APP下载

吲哚骨架4位的乙酯基化研究

2022-02-28

关键词:吲哚乙酯衍生物

范 威

吲哚骨架4位的乙酯基化研究

范 威

(滁州城市职业学院科研处,安徽,滁州 239000)

4位官能化的吲哚衍生物,可用作流感的抗病毒治疗、神经毒素、抗菌剂。因此,吲哚骨架4位的修饰研究值得探讨。从-芳基环己-2-烯酮、苊醌、乙酸酐出发,120℃微波辐射条件下,一步合成了4-乙酯基吲哚衍生物,补充了吲哚骨架4位的修饰。其结构也得到了单晶的证实。反应机理涉及分子内环化、脱水、互变异构、酯化等诸多步骤。

苊醌;乙酸酐;4-乙酯基吲哚衍生物

Arbidol[1]、Psilocin[2]、Clavicipitic酸[3](图1)等活性化合物均为4位官能化的吲哚衍生物,可用作流感的临床抗病毒治疗、神经毒素、抗菌剂等。吲哚[4]骨架4位的修饰得到了广泛的报道[5-9],在这些研究中,关于吲哚骨架4位的乙酯基化研究尤其引人注目。

图1 4位官能化的吲哚衍生物

Cho课题组[10]从4,5-二羟基吲哚酮出发,分两步反应,最终以81%的产率实现了吲哚骨架4位的乙酯基化。该反应的缺点是使用的吡啶为致癌物质(图2a)。Bélanger课题组[11]先活化甲酰胺,然后经分子内Vilsmeier-Haack反应,分子内环加成等过程,最终合成了4-乙酯基化的吲哚衍生物,该反应的主要缺点是原料不容易制得(图2b)。Bjørsvik课题组[12]从1,3-二甲氧基-2-甲基苯出发,经多步反应合成了4-乙酯基吲哚衍生物,该反应的主要缺点是反应步骤过多(图2c)。

本课题组从-芳基环己-2-烯酮、苊醌、乙酸酐出发,120℃微波辐射条件下,一步合成了4-乙酯基吲哚衍生物,从而补充了吲哚骨架4位的修饰(图2d)。

图2 合成4-乙酯基吲哚衍生物

1 材料与方法

1.1 仪器与试剂

仪器:单晶衍射仪;核磁共振仪。

试剂:-芳基环己-2-烯酮;苊醌;乙酸酐。

1.2 表征数据

7-(4-氟苯基)-7-苊并[1,2-]吲哚-11-基乙酸酯4a核磁氢谱 (, ppm): 2.60 (s, 3H), 7.08 (d, 1H,= 7.6 Hz), 7.22 (t, 1H,= 8.0 Hz), 7.29 (d, 1H,= 8.0 Hz), 7.42 (d, 1H,= 7.2 Hz), 7.51 (t, 1H,= 7.2 Hz), 7.65 (t, 1H,= 8.0 Hz), 7.73 (d, 1H,= 6.8 Hz), 7.78-7.80 (m, 3H), 7.88-7.90 (m, 3H)。

7-(3-溴苯基)-7-苊并[1,2-]吲哚-11-基乙酸酯4b核磁氢谱 (, ppm): 2.64 (s, 3H), 7.06 (d, 1H,= 7.6 Hz), 7.21 (t, 1H,= 8.0 Hz), 7.30 (d, 1H,= 8.4 Hz), 7.39 (d, 1H,= 7.2 Hz), 7.53 (t, 1H,= 7.6 Hz), 7.67 (t, 2H,= 7.6 Hz), 7.76 (d, 1H,= 6.8 Hz), 7.78-7.79 (m, 2H), 7.85 (d, 2H,= 7.6 Hz), 7.90 (d, 1H,= 8.0 Hz)。

7-(邻甲苯基)-7-苊并[1,2-]吲哚-11-基乙酸酯4c核磁氢谱 (, ppm): 1.28 (s, 3H), 2.49 (s, 3H), 7.08 (s, 1H), 7.30 (d, 1H,= 7.2 Hz), 7.50 (t, 1H,= 7.2 Hz), 7.55 (d, 2H,= 8.0 Hz), 7.60-7.67 (m, 4H), 7.75 (d, 2H,= 8.0 Hz), 7.83 (d, 2H,= 8.0 Hz)。

7-(4-溴苯基)-7-苊并[1,2-]吲哚-11-基乙酸酯4d核磁氢谱 (, ppm): 2.62 (s, 3H), 7.07 (d, 1H,= 8.0 Hz), 7.23 (t, 1H,= 8.0 Hz), 7.30 (d, 1H,= 8.0 Hz), 7.41 (d, 1H,= 7.6 Hz), 7.53 (t, 1H,= 7.2 Hz), 7.66 (t, 1H,= 7.2 Hz), 7.73 (d, 1H,= 6.8 Hz), 7.79 (s, 1H), 7.80 (s, 1H), 7.83 (s, 1H), 7.88 (s, 1H), 7.90-7.92 (m, 2H)。

7-(4-溴苯基)-9-甲基-7-苊并[1,2-]吲哚-11-基乙酸酯4e核磁氢谱 (, ppm): 2.41 (s, 3H), 2.60 (s, 3H), 6.92 (s, 1H), 7.11 (s, 1H), 7.38 (d, 1H,= 6.8 Hz), 7.52 (t, 1H,= 6.8 Hz), 7.60-7.64 (m, 1H, ArH), 7.71 (d, 1H,= 6.4 Hz), 7.78 (d, 1H,= 8.4 Hz), 7.80-7.82 (m, 1H), 7.83-7.84 (m, 1H), 7.86-7.88 (m, 3H)。

7-(4-溴苯基)-9-苯基-7-苊并[1,2-]吲哚-11-基乙酸酯4f核磁氢谱 (, ppm): 2.65 (s, 3H), 7.36 (t, 1H,= 7.2 Hz), 7.43-7.48 (m, 4H), 7.51-7.55 (m, 2H), 7.64-7.70 (m, 3H), 7.75 (d, 1H,= 6.8 Hz), 7.79 (d, 1H,= 8.0 Hz), 7.86-7.95 (m, 5H)。

1.3 晶体学参数

表1 4f的晶体学参数

Table 1 Crystallographic parameters of 4f

Empirical formulaC32H20BrNO2 Formula weight530.40 Temperature298(2) K Wavelength0.71073 Å Crystal systemMonoclinic Space groupP2(1)/c Unit cell dimensionsa = 12.5369(9) Å α = 90.00 deg b = 25.344(2) Å β = 106.687(2) deg c = 7.6693(6) Å γ = 90.00 deg Volume2334.2(3) Å3 Z4 Density (calculated)1.383 Mg/m3 Absorption coefficient0.196 mm-1 F(000)1008 Crystal size0.37 x 0.18 x 0.11 mm Theta range for data collection2.89 to 25.02 deg Limiting indices-14<=h<=9, -30<=k<=29, -9<=l<=9 Reflections collected/ unique11671 / 4093 [R(int) = 0.0825] Data / restraints / parameters4093 / 0 / 325 Goodness-of-fit on F21.057 Final R indices [I>2σ(I)]R1 = 0.0576, wR2 = 0.1086 R indices (all data)R1 = 0.1280, wR2 = 0.1252 Largest diff. peak and hole0.254 and -0.311 e.A^-3

1.4 晶胞图

图3 4f的晶胞图

2 实验结果与分析

2.1 底物拓展

当R为氢原子时,考查原料1中Ar的多样性(图4)。实验表明,Ar是吸电子的取代基(4-FPh,3-BrPh)和给电子的取代基(2-MePh),都能生成相应的4-乙酯基吲哚衍生物4。

图4 合成4-乙酯基吲哚衍生物4a-4c

当Ar为对溴苯基时,考查原料1中R的多样性(图5)。实验表明,R无论是H,Me还是Ph,均不影响反应的进行,以72%-82%的产率生成产物4d-4f。

图5 合成4-乙酯基吲哚衍生物4d-4f

2.2 机理研究

如图6所示,-芳基环己-2-烯酮1和苊醌2通过连续的加成(1、2到A)、分子内环化(A到B)、脱水(B到C)、互变异构(C到D),酯化(D、3到4)等步骤,最终生成4-乙酯基吲哚衍生物4。

图6 反应机理

3 小结

从-芳基环己-2-烯酮、苊醌、乙酸酐出发,120℃微波辐射条件下,一步串联合成了4-乙酯基吲哚衍生物,对吲哚骨架的4位修饰进行了更好地补充。反应机理涉及分子内环化、脱水、互变异构、酯化等诸多步骤。其结构也得到单晶的证实。

[1] Luo Y-G, Basha R S,Reddy D M,et al. Palladium-catalyzed synthesis of 2,3-diaryl--methylindoles from-alkynylanilines and aryl pinacol boronic esters[J]. Organic Letters, 2018, 20(21):6872-6876.

[2] Sherwood A M, Halberstadt A L, Klein A K, et al. Synthesis and biological evaluation of tryptamines found in hallucinogenic mushrooms: norbaeocystin, baeocystin, norpsilocin, and aeruginascin[J]. Journal of Natural Products, 2020, 83(2):461-467.

[3] Bartoccini F, Venturi S, Retini M, et al. Total synthesis of (-)-clavicipitic acid via γ,γ-dimethylallyltryptophan (DMAT) and chemoselective C-H hydroxylation[J]. The Journal of Organic Chemistry, 2019, 84(12):8027-8034.

[4] 朱文岐,邓晓怡,魏江存,等. 4'-三氟甲基-3,2'-吡咯烷基双螺环氧化吲哚化合物的合成与表征[J].井冈山大学学报:自然科学版, 2018, 39(3):19-23.

[5] Sherikar M S, Devarajappa R, Prabhu K R. Weak coordinating carbonyl-directed rhodium(III)-catalyzed C-H activation at the C4-position of indole with allyl alcohols[J]. The Journal of Organic Chemistry, 2020, 85, (8):5516-5524.

[6] Banjare S K, Nanda T, Ravikumar P C. Cobalt-catalyzed regioselective direct C-4 alkenylation of 3-acetylindole with Michael acceptors using a weakly coordinating functional group[J]. Organic Letters, 2019, 21(19):8138-8143.

[7] Sha Q, Arman H, Doyle M P. Three-component cascade reactions with 2,3-diketoesters: a novel metal-free synthesis of 5-vinyl-pyrrole and 4-hydroxy-indole derivatives[J]. Organic Letters, 2015, 17(15):3876-3879.

[8] Lanke V, Bettadapur K R, Prabhu K R. Electronic nature of ketone directing group as a key to control C-2 vs C-4 alkenylation of indoles[J]. Organic Letters, 2016, 18(21):5496-5499.

[9] Xiu J, Yi W. Radical-based regioselective cross-coupling of indoles and cycloalkanes[J]. Catalysis Science & Technology, 2016, 6(4):998-1002.

[10] Jung Y-G, Lee S-C, Cho H-K, et al. Total syntheses of (±)-α-lycorane and (±)-1-deoxylycorine[J]. Organic Letters, 2013, 15(1):132-135.

[11] Hauduc C, Bélanger G. General approach toward aspidospermatan-type alkaloids using one-pot Vilsmeier-Haack cyclization and azomethine ylide cycloaddition[J]. The Journal of Organic Chemistry, 2017, 82(9):4703-4712.

[12] Elumalai V, Gambarotti C, Bjørsvik H. Carbazomycin G: method development and total synthesis[J]. European Journal of Organic Chemistry, 2018, 2018(17):1984-1992.

ETHYLATION OF 4-POSITION OF INDOLE SKELETON

FAN Wei

(Office of Research Affairs, Chuzhou City Vocation College, Chuzhou, Anhui 239000, China)

The 4-position functionalized indoles can be used as antiviral therapy for influenza, neurotoxins and antibacterial agents. Therefore, the modification study on the 4-position of indole skeleton is worth discussing. Starting from N-arylcyclohex-2-enone, acenaphthoquinone, and acetic anhydride, under the condition of microwave irradiation at 120 ℃, 4-ethyl ester indoles were synthesized in one step and supplemented the modification of the 4-position of indole skeleton. The structure is confirmed by single crystal. The reaction mechanism involves steps such as intramolecular cyclization, dehydration, tautomerism and esterification.

acenaphthoquinone; acid anhydride; 4-ethyl ester indoles

1674-8085(2022)01-0038-04

O626

A

10.3969/j.issn.1674-8085.2022.01.006

2021-08-22;

2021-10-02

国家自然科学基金项目(21272095);安徽省教育厅科学研究重点项目(KJ2020A1003)

范 威(1988-),男,江苏徐州人,讲师,博士,主要从事有机化学研究(E-mail: fanweipujing@126.com).

猜你喜欢

吲哚乙酯衍生物
酱香型白酒轮次基酒中酯类物质分析
豉香型白酒中三种高级脂肪酸乙酯在蒸馏及原酒贮存过程中变化规律的研究
替格瑞洛联合吲哚布芬在急性ST抬高型心肌梗死患者中的应用
合成稠环吲哚研究
吲哚骨架7位的羟基化研究
金属催化下吲哚7位的修饰
烃的含氧衍生物知识测试题
烃的含氧衍生物知识链接
美酒里的“致癌物”,你了解吗
“五抓”烃的含氧衍生物