南堡凹陷深层储层成岩作用与孔隙演化
——以3 号构造带古近系沙一段为例
2022-03-01杨佳奇纪友亮吴浩孟令箭
杨佳奇,纪友亮,吴浩,孟令箭
1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2.中国地质大学(北京)能源学院,北京 100083
3.兰州大学地质科学与矿产资源学院,甘肃省西部矿产资源重点实验室,兰州 730000
4.中国石油冀东油田勘探开发研究院,河北唐山 063004
0 引言
渤海湾盆地一直是我国石油与天然气勘探的重点盆地之一,而南堡凹陷作为其中一个勘探程度相对较高的油气富集区域[1-4],已开展了多年的油气勘探和开发,前人研究认为南堡凹陷中深层储层具有丰富的油气潜力[5]。近年来,油气勘探逐渐由中浅层(埋深低于3 500 m)构造—地层油气藏转向中深层(埋深超过3 500 m)岩性油气藏[6-11]。在南堡凹陷3号构造带深部(深度大于4 000 m)地层中也发现了渗透率为(100~1 000)×10-3μm2,孔隙度大于15%,且粒度相对较粗的优质砂岩储层[12-13],尤其是3 号构造带中的PG2井区,已获得工业性油气流,证实了南堡凹陷深层油气勘探具有巨大的潜力[14]。学者对于南堡凹陷深层储层的研究取得了诸多进展,对深层优质储层的成因机制、主控因素以及油气资源量进行了大量的研究[5,12-16],但并未开展针对深层储层孔隙度定量演化的相关研究,制约了后续的勘探开发。
储层成岩作用控制着孔隙演化[12],只有明确储层的成岩作用,才能对储层孔隙度演化进行系统研究,从而更准确地指导后续勘探[17-19]。选取南堡凹陷3号构造带深部沙一段储层为研究对象,基于储层特征和成岩作用的系统研究,重建储层成岩演化序列并定量计算各成岩作用对储层孔隙度的影响,进而建立储层孔隙度定量演化模式,以期为南堡凹陷深部储层油气勘探提供一定借鉴。
1 地质背景
渤海湾盆地位于中国东部,是我国第二大含油气盆地,由近50个凹陷组成,南堡凹陷位于渤海湾盆地黄骅坳陷的东北部[4,12,20-22],其北邻燕山,整个凹陷的面积约为1 932 km2[1-2,13-14]。南堡凹陷作为渤海湾盆地内重要的生烃凹陷,发育在华北地台基底之上,其表现为一个东断西超的复合箕状凹陷[3]。就构造单元划分而言,南堡凹陷可划分为陆上的北堡构造、老爷庙构造和高尚堡—柳赞构造,以及滩海部分的南堡1~5号构造两个主要的区域[23](图1)。
图1 南堡凹陷3 号构造带构造位置及井位图Fig.1 Map showing the structural location and the distribution of drilling wells of the No.3 structural belt in the Nanpu Sag
南堡凹陷沉积序列主要由一系列碎屑岩夹火山岩构成,沉积了5 000~9 000 m 厚的新生代地层[4,24]。自下而上沉积沙河街组(Es)、东营组(Ed)、馆陶组(Ng)以及明化镇组(Nm),其中沙河街组沉积相带主要为辫状河三角洲相,东营组为滨浅湖相,馆陶组和明化镇组主要为河流相[13,24-26]。南堡凹陷经历了与华北地台相同的多幕裂陷演化,形成多个区域性不整合,其中东营组末期所形成的不整合导致东营组剥蚀明显,以高柳断层为界,以北的高柳地区剥蚀强度相对较高,以南地区剥蚀量一般小于300 m。
前人研究发现,南堡凹陷在沙三段、沙一段以及东三段共发育3 套烃源岩,储层主要分布于沙河街组、东营组三角洲沉积相砂体以及新近系河流相砂体之中,3号构造带含油层位主要为东三段下亚段以及沙一段,而新近系广泛发育的火山岩和泥岩可作为研究区内区域性盖层[13,25-26]。
2 储层基本特征
2.1 沉积学特征
3号构造带沙一段物源主要为沙垒田凸起,发育辫状河三角洲前缘沉积体系,三角洲前缘亚相内发育水下分流河道、河口坝及席状砂等沉积微相[12]。水下分流河道微相与河口坝微相砂体构成了研究区内深层主要的储层。其中厚层砂体沉积微相类型主要以叠置河道为主,厚度一般为3~9 m,测井曲线呈现出典型的钟型、箱型等特征,其次为河口坝,厚度一般为2~4 m,测井曲线呈现出漏斗形等特征(图2)。
图2 南堡凹陷3 号构造带沉积特征Fig.2 Stratigraphic columns of the No.3 structural belt in the Nanpu Sag
2.2 岩石学特征
3 号构造带沙一段238 个样品的岩性成分分析结果表明,石英含量主要分布范围为21%~50%,平均为40.8%,长石含量16%~47%,平均为30.8%,岩屑含量7%~54%,平均为20.2%,其中岩屑主要成分为变质岩岩屑,成分成熟度高。根据沙一段储层岩石类型三角图可知,研究区内储层岩石类型以岩屑质长石砂岩为主(图3)。分选系数1.05~4.72,平均为1.88,磨圆为次棱角—次圆状,岩性以含砾砂岩和砂砾岩为主,中等结构成熟度。
图3 南堡凹陷3 号构造带沙一段储层岩石类型三角分类图Fig.3 Ternary diagram of Es1 reservoirs rock type of the No.3 structural belt in the Nanpu Sag
2.3 物性特征
根据取心井段数据统计:研究区内砂岩的孔隙度分布较广,主要集中在10%~15%之间,平均为12.4%(图4a),渗透率主要集中在(10~1 000)×10-3μm2之间,平均值为92.3×10-3μm2(图4b)。根据石油行业储层孔隙度分级标准(SY/T 6285—1997),储层整体表现为中低孔中渗特征。
图4 南堡凹陷3 号构造带沙一段储层孔隙度(a)与渗透率(b)频率分布Fig.4 Histogram of (a) porosity and (b) permeability distribution frequency in the Es1 Formation of the No.3 structural belt in the Nanpu Sag
2.4 储集空间类型及特征
研究区储层孔隙类型主要为原生孔隙和次生孔隙,其中原生孔隙含量相对较低,铸体薄片鉴定结果表明,原生孔隙面孔率分布范围为0.1%~7.9%,平均为4.8%,次生溶蚀孔隙面孔率分布范围为0~18.7%,平均为8.0%。原生孔隙格架相对清楚(图5a,b),次生孔隙主要为长石和岩屑溶蚀后的粒内孔或粒间孔(图5c,d),部分还可见颗粒破碎裂缝(图5e),该类裂缝虽然对于储层的孔隙度影响不大,但对储层的渗透率影响相对较大,连通的微裂缝可以极大的增加储层的渗透率(图5f)。
图5 南堡凹陷3 号构造带沙一段储层孔隙类型(a)NP3-82井,4 341.51 m,(-),箭头指示剩余粒间孔隙;(b)NP306x1井,4 234.07 m,(-),箭头指示原生粒间孔隙;(c)PG2井,4 254.18 m,(-),箭头指示长石部分溶蚀孔隙;(d)NP3-82井,4 341.51 m,(-),箭头指示岩屑溶蚀孔隙;(e)NP3-82井,4 341.51 m,(-),箭头指示石英颗粒破裂裂缝;(f)NP306x1井,4 244.59 m,(-),箭头指示颗粒破碎裂缝沟通孔隙Fig.5 Pore types of the reservoir in the Es1 Formation of the No.3 structural belt in the Nanpu Sag
3 成岩作用
3 号构造带沙一段对储层物性起到重要控制作用的成岩作用主要有中等—强的压实作用、类型多样的胶结作用以及强烈的溶解作用[27]。
3.1 压实作用
3 号构造带沙一段储层埋深超过4 000 m,经历了中等—强的压实作用。根据镜下薄片观察,压实作用主要表现为:1)塑性颗粒形变:由于研究区内岩石类型主要为岩屑质长石砂岩,其中含有大量的塑性颗粒,如云母等,其抗压实能力比石英等刚性颗粒较差,随着储层埋深加大,塑性颗粒受压实作用的影响发生变形,导致原生孔隙减少(图6a,b);2)颗粒接触方式:随着储层受上覆地层的压力逐渐增大,颗粒之间接触方式逐渐由点—线接触变为缝合线接触,从而导致储层损失大量的孔隙(图6c,d);3)岩石颗粒破碎:在深层,由于上覆压力超过部分颗粒所能承受的最大压力,导致部分颗粒沿解理缝发生破裂而形成裂缝(图6e,f)。
图6 南堡凹陷3 号构造带沙一段压实作用(a)NP3-82井,4 339.51 m,(+),箭头指示云母压实变形;(b)PG2井,4 256.37 m,(+),箭头指示塑性颗粒变形;(c)NP3-26井,4 212.50 m,(+),箭头指示缝合线接触;(d)PG2井,4 254.06 m,(-),箭头指示缝合线接触;(e)NP306x1,井,4 240.83 m,(-),箭头指示石英颗粒破裂;(f)NP3-82井,4 925.87 m,(-),箭头指示石英颗粒破碎Fig.6 Compaction of the Es1 Formation of the No.3 structural belt in the Nanpu Sag
3.2 胶结作用
3 号构造带沙一段储层存在多种类型的胶结作用,包括碳酸盐胶结、硅质胶结和黏土矿物胶结,其中黏土矿物和碳酸盐胶结物含量相对较高,石英加大次之。
3.2.1 碳酸盐胶结
研究区内碳酸盐胶结物类型主要为方解石、白云石以及铁方解石等,其中存在两期方解石胶结,含量分布在0.6%~36.9%之间,平均为5.9%。早期方解石胶结物以微晶、亮晶或嵌晶方式充填在原生孔隙中,在一些早期方解石胶结发育的砂岩中,溶解作用不发育,方解石几乎占据了所有原生孔隙,且方解石大量胶结的砂岩,颗粒之间以点接触为主(图7a)。镜下研究发现这种早期方解石胶结发生在岩石受到充分压实之前,呈现出基底式胶结的特征,岩石颗粒呈漂浮状或点接触分布于早期方解石胶结物中,其能够有效抑制后期的压实作用[28],表明砂岩储层在压实作用相对较弱的时候发育胶结物。扫描电镜下可见粒间方解石以嵌晶式充填孔隙(图7b),同时部分方解石、铁方解石和白云石胶结物充填在长石等次生溶蚀孔隙中,说明其形成时期晚于长石、岩屑溶解作用(图7c)。镜下可见沿方解石胶结物边缘发生白云石交代作用(图7d)。
3.2.2 黏土矿物胶结
根据扫描电镜和X 衍射分析可以鉴别伊蒙混层、伊利石、绿泥石、高岭石。研究区储层的黏土矿物胶结物中伊蒙混层含量最高,伊利石次之,绿泥石和高岭石含量较少(表1)。自生黏土矿物含量分布范围1.7%~13.8%,平均为5.5%。高岭石含量最低,绝对含量小于0.3%,多为片状胶结(图7e)。由于沙一段火山物质和铁镁矿物含量相对较低,导致绿泥石的相对含量较低,绿泥石薄膜主要以衬垫的方式发育在三角洲前缘分流河道砂体中(图7f)。伊蒙混层和伊利石含量丰富,分布广泛,以搭桥状、丝缕状存在于颗粒衬边或颗粒表面,或直接充填于颗粒间的孔隙中(图7g)。
表1 南堡凹陷3号构造带沙一段储层自生黏土矿物相对含量分析统计表Table 1 Relative content of authigenic clay minerals in the Es1 Formation reservoirs of the No.3 structural belt in the Nanpu Sag
3.2.3 硅质胶结
研究区沙一段砂岩中的硅质胶结主要是石英次生加大,发育于石英颗粒外围,加大边宽度一般小于30 μm(图7h),具有2~3期加大特征,表明成岩作用的多期旋回性。扫描电镜下可以观察到定向菱面形的自形石英晶体填充粒间孔隙(图7i)。根据镜下薄片统计,石英胶结物体积分布在0.5%~3.4%,平均值为1.6%。
图7 南堡凹陷3 号构造带沙一段胶结作用(a)PG2井,4 255.46 m,(-),箭头指示方解石胶结;(b)NP306X1井,4 249.69 m,SEM,箭头指示粒间方解石嵌晶式胶结;(c)NP3-82井,4 925.87 m,(+),箭头指示碳酸盐胶结物充填粒内溶蚀孔隙;(d)NP306x1井,4 226.15 m,(+),箭头指示白云石交代方解石;(e)PG2井,3 651.85 m,SEM,箭头指示自生高岭石;(f)NP3-82井,4 339.39 m,SEM,箭头指示绿泥石衬垫式胶结;(g)NP306X1井,4 219.0 m,SEM,箭头指示伊利石搭桥状、粒表衬垫产出;(h)NP306x1井,4 217.91 m,(+),箭头指示石英次生加大;(i)NP306x1井,4 245.79 m,SEM,石英次生加大充填孔隙Fig.7 Cementation of the Es1 Formation of the No.3 structural belt in the Nanpu Sag
3.3 溶解作用
研究区内存在丰富的可溶解组分,如长石、部分易溶岩屑、碳酸盐胶结物以及硅质胶结物等,为溶解作用的进行提供了物质基础,铸体薄片下可以观察到大量的溶解作用发生的现象。长石和岩屑等不稳定组分溶蚀现象非常普遍,形成了粒内和粒间次生孔隙(图8a)。一般情况下,钾长石较偏酸性的斜长石容易溶蚀[23,29],储层中斜长石多呈现部分溶蚀现象,部分长石颗粒被彻底溶蚀,但通过孔隙的形状以及残余的解理和双晶纹可以进行辨别(图8b,c)。由于储层在早期发生碳酸盐胶结,这一部分胶结物极易在之后的酸性地层水或有机酸的作用下溶解,进而发育粒间溶蚀孔隙(图8d),扫描电镜下也可观察到碳酸盐胶结物发生溶解作用(图8e)。同时长石溶蚀之后形成的孔隙被方解石充填,这部分方解石也发生了部分溶解作用(图8f),说明储层发生了多期的溶解作用,但方解石溶解作用相对于长石、岩屑的溶蚀较弱。与长石和岩屑溶蚀相比,石英溶蚀较弱,仅在石英颗粒或者石英加大边边缘发生微弱溶蚀(图8g~i)。
图8 南堡凹陷3 号构造带沙一段溶解作用(a)NP3-82井,4 341.51m,(-),箭头指示岩屑溶蚀;(b)PG2井,4 254.18m,(-),长石沿着节理发生部分溶蚀;(c)NP3-82井,4 339.5m,(-),长石颗粒溶蚀;(d)NP306x1井,4 225.3m,(-),箭头指示碳酸盐胶结物溶蚀;(e)NP3-19井,4 133.58m,SEM,碳酸盐胶结物溶蚀;(f)NP306x1井,4 240.83m,(-),箭头指示碳酸盐充填物溶蚀;(g)PG2井,4 254.18m,(+),箭头指示石英次生加大弱溶蚀;(ha)NP306x1井,4 220.9m,(-),箭头指示石英加大边溶蚀;(i)NP3-82井,4 343.86m,SEM,石英次生加大边溶蚀Fig.8 Dissolution of the Es1 Formation of the No.3 structural belt in the Nanpu sag
4 成岩演化序列
研究区内镜质体反射率分布范围为0.98%~1.33%,均值为1.14%;Tmax分布范围为423 ℃~466 ℃,平均为448 ℃(表2);X衍射分析结果表明,伊蒙混层中蒙脱石所占比例分布在10%~35%之间,均值为19%。依据《碎屑岩成岩阶段划分规范》,确定3号构造带沙一段储层处在中成岩阶段A期的A2亚期。
表2 南堡凹陷3号构造带沙一段岩石热解温度Tmax与镜质体反射率Ro值测定Table 2 Rock pyrolysis temperature Tmax and vitrinite reflectance Ro values of the Es1 Formation reservoir of the No.3 structural belt in the Nanpu Sag
根据矿物之间的充填、切割、交代等现象,以及矿物的形成条件分析研究区成岩演化序列。结果表明,研究区储层发育两期方解石胶结,镜下显示,方解石大量胶结的储层中,颗粒之间呈现点—线接触,显示此时压实作用并不强烈,应在成岩早期阶段(图7a);部分方解石胶结物充填长石、岩屑溶蚀孔隙(图7c),故判断第二期方解石胶结发生在长石、岩屑大量溶蚀之后,镜下还可观察到白云石交代方解石的现象(图7d),因此判断白云石胶结时间在方解石胶结之后。自生高岭石、自生硅质的沉淀通常与长石等不稳定矿物的溶蚀有关,据此认为高岭石胶结、石英次生加大与长石溶蚀同期发生[19,30]。油气充注分别发生在10 Ma和3 Ma两个时期[16],同时压实作用贯穿储层整个埋藏过程。
在明确成岩作用特征及矿物共生组合关系的基础上,结合油气充注、成岩阶段划分及生烃史等共同约束条件综合分析,重建了南堡凹陷3号构造带沙一段砂岩储层成岩演化序列,各成岩事件和成岩矿物形成相对顺序如图9所示,早期方解石胶结→第一期油气充注→早期方解石溶解/长石、岩屑溶解/高岭石胶结/石英次生加大→第二期油气充注→晚期方解石/白云石/含铁方解石胶结→石英加大边弱溶蚀/碳酸盐胶结物弱溶蚀,压实作用贯穿始终。
图9 南堡凹陷3 号构造带沙一段成岩演化序列Fig.9 Diagenetic evolution sequence of the Es1 Formation of the No.3 structural belt in the Nanpu Sag
5 孔隙度定量计算与演化模式
5.1 孔隙度定量计算
以成岩演化序列为约束,利用反演回剥的原理来计算不同成岩作用对储集层孔隙度的影响。本研究应用Lundegard[31]提出的孔隙度定量计算公式,具体的计算方法为:1)由于切片效应会造成视分选性[32],为此可以依据储集层初始孔隙度OP与Trask分选系数So之间的关系式OP=20.91+22.9/S0[33],来计算初始孔隙度;2)铸体薄片的面孔率与储层的孔隙度之间存在差异[34-35],因此利用面孔率与孔隙度之间建立的函数关系,将面孔率转化为孔隙度;3)压实损失的孔隙度COPL、胶结损失的孔隙度CEPL和溶蚀增加的孔隙度CRPI计算公式分别如下[32,36]:
式中:IGV表示粒间孔隙体积,是粒间孔、粒间胶结物和杂基之和[37-38];IGV表征压实后的粒间体积与压实后岩石体积之比;CEM为胶结物含量占现今岩石体积的百分比;CRP代表铸体薄片统计的溶蚀面孔率。
计算结果显示,3号构造带深部沙一段储层压实作用减少的孔隙占初始孔隙的4.7%~99.9%,平均为77.7%;胶结作用减少的孔隙占初始孔隙的0~95.3%,平均为16.0%(表3),由此可见,压实作用是储集层孔隙减少的主要因素。通过上式计算得出不同成岩作用损失和增加的孔隙度,结果如图10所示,沙一段储层原始孔隙度为33.1%,现今平均孔隙度为13.6%,其中压实作用是造成孔隙度降低的主要原因,损失孔隙度17.0%,其次为胶结作用对孔隙度的影响,导致孔隙度降低10.1%,溶解作用则是储层改善的最主要的因素,溶蚀作用增加孔隙度7.6%。
图10 南堡凹陷南部3 号构造带沙一段储层孔隙度演化参数及定量计算值Fig.10 Parameters and quantitative porosity evolution of the Es1 Formation of the No.3 structural belt in the Nanpu Sag
表3 南堡凹陷3号构造带沙一段储集层压实、胶结作用减孔影响评价表Table 3 Assessment of the importance of compaction processes and cementation in reducing porosity in the Es1 Formation sandstones of the No.3 structural belt in the Nanpu Sag
5.2 储层演化模式
研究区储层从沉积开始经历了一系列的成岩作用,结合研究区储层的埋藏史、地热史、烃源岩成熟史、成岩演化序列和孔隙度定量计算结果(图11),恢复了沙一段深层储层的演化模式。
5.2.1 早成岩阶段(40~28 Ma)
3 号构造带沙一段距今约40 Ma 开始沉积,由于靠近物源且水动力条件较强,沉积颗粒较粗,初始孔隙度均值为33.1%(图10)。在早成岩阶段储层处于快速埋深阶段,埋深一般小于1 800 m,镜质体反射率Ro<0.5%,伊蒙混层中蒙脱石的比例超过50%,沙一段底界温度小于85 ℃(图11)。该时期沉积水体控制了地层水酸碱度,较低的矿化度导致地层水呈碱性特征,早期方解石胶结和机械压实是该时期主要的成岩作用。沙一段储层被方解石部分或完全胶结,同时这一部分碳酸盐胶结物能够有效抑制压实作用,颗粒之间主要为点—线、线接触。在压实过程中,硬度较高的颗粒受地层压力影响重新排列,而硬度较低的云母等受力变形,导致砂岩的孔隙度在早期阶段大幅下降,压实损失孔隙度50%~70%,胶结损失孔隙度10%~60%,以剩余粒间原生孔隙为主,孔隙度由原始33.1%降低至约15%(图10)。
5.2.2 中成岩阶段A1期(28~8 Ma)
地质年代约28 Ma时,沙一段储层成岩演化进入中成岩阶段A期(图11),此时长石和部分岩屑的溶蚀对于提高储层物性起到了重要作用。在中成岩A1期,地温上升到90 ℃~120 ℃,有机质开始成熟,有机酸大量生成,是有机酸有利保存区和有机酸浓度最大区,致使地层水性质变为酸性环境,在10 Ma 时发生第一次油气充注。此时早期方解石胶结物及长石和部分岩屑等颗粒发生溶解作用,形成大量不同类型的溶蚀孔隙,同时伴随着部分高岭石和自生石英等矿物沉淀。次生孔隙的产生显著地改善了储层物性,储层以粒间—粒内溶蚀孔和剩余粒间孔为主,该期砂岩由于溶解作用孔隙度平均增加约7.6%(图10)。
图11 南堡凹陷3 号构造带沙一段埋藏史和孔隙度演化图Fig.11 Burial history and porosity evolution of the Es1 Formation of the No.3 structural belt in the Nanpu Sag
5.2.3 中成岩阶段A2期(8 Ma~现今)
随着埋深增大至约3 000 m,成岩演化阶段进入中成岩A2期(图11),地质年代约8 Ma 时,地层温度大于120 ℃,镜质体反射率分布在0.8%~1.3%之间,在3 Ma时发生第二次油气充注。黏土矿物的转化致使酸性环境逐渐弱化,黏土胶结损失孔隙度平均为5.4%,其中又以伊蒙混层和伊利石为主。此外,晚期碳酸盐胶结物充填了长石、岩屑溶蚀的孔隙,孔隙度损失约3.2%(图10)。
故南堡凹陷深层储层演化模式如下:在早成岩阶段以早期碳酸盐胶结和压实作用为主,压实损失孔隙度50%~70%,胶结损失孔隙度10%~60%,此时储层以剩余粒间原生孔隙为主,孔隙度由原始33.1%降低至约15%;中成岩A1阶段以溶解作用为主,溶蚀对象主要是长石、岩屑颗粒以及部分碳酸盐胶结物;中成岩A2期成岩作用主要是晚期铁方解石、白云石胶结,最终胶结作用减孔10.1%(图12)。
图12 南堡凹陷深层储层孔隙演化模式图Fig.12 Pore evolution model of deep reservoir in the Nanpu Sag
6 结论
(1)南堡凹陷3 号构造带深层储层以岩屑质长石砂岩为主,孔隙类型主要为原生剩余粒间孔和溶蚀孔,整体表现为中低孔中渗特征,储层处于中成岩A2阶段,成岩作用对储层物性的变化起到重要控制作用,其中压实、胶结以及溶解作用在不同程度上对储层的物性产生影响。
(2)综合分析研究区埋藏史、成岩作用以及成岩演化史等,重建了南堡凹陷深层储层成岩演化序列:早期方解石胶结→第一期油气充注→早期方解石溶解/长石、岩屑溶解/高岭石胶结/石英次生加大→第二期油气充注→晚期方解石/白云石/含铁方解石胶结→石英加大边弱溶蚀/碳酸盐胶结物弱溶蚀,压实作用贯穿始终。
(3)南堡凹陷深层储层演化模式为:早成岩阶段以早期碳酸盐胶结和压实作用为主,此时储层以剩余粒间原生孔隙为主,孔隙度由原始33.1%降低至约15%,中成岩A1阶段以溶解作用为主,溶蚀对象主要是长石、岩屑颗粒以及部分碳酸盐胶结物,中成岩A2期成岩作用主要是晚期铁方解石、白云石胶结。根据孔隙度定量计算结果显示,沙一段储层受压实作用影响,最终造成孔隙度损失约17%,溶蚀增加孔隙度约7.6%,胶结作用减孔10.1%,其中黏土矿物胶结占主导,损失孔隙度平均为5.4%。
致谢 感谢冀东油田分公司勘探开发研究院提供的宝贵资料;感谢北京大学地球与空间科学学院王恩泽博士对本研究提出的宝贵意见;感谢审稿专家以及编辑部老师给予的宝贵修改意见。