J G, Sha H J, Li H L, Inayat M A, Sun J. Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (L.) under cold stress during the early vegetative stage[J]., 2017, 36(1): 240-253.
[18] 黄伟军. 低温冷害对陆丰市水稻秧苗期的影响与病害防治[J]. 中国农业信息, 2013(5): 114.
Hang W J. Effect of low temperature and chilling injury on rice seedling stage and disease control in Lufeng City[J]., 2013(5): 114. (in Chinese with English abstract)
[19] 吕晓, 张兵兵, 杨璐, 战莘晔, 吴航, 高全, 张慧, 高莉莉. 水稻拔节期和抽穗期低温对稻米品质影响[J]. 广东农业科学, 2020, 47(2): 1-8.
Lv X, Zhang B B, Yang L, Zhan Z Y, Wu H, Gao Q, Zhang H, Gao L L. Effect of low temperature on rice quality at jointing and heading stages[J]., 2020,47(2):1-8. (in Chinese with English abstract)
[20] 谭孟祥, 景元书, 薛杨, 曾文全. 水层深度对早稻幼穗分化期遭遇低温过程时叶片生理特性的影响[J]. 中国农业气象, 2015, 36(5): 553-560.
Tan M X, Jing Y S, Xue Y , Zeng W Q. Effects of different water depth on leaf physiological characteristics of early rice during panicle primordium suffered to low temperature[J]., 2015, 36(5): 553-560. (in Chinese with English abstract)
[21] 任红茹, 荆培培, 胡宇翔, 陈雨霏, 陈梦云, 霍中洋. 孕穗期低温对水稻生长及产量形成的影响[J]. 中国稻米, 2017, 23(4): 56-62.
Ren H R, Jing P P, Hu Y X, Chen Y F, Chen M Y, Huo Z Y. Effects of low temperature at booting stage on growth and yield formation of rice[J]., 2017, 23(4): 56-62. (in Chinese with English abstract)
[22] 陆魁东, 罗伯良, 黄晚华, 崔伟. 影响湖南早稻生产的五月低温的风险评估[J]. 中国农业气象, 2011, 32(2): 283-289.
Lu K D, Luo B L, Huang W H, Cui W. Risk evaluation of the effects of chilling in may on early rice production in Hunan Province[J]., 2011, 32(2): 283-289. (in Chinese with English abstract)
[23] 马树庆, 刘晓航, 邓奎才, 全虎杰, 佟丽媛, 袭祝香, 柴庆荣, 杨军. 幼穗形成期低温对水稻结实的影响[J]. 应用生态学报, 2018, 29(1): 125-132.
Ma S Q, Liu X H, Deng K C, Quan H J, Long L Y, Xi Z X, Cai Q Z, Yang J. Impact of low temperature in young ear formation stage on rice seed setting[J]., 2018, 29(1): 125-132. (in Chinese with English abstract)
[24] 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 龚明, 邹竹荣. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34(9): 1916-1926.
Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zhou Z Z. Generation of reactive oxygen species and their functions and deleterious effects in plants[J]., 2014, 34(9): 1916-1926. (in Chinese with English abstract)
[25] Iqbal M, Ashraf M, Rehman S U, Rha E S. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in Hexaploid wheat (L.) plants under salt stress[J]?, 2006, 47(3): 239-250.
[26] Yang J H, Gao Y, Li Y M, Qi X H, Zhang M F. Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon[J]., 2008, 118(3): 200-205.
[27] Kamal-Eldin A, Appelqvist L A. The chemistry and antioxidant properties of tocopherols and tocotrienols[J]., 1996, 31(7): 671-701.
[28] 宋智娟, 赵国先, 张晓云, 李岁寒. 维生素E与硒的抗氧化机理及其相互关系[J]. 饲料博览, 2005(7): 6-9.
Song Z J, Zhao G X, Zhang X Y, Li S H. Antioxidant mechanism and relationship between vitamin E and selenium[J].2005(7): 6-9. (in Chinese)
[29] Sun L, Zhang H, Li D, Huang L, Hong Y, Ding X S, Nelson R S, Zhou X, Song F. Functions of rice NAC transcriptional factors,and, in defense responses against[J]., 2013, 81(1-2): 41-56.
[30] Miura K, Jin J B, Lee J, Yoo C Y, Stirm V, Miura T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls/expression and freezing tolerance in Arabidopsis[J]., 2007, 19(4): 1403-1411.
[31] Wang Y, Hua J. A moderate decrease in temperature inducesexpression through the CBF signaling cascade and enhances freezing tolerance[J]., 2010, 60(2): 340-349.
[32] 高红秀, 朱琳, 刘天奇, 张忠臣. 水稻植物激素响应低温胁迫反应的转录组分析[J]. 分子植物育种, 2020(4): 1-13.
Gao H X, Zhu L, Liu T Q, Zhang Z C. Transcriptomic analysis of hormone response to low temperature stress in rice plants[J]., 2020(4): 1-13. (in Chinese with English abstract)
[33] Sah S K, Reddy K R, Li J. Abscisic acid and abiotic stress tolerance in crop plants[J]., 2016, 7: 571.
[34] 陈莎莎, 兰海燕. 植物对盐胁迫响应的信号转导途径[J]. 植物生理学报, 2011, 47(2): 119-128.
Chen S S, Lan H Y. Signal transduction pathways in response to salt stress in plants[J]., 2011,47(2):119-128. (in Chinese with English abstract)
[35] Shi Y T, Yang S H.: A cold sensor in rice[J]., 2015, 58(4): 1-2.
[36] Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S., a calcium dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]., 2004, 55 (4): 541-552.
[37] Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X., a bZIP transcription factor, confers salinity and drought tolerance in rice[J]., 2014, 84: 19-36.
[38] Liu C, Ou S, Mao B, Tang J, Wei W. Early selection offacilitated adaptation of japonica rice to cold climates[J]., 2018, 9: 3302.
[39] Liu C, Michael R. Schlppi, Mao B, Wei W, Wang A, Chu C. Thetranscription factor controls rice cold tolerance at the reproductive stage[J]., 2019, 17(9): 1834-1849.
[40] MaY, DaiX, XuY, LuoW, ChongK.confers chilling tolerance in rice[J]., 2015, 6(160): 1209-1221.
[41] SaijoY, HataS, KyozukaJ, ShimamotoK, IzuiK. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]., 2000, 23: 319-327.
[42] Morsy M R, Almutairi A M, Gibbons J, Song J Y, Reyes B G D L. Thegenes encoding low- molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature[J]., 2005, 344: 171-180.
[43] Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxinh of rice,, negatively regulates kinase activities ofand[J]., 2009, 583: 2734-2738.
[44] Li L, Liu X, Xie K, Wang Y, Liu F, Lin Q, Wang W, Yang C, Lu B, Liu S., a stable quantitative trait locus for low temperature germination in rice (L.)[J]., 2013, 126(9): 2313-2322.
[45] Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K. Molecular identification of a major quantitative trait locus,, controlling low-temperature germ inability in rice[J]., 2008, 105(34): 12623-12628.
[46] Andaya V C, Tai T H. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (L.)[J]., 2007, 20(4): 349-358.
[47] Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang Z X, Minobe Y. Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage[J]., 2010, 284(1): 45-54.
[48] Kim S M, Suh J P, Lee C K, Lee J H, Kim Y G, Jena K K. QTL mapping and development of candidate gene derived DNA markers associated with seedling cold tolerance in rice (L.)[J]., 2014, 289(3): 333-343.
[49] Ning X, Huang W N, Li A H, Gao Y, Chen J M. Fine mapping of theandloci associated with chilling stress tolerance of wild rice seedlings[J]., 2015, 128(1): 173-185.
[50] Saika H, Ohtsu K, Hamanaka S, Nakazono M, Tsutsumi N, Hirai A., a novel rice gene for alternative oxidase; comparison with riceand[J]., 2002, 77(1): 31-38.
[51] Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F. Overexpression of, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]., 2007, 226(4): 1007-1016.
[52] Li H B, Wang J, Liu A M, Liu K D, Zhang Q, Zou J S. Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis[J]., 1997, 95(7): 1092-1097.
[53] Dai L, Lin X, Ye C, Ise K, Saito K, Kato A, Xu F, Yu T, Zhang D. Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice[J]., 2004, 54(3): 253-258.
[54] Chiba B, Sasaki K, Nagano K, Ueda T, Yano M. Mapping of new quantitative trait loci controlling cold tolerance at booting stage on chromosome 7 in rice[J]., 2004, 6(2): 68.
[55] El S. Physiological and molecular responses to abiotic stress in rice () and characterization of an up-regulated gene family[D]. Fayetteville, USA: University of Arkansas, 2005.
[56] Lei Z, Zeng Y, Zheng W, T Bo, Yang S, Zhang H, Li J, Li Z. Fine mapping a QTLfor cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]., 2010, 121(5): 895-905.
[57] Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Sato A Y. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8[J]., 2007, 115(5): 593-600.
[58] Zhu Y, Chen K, Mi X, Chen T, JauharA, Ye G, Xu J, Li Z, Qian Q. Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice[J]., 2015, 10(12): e0145704.
[59] Endo T, Chiba B, Wagatsuma K, Saeki K, Nishio T. Detection of QTLs for cold tolerance of rice cultivar 'Kuchum' and effect of QTL pyramiding[J].2016, 129(3): 631-640
[60] Ji L, Pan Y H, Guo H F, Zhou L, Yang S M. Fine mapping of QTLthat confers cold tolerance at the booting stage in rice[J]., 2018, 131(1): 157-166.
[61] Oliver S N, Dongen J T V, Alfred S C, Mamun E A, Dolferus R. Cold-induced repression of the rice anther-specific cell wall invertase geneis correlated with sucrose accumulation and pollen sterility[J]., 2005, 28(12): 1534-1551.
[62] Zhang J, Li J, Wang X, Chen J. OVP1, a vacuolar H+- translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance[J]., 2011, 49(1): 33-38.
[63] Islam F. 除草剂和盐胁迫对水稻和稗草生理生化和分子水平的比较分析研究[D]. 杭州: 浙江大学, 2017.
Islam F. Comparative physio-biochemical and molecular analysis of interaction between herbicides and salinity in rice and barnyard grass[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)
[64] Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxin h of rice,, negatively regulates kinase activities ofand[J]., 2009, 583(17): 2734-2738.
[65] Yutaka S, Yukari M, Koji S, Seiji M, Kenjiro O. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene,[J]., 2011, 30(3): 399-406.
[66] Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase geneenhances abiotic stress tolerance in rice[J]., 2011, 234(5): 1007-1018.
[67] Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice., 2007, 226(4): 1007-1016.
[68] Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene,, is involved in salt, cold, and dehydration tolerance in rice[J]., 2012, 63(7): 2541-2556.
[69] Park M R, Yun K Y, Mohanty B. Supra-optimal expression of the cold-regulatedtranscription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development [J]., 2010, 33(12): 2209-2230.
[70] Vannini C, Locatelli F, Bracale M. Overexpression of the ricegene increases chilling and freezing tolerance ofplants [J]., 2004, 37(1): 115-127.
[71] Ma Q B, Dai X P, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X H, Chong K. Enhanced tolerance to chilling stress intransgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]., 2009, 150(1): 244-256.
[72] Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H S. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the over expression of a gene that encodes the zinc finger protein ZFP245[J]., 2009, 389(3): 556-561.
[73] Du H, Wu N, Chang Y, Li X H, Xiao J H, Xiong L Z. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice[J]., 2013, 83(4-5): 475-488.
[74] Mega R, Meguro-Maoka A, Endo A, Shimosaka E, Murayama S, Nambara E, Seo M, Kanno Y, Abrams S R, Sato Y. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (L.)[J]., 2015, 5: 13819.
[75] Lee S C, Huh K W, An K, An G, Kim S R. Ectopic expression of a cold-inducible transcription factor,/, in transgenic rice (L.)[J]., 2004, 18(1): 107-114.
[76] Joo J, Lee Y H, Kim Y K, Nahm B H, Song S I. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities[J]., 2013, 35(5): 421-435.
[77] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]., 2000, 23(3): 319-327.
[78] Mustafa M R, Almutairi A M, Gibbons J, Yun S J, Reyes B G. Thegenes encoding low- molecularweight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature[J]., 2005, 344: 171-180.
[79] Xie G S, Kato H, Imai R. Biochemical identification of the-signalling pathway for chilling stress tolerance in rice[J]., 2012, 443(1): 95-102.
[80] Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factorinvolved in abiotic and biotic stress-responsive gene expression in rice[J]., 2007, 51(4): 617-630.
[81] Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice/-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]., 2006, 47(1): 141-153.
[82] Ge L F, Chao D Y, Shi M, Zhu M Z, Gao J P, Lin H X. Overexpression of the trehalose-6-phosphate phosphatase geneconfers stress tolerance in rice and results in the activation of stress responsive genes[J]., 2008, 228(1): 191-201.
[83] Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance[J]., 2010, 72(1-2): 125-135.
[84] Liu Y, Xu C J, Zhu Y F, Zhang L N, Chen T Y, Zhou F, Chen H, Lin Y J. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice[J]., 2018, 60(2): 173-188.
[85] 向殿军, 张瑜, 殷奎德. 农杆菌介导的转ICE1基因提高水稻的耐寒性[J]. 中国水稻科学, 2001, 21(5): 482-486.
Xiang D J, Zhang Y, Yin KD. Transformation of ICE1 gene mediated by agrobacterium improves cold tolerance in transgenie rice[J]., 2001, 21(5):482-486. (in Chinese with English abstract)
[86] Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong Z. Overexpression of, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]., 2007, 226(4): 1007-1016.
[87] Yang A, Dai X Y, Zhang W H. AR2R3-type MYB gene,, is involved in salt, cold, and dehydration tolerance in rice[J]., 2012, 63(7): 2541-2556.
[88] Huang L, Hong Y, Zhang H, Li D, Song F. Rice NAC transcription factorplays opposite roles in drought and cold stress tolerance[J]., 2016, 16: 203.
[89] Song S Y, Chen Y, Chen J, Dai X Y, Zhang W H. Physiological mechanisms underlying- dependent tolerance of rice plants to abiotic stress[J]., 2011, 234(2): 331-345.
[90] 何曙光, 李华平, 戴力, 刘洋, 匡炜, 方宝华, 赵杨. PQQ对低温胁迫下早稻幼苗生理特性的影响[J]. 湖南农业科学, 2020(5): 17-20.
He S G, Li H P, Dai L, Liu Y, Kuang W, Fang B H, Zhao Y. Effects of PQQ on physiological characteristics of early rice seedlings under low temperature stress[J]., 2020(5):17-20. (in Chinese with English abstract)
[91] 郁平慧, 符卫蒙, 符冠富, 陶龙兴. 水杨酸与烯唑醇复配对水稻秧苗耐冷性的影响[J]. 中国稻米, 2020, 26(3): 28-31.
Yu P H, Fu W M, Fu G F, Tao L X. Effects of salicylic acid and diniconazole combination on the cold tolerance of rice seedlings[J]., 2020,26(3):28-31. (in Chinese with English abstract)
[92] 安俊霞, 赵宇, 张正坤, 史海鹏, 纪东铭, 曹洪翼, 杜茜, 李启云. 公主岭霉素诱导对育苗期水稻耐冷性的影响[J]. 中国农业科学, 2020, 53(11): 2195-2206.
An J X, Zhao Y, Zhang Z K, Shi H P, Ji D M, Cao H Y, Du X, Li Q Y. Induction of cold tolerance in rice at the breeding stage by Gongzhulingmycin[J]., 2020, 53(11): 2195-2206. (in Chinese with English abstract)
[93] 吴旺嫔, 周伟江, 唐才宝, 刘坤, 曾红丽, 王悦. 2, 4-表油菜素内酯对低温胁迫下水稻种子萌发及生理特性的影响[J]. 分子植物育种, 2020, 18(13): 4427-4434.
Wu W B, Zhou W J, Tang C B, Liu K, Zeng H L, Wang Y. Effects of exogenous 2,4-epibrassinolide on germination and physiological characteristics of rice seeds under chilling stress[J]., 2020,18(13):4427-4434. (in Chinese with English abstract)
[94] Tábata B, Bianca R, Ceciliato P H O, Carlos G A J, Silva-Filho M C, Moura D S.RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation[J]., 2014(8): 2219.
[95] 项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响[J]. 草业学报, 2019, 28(4): 81-94.
Xiang H T, Qi D Q, Li W, Zheng D F, Wang Y X, Wang D D, Wang L Z, Zeng X N, Yang C J, Zhou X, Zhao H D. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress[J]., 2019, 28(4):81-94. (in Chinese with English abstract)
[96] 项洪涛, 王彤彤, 郑殿峰, 王立志, 洛育, 李琬. 孕穗期低温条件下ABA对水稻结实率及叶片生理特性的影响[J]. 中国农学通报, 2016, 32(36): 16-23.
Xiang H T, Wang D D, Wang L Z, Luo Y, Li W. Effect of ABA on seed-setting rate and physiological characteristics of rice leaves under low temperature stress at booting stage[J]., 2016, 32(36): 16-23. (in Chinese with English abstract)
[97] 李馨园, 杨晔, 张丽芳, 左师宇, 李丽杰, 焦健, 李晶. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节[J]. 作物学报, 2017, 43(1): 141-148.
Li Q Y, Yang Y, Zhang L F, Zuo S Y, Li L J, Jiao J, Li J. Regulation on contents of endogenous hormones and asr1 gene expression of maize seedling by exogenous ABA under low-temperature stress[J].,2017, 43(1):141-148. (in Chinese with English abstract)
[98] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]., 2010, 73(3): 241-249.
[99] 朱春权, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华. 不同属性特征基质对早稻秧苗耐低温的影响[J]. 中国水稻科学, 2021, 35(5): 503-512.
Zhu C Q, Xu Q S, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Zhang J H. Effects of substrates with different properties on chilling tolerance of early rice seedlings[J]., 2021, 35(5): 503-512. (in Chinese with English abstract)
[100] 曹娜, 陈小荣, 贺浩华, 朱昌兰, 才硕, 徐涛, 谢亨旺, 刘方平. 幼穗分化期喷施磷钾肥对早稻抵御低温及产量和生理特性的影响[J]. 应用生态学报, 2017, 28(11): 3562-3570.
Cao N, Chen X R, He H H, Zhu C L, Cai S, Xu T, Xie H W, Liu F P. Effects of spraying P and K fertilizers during panicle primordium differentiation stage on cold resistance, yield and physiological characteristics of early rice[J]., 2017, 28(11):3562-3570. (in Chinese with English abstract)
[101] 房玉军. 浅谈水稻栽培条件与冷害的关系[J]. 现代化农业, 2008(8): 43-44.
Fang Y J. A brief discussion on the relationship between rice cultivation conditions and chilling injury[J]., 2008(8):43-44. (in Chinese with English abstract)
[102] 李海波, 于广星, 陈盈, 赵琦, 付亮, 马亮, 代贵金, 侯守贵. 氮磷钾不同施用比例对抽穗开花期水稻低温伤害的预防效果研究. 中国作物学会. 2014年全国青年作物栽培与生理学术研讨会论文集[C]. 扬州: 中国作物学会, 2014: 1.
Li H B, Yu G X, Chen Y, Zhao Q, Fu L, Dai J G, Hou S H. Study on the preventive effect of different application ratio of nitrogen, phosphorus and potassium on low temperature injury of rice at heading and flowering stage[C].Yangzhou: Crop Society of China, 2014:1. (in Chinese with English abstract)
[103] SunX C, Hu C X, Tan Q L, Liu J S, Liu H G. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress[J]., 2009(2): 345-356.
[104] 梁颖, 王三根. Ca2+对低温下水稻幼苗膜的保护作用[J]. 作物学报, 2001(1): 59-64.
Liang Y, Wang S Y. Protective effect of Ca2+on membrane of Rice seedlings at low temperature[J]., 2001,27(1): 59-64. (in Chinese with English abstract)
[105] 康丽敏. 低温与CaCl2处理对水稻幼苗的影响[J]. 农业科技通讯, 2011(3): 48-50.
Kang L M. Effects of low temperature and CaCl2treatment on rice seedlings[J]., 2011(3): 48-50. (in Chinese)
[106] 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展[J]. 中国农业科学, 2021, 54(11): 2287-2301.
Wang X, Cai J, Zhou Q, Dai T B, Jiang D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review[J]., 2021, 54(11): 2287-2301. (in Chinese with English abstract)
[107] 胡国辉. 生物可降解膜覆盖对机插水稻生长及甲烷排放的影响[D]. 北京: 中国农业科学院, 2020.
Hu G H. Effects of biodegradable film mulching on growth and methane emission of mechanically implanted rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)
[108] 王洪军, 贺萍. 低温冷害对水稻生育的影响及防御措施[J]. 黑龙江气象, 2012, 29(1): 37-38.
Wang H J, He P. Effects of chilling injury on rice growth and preventive measures[J]., 2012, 29(1): 37-38. (in Chinese)
[109] 陈大洲, 肖叶青, 赵社香, 皮勇华, 熊焕金, 罗利军. 东乡野生稻苗期耐寒性的遗传研究[J]. 江西农业大学学报, 1997, 19(4): 58-61.
Chen D Z, Ye X Q, Zhao S X, Pi Y H, Xiong H J, Luo L J. Genetic study on cold tolerance of dongxiang wild rice at seedling stage[J]., 1997, 19(4): 58-61. (in Chinese with English abstract)
Effects of Low Temperature on the Growth and Development of Rice Plants and the Advance of Regulation Pathways: A Review
XU Qingshan1, #, HUANG Jing1, #, SUN Aijun2, HONG Xiaozhi2, ZHU Lianfeng1, CAO Xiaochuang1, KONG Yali1, JIN Qianyu1, ZHU Chunquan1, *, ZHANG Junhua1, *
( State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; Bengbu Yifeng Bio-organic Fertlizer Co. Ltd, Bengbu 233300, China; Corresponding authors, E-mail: zhuchunquan@caas.cn, zhangjunhua@caas.cn)
Early rice often suffers from low temperature during rice seedling raising, which seriously affects the quality of rice seedlings, and the growth and development of rice in paddy field, and reduces rice yield. It is of great significance to study the effect of low temperature on rice growth and development and the appropriate exogenous regulation pathways to ensure the production of early rice in China. In this work, the effects of low temperature on early rice seedlings, vegetative growth and reproductive growth were reviewed, and the physiological, biochemical and molecular mechanisms of rice responding to low temperature stress were summarized, including antioxidant system and the expression of low temperature induced genes. Finally, we put forward the measurements to improve the tolerance of rice to low temperature stress, such as screening of rice varieties with low temperature tolerance, application of exogenous hormones and reasonable fertilization. The research prospects of improving the tolerance of rice to low temperature and expanding the area of early rice in China were also put forward, such as screening of excellent rice varieties with low temperature tolerance and integrated agronomic cultivation technology.
early rice; low temperature; seedling raising; gene; growth and development; regulation
10.16819/j.1001-7216.2022.210602
2021-06-03;
2021-11-03。
国家自然科学基金资助项目(31872857,31771733,31901452);浙江省重点研发计划资助项目(2021C02063-3)。