厚基岩采场弱胶结岩层动力溃砂机制研究现状与展望
2022-02-25董书宁柳昭星
董书宁,柳昭星,3,王 皓
(1.中煤科工集团西安研究院有限公司,陕西 西安 710054;2.陕西省煤矿水害防治技术重点实验室,陕西 西安 710077;3.西安科技大学 地质与环境学院,陕西 西安 710054)
我国西部矿区由于煤炭资源储量丰富,现已成为国家煤炭资源的主要产地。而西部矿区主要富煤区的成煤时代以相对较晚的早—中侏罗世为主,致使煤系地层中侏罗系砂泥岩地层通常胶结程度不足,具有强度低、易崩解等典型力学特性。因此,西部矿区弱胶结岩层一直是煤炭企业工程技术人员和科研工作者关心的热点和应对的难点。在国家规划的14个大型煤炭基地中,黄陇、宁东煤炭基地多个煤矿出现采场顶板溃水溃砂与强矿压显现并发灾害。该类型灾害严重制约了煤炭资源的高效安全开发。而这种数百米至千米埋深采场的溃砂灾害,既不同于浅埋、近松散层采掘工作面出现的溃砂灾害,也不同于矿井顶板涌水灾害,其破坏力极强,是我国西部矿区一种新型的厚基岩采场顶板弱胶结岩层动力溃砂灾害。
目前,对于厚基岩采场下弱胶结顶板溃砂灾害的研究相对较少,已有的研究仅参考以往浅埋、近松散层采场溃砂灾害或顶板离层水害相关研究内容和思路,缺少关于矿山压力作用的分析和探讨;笔者曾就黄陇煤田某煤矿采场溃水溃砂和强矿压显现叠加灾害进行研究,分析了矿山压力的作用,但未形成动力溃砂的概念和认识。因此,该新型顶板水害发生的机制和规律尚未被充分认识,现有理论和技术遇到瓶颈,无法对灾害形成有效防控。而揭示灾害形成的内在机制是当前灾害有效防控首要解决的难题,相关研究有重要的理论意义和工程应用价值。笔者通过调研分析以往浅埋、近松散层采场顶板的非动力溃水溃砂及采场顶板弱胶结岩层动力溃砂相关研究现状,总结研究不足,研究得到关键科学问题,提出当前亟待解决和研究的主要问题和内容,以期对该类型灾害防控技术体系构建提供借鉴和参考。
1 与浅埋、近松散层采场溃砂的不同
以往发生的采掘溃砂是采掘活动导通近松散层或上覆新近系含水砂层而诱发的含砂量较高(一般50%以上)的水砂混合流体溃入井下采煤工作面或掘进工作面,并造成财产损失及人员伤亡的一种矿井地质灾害。例如,2018年山东某矿回风暗斜井掘进工作面导通新近系砂层形成的溃砂,2010年神东矿区哈拉沟煤矿采场顶板裂隙导通第四系松散沙层形成的溃砂等。该类型溃砂灾害的形成动力仅为自重和水压,缺少外在的矿山压力作为动力,属于非动力溃砂;而采场顶板弱胶结岩层溃砂是受回采扰动而劣化的顶板弱胶结岩层在其上方硬岩破断和下方基本顶失稳带来的矿压显现效应下而产生突涌的一种突发性强、破坏性大、冲击力大的矿井灾害,其实质是弱胶结地层劣化诱发硬岩破断失稳效应下的顶板动力溃砂。例如,2016年陕西黄陇煤田某煤矿采场顶板泥石流灾害等。
弱胶结岩层动力溃砂与以往非动力溃砂灾害在物源、表象和动力源上存在明显不同。以往浅埋或近松散层采场的非动力溃水溃砂灾害溃涌物来源为松散层或近松散层地层(图1)。但弱胶结岩层动力溃砂灾害中由于采场覆岩较厚(表1),根据文献[23-25]关于黄陇、宁东矿区煤层采动导水裂隙带高度的实测、统计结果,煤层回采后所形成的导水裂隙带高度无法波及松散层或近松散层地层,因此,溃涌物源不可能来自松散层或近松散层地层(物源不同);除浅埋或近松散层采场强矿压显现中顶板切落贯通松散层出现溃砂灾害外,覆岩较厚(大于导水裂隙带高度)的采场强矿压显现中鲜有顶板溃砂灾害出现(表象不同);松散层或近松散层采场溃砂灾害的动力仅为水压和自重,不存在矿山压力作为动力的上覆岩层条件(动力源不同),而弱胶结岩层动力溃砂灾害中顶板溃砂动力与砂源地层上覆岩层的强矿压显现存在明显联系和影响。
图1 浅埋或近松散层采场顶板的非动力溃砂示意Fig.1 Non-dynamic sand burst of shallow buried or near loose stope roof
表1 黄陇、宁东煤炭基地溃水溃砂和强矿压显现并发灾害案例(不完全统计)[12-14]
2 浅埋、近松散层采场溃砂形成机制与防治
2.1 形成机制
目前,采场顶板溃水溃砂主要集中在我国西部浅埋采场及华东、华北等矿区的近松散层采场,该类型溃砂灾害发生的工程地质模式可分为垮落带直接揭露含水砂层、导水裂隙带渗透破坏含水砂层和地面砂体、井下钻孔等人为通道导通含水砂层等3种类型。灾害的发生需要同时具备以下4个条件:① 水砂源。提供水砂溃涌的富水砂层;② 溃涌通道。采掘扰动形成的溃水溃砂通道;③ 流动空间。容纳水砂混合物的采掘空间;④ 动力源。较大的动水压力。
(1)水砂来源。水砂是采场溃水溃砂灾害形成的基础条件,西部浅埋采场及华东、华北等矿区的近松散层采场水砂来源主要为第四系松散层或近松散层的弱胶结地层。如榆神府矿区溃砂来源主要为萨拉乌苏组及风积沙砂层,风积沙在榆神府矿区厚度0~30 m,一般5 m左右,以粉细沙为主,粒径介于0.25~0.50 mm的颗粒占95%以上。萨拉乌苏组厚度0~175.75 m,一般10~30 m,粒径与风积沙相近,易于发生溃砂。水源主要为萨拉乌苏组含水层,萨拉乌苏组地下水在风沙滩区普遍分布,厚度变化大;新疆某矿工作面开采过程中水砂来源为上覆弱胶结的古近系砂砾岩含水层;华东、华北等矿区的许多大煤田多为隐伏型,煤层上覆有巨厚松散层沉积,松散层底部常存在弱至中等富水的砾石含水层,是该地区溃水溃砂灾害的水砂来源。
(2)通道特征。裂隙通道是产生溃砂的必要条件,溃砂及危害程度主要与裂隙发育结构和砂的颗粒大小有关,通道的宽度、倾角和结构特征对颗粒速度分布和受力能够产生重要影响,通道宽度控制了溃砂量,在相同初始水头条件下,随着突砂口尺寸的加大,突砂量基本呈线性增加。溃砂通道发育过程可划分为裂隙渐次发育阶段、裂隙贯通阶段和突水溃砂通道形成3个阶段。在裂隙发育未完全时,砂粒溃入在一定程度上能够抑制裂隙的发育,但持续的水压作用增大了裂隙内的孔隙压力,促使裂隙进一步发育,到达一定程度后,就会造成水砂突涌,并沿着各新生裂隙流入,进而加速裂隙发育过程,甚至造成煤层顶板的垮落,加剧溃水溃砂灾害。另外,水砂能够降低岩块间摩擦因数,致使水砂涌入工作面开采时易发生滑落失稳、来压剧烈和台阶下沉现象。因此,在浅埋采场中,溃砂通道往往是由于基本顶岩块回转或回转触矸后由于支架阻力不够滑落失稳形成的,而岩块端角接触面高度越高、采场支架工作阻力越大越不容易发生溃砂。
(3)流动空间。非动力溃水溃砂是水砂混合物在自重和水压作用下在井下不同空间内快速转移流动而对井下设施、空间和人员等造成损伤的过程,因此,采空区、巷道等均可成为水砂溃涌的流动空间。而涌入空间的大小将决定溃砂危害性的大小及发展程度。原因在于:当饱和含水砂层被采动裂隙导通时,溃涌口下方存在较大空间将有利于水砂混合物的快速流动,致使灾害溃砂形成,而对于较小的流动空间,即使有较大的水流作用,也容易导致砂体堆积在溃涌口,阻止溃砂的进一步发展。
(4)动力特征。临界水力坡度是浅埋、近松散层采场顶板溃砂发生的关键,该结论已得到理论分析、室内试验的证实。当缺少水动力条件时,根据普氏平衡拱理论,砂体颗粒在重力作用下能够相互挤压,形成相对稳定的结构;当发生涌水时,水流会对砂颗粒产生浮力、拖曳力、渗透压力等力的作用,造成颗粒结构的失稳和运移。当砂颗粒达到临界流速时便会产生溃砂,并且涌水的速度决定了单位时间的溃砂量,在相同突砂口张开的情况下,涌砂量随着初始水头增大而增大。砂体颗粒在运动过程中颗粒之间及与通道内壁间产生碰撞、摩擦,造成颗粒速度分布呈现连续增大、快速见效和缓慢波动等3个阶段。另外,对于厚层基岩采场,采掘扰动波及上覆松散层或新近系弱胶结地层能够产生高势能溃砂灾害,其中砂体自重在溃砂启动过程中起到重要作用。
2.2 防治措施
根据浅埋、近松散层采场溃砂特点和机制,对其防治形成了危险性评价、预警监测和主动治理等技术。采场顶板的临界水平变形、裂粒比(裂隙宽度与松散层粒径之比)、变粒比(临界拉伸水平变形与颗粒有效直径之比)、含水层水压均是溃砂危险性的评价指标。根据大量的勘探数据,选取溃砂影响关键因素为影响因子,在GIS平台下构建基于多因素融合技术的溃砂评价模型,并以此进行综合分区,可形成溃砂灾害实时或面向生产计划的预警方法。另外,基岩上覆黏土层、承压含水层以及水砂突涌前后含水砂层中孔隙水压力可以作为近松散含水层开采溃砂灾害预警和监测的重要前兆信息源。溃砂灾害的主动治理可采用地面或井下注浆、含水层疏放水、提高采场支架阻力、建造挡水墙、铺设双抗网和金属网等手段。
3 厚基岩采场顶板弱胶结岩层动力溃砂形成机制
笔者前期对黄陇煤田某煤矿采场顶板溃水溃砂与强矿压显现(切顶压架)并发灾害的动力源、物源进行研究(图2),得到溃砂物源为侏罗系直罗组泥岩类地层,动力源除溃涌物自重和含水层水压外,还包括侏罗系弱胶结地层上部洛河组砂岩破断产生的矿山压力,而且试验证明弱胶结地层遇水易崩解、劣化。上述表明弱胶结地层遇水劣化诱发上部硬岩破断,为溃砂提供了动力,而且岩层破断的传递载荷和弱胶结地层吸水增量载荷造成基本顶失稳,进而切顶形成溃砂通道。
图2 黄陇煤田某煤矿切顶压架和溃水溃砂并发事故示意[16]Fig.2 Schematic diagram of concurrent accident of roof cutting,frame pressing and water and sand breaking in a coal mine of Huanglong coalfield[16]
3.1 覆岩结构特征
图3 事故煤矿覆岩共性结构特征示意Fig.3 General structural characteristics of overlying rock in the accident coal mine
经统计,发生弱胶结地层动力溃砂灾害的煤矿采场覆岩广泛存在“下基本顶-中弱胶结地层-上硬岩层”的类似“夹心饼干”特征的地层结构(图3),其中弱胶结地层既是上硬岩层的基础,也是下基本顶的载荷。如黄陇煤田煤层上覆白垩系洛河、宜君组孔隙-裂隙含水层厚度大(100~350 m)、富水性中等,地层呈明显整体性巨厚层状特征,多为砂、砾岩互层结构,泥钙质胶结,强度较高,其破断失稳易造成强烈的矿压显现(上硬岩层);煤层与白垩系洛河组含水层之间主要为砂岩和泥岩,并呈现交互结构(部分地层泥岩占比高达88%),由于沉积时间短、成岩环境为内陆河湖相,岩石胶结物多为泥质,具有强度低、孔隙度高、胶结性差、黏土矿物含量高等特征,受水浸泡后易产生崩解、泥化等岩体劣化现象(弱胶结地层)。同样,宁东煤炭基地煤层上覆广泛发育有厚层侏罗系富水砂岩(俗称七里镇砂岩),其与煤层间主要发育侏罗系弱胶结泥岩类地层。因此,“中弱胶结地层”为侏罗系弱胶结砂泥岩地层、“上硬岩层”为白垩系厚层富水砂岩(黄陇煤田)或侏罗系厚层富水砂岩(宁东煤田),而且2者均在采动破坏范围内,表明溃水溃砂和强矿压显现并发灾害中溃砂的物源和动力源分别来自于侏罗系弱胶结砂泥岩地层和上部砂岩破断产生的矿山压力。
3.2 弱胶结岩层遇水劣化特征及影响因素
弱胶结地层及其遇水劣化性质与胶结成分、黏土矿物含量和空隙特征等密不可分。国外学者对弱胶结沉积地层性质的研究相对较少,有研究表明塑性变形对胶结物的破坏是弱胶结砂岩力学性能退化的主要机制。与之相近的是对沉积岩性质的研究,如研究得到砂岩性质的演化与基质中所识别的黏土相密切相关,黏土矿物在水分含量较低时就能够影响岩石的性能;沉积砂岩随着饱和水平的增加,力学和断裂韧性普遍下降;另外,石灰石的吸附行为主要受比表面积较大的蒙脱石层的数量决定,力学强度损失率与吸附能力成线性关系。
国内关于弱胶结地层的研究相对较多,试验研究表明西部矿区的弱胶结地层岩性主要为砂岩、砂质泥岩及泥岩,胶结物大多为泥质,具有孔隙度大、胶结性差、黏土矿物含量高等特征,岩石强度普遍偏低,遇水后易崩解、泥化。而这与岩石的矿物组成和结构特征密切相关。软弱泥岩单轴抗压强度和弹性模量随黏土矿物含量增加而减小,泥岩遇水弱化指数随着黏土矿物含量增加而增大;侏罗系弱胶结砂岩、泥岩骨架颗粒自身吸水膨胀软化,骨架颗粒之间的黏连性变差,胶结程度降低;侏罗系弱胶结砂岩属高孔隙度岩石,具有大孔孔喉及中孔孔喉分布频率高的结构特征。大量的实验室测试表明侏罗系弱胶结煤系地层的完整砂岩和泥岩中的矿物组成与物理力学参数之间存在定量关系。
3.3 弱胶结岩层溃涌的动力特征
岩层破断失稳是煤层采场各种灾害形成的动力来源,弱胶结岩层动力溃砂的动力源主要来自岩层破断产生的矿山压力,而且弱胶结岩层劣化对岩层矿压显现特征具有重要影响。原因在于岩层下方支承条件和上覆载荷分布特征对采场上覆岩层破断失稳规律具有显著影响。因此,劣化的弱胶结地层能够对其上、下岩层的矿压显现和结构失稳产生重要影响。
(1)劣化弱胶结岩层对上方硬岩和下方基本顶的影响。基于有限元计算的研究表明采动后关键层上部岩层的作用是非均布的,工作面周围垂直应力呈现隆起分布形态,且分布规律与软弱夹层的厚度和硬度有关,软弱层越厚或越软,关键层上方载荷和支承压力的峰值就越低,且峰值位置越远离煤壁。其中,岩层的性质、回采的深度和采空区悬顶长度决定了工作面前方支承压力峰值大小和位置,而影响基本顶断裂位置的因素为基本顶的抗拉极限、承受载荷、厚度及垫层的弹性模量等。因此,基础类型对岩梁的运动规律、支承压力随采场推进的变化发展规律及基本顶岩梁的内力分布具有较为重要影响,相关研究可分为损伤基础梁模型和软化基础梁模型。而如何描述基础特征对岩梁的弯矩、剪力及支承压力的高峰位置和大小均具有显著影响。Weibull分布函数与隆起的增量载荷具有较好的一致性,可利用该函数模拟隆起增量载荷研究硬岩破断规律,得到软化地基支承的顶板弯矩峰值和弯矩峰超前煤壁的距离均有较大增加、煤壁前方应变能储存区域和储存量也大幅增加及顶板挠度比全为弹性地基支承的顶板挠度大幅增加。
(2)上方硬岩破断的动力特征和传递效应。高位硬岩破断失稳时能够释放动能并产生向低位岩层传递的载荷,造成下位岩层失稳或动力突水灾害。当弹性基础的坚硬顶板悬露到极限距离后,将在煤壁前方最大弯矩处断裂,在断裂两侧发生反弹、压缩现象,对应区域是产生冲击的震源区域。而厚硬岩石在弯曲和压缩中积累了大量弹性能,其破断失稳对下方煤岩体产生的能量和作用力明显高于普通岩层破断,因此,高位硬厚岩层破断及运移过程中产生强微震活动,能够释放大量弹性能,造成矿压显现强烈。
另外,深埋煤层采场上方存在着一倾斜块体承载区,在承担上覆岩层载荷的同时向低位岩层传递压力,因此,上位岩层破断的弹性能能够向低位岩层传递。利用相似模拟试验已得到厚砂土层下浅埋煤层顶板关键块上的动态载荷传递规律。而这种传递载荷能够造成采场支架阻力突然增大。例如,浅埋、近松散层或特大采高采场压架切顶就是由于覆岩关键层破断结构上覆载荷过大而滑落失稳。而且坚硬岩层失稳破断释放大量动能可致使岩层附近含水层中产生超高水压,并在含水层与采掘临空面之间产生瞬间冲破的导水通道,形成动力突水现象。且高位硬厚岩层与下方岩层间易形成高负压离层空间,若高位硬岩层为含水层时,在离层空间负压和岩层水压的作用下,岩层水迅速汇集到离层空间内,易诱发离层水灾害。
3.4 存在的问题
(1)前文所述相关研究采用扫描电镜、X射线衍射、X射线荧光、常规力学试验等手段取得了丰富成果,为深入研究弱胶结遇水劣化性质奠定了基础。但目前相关研究着重采用室内细观试验和微观观察等方式,若结合地球物理测井等宏观结果分析,引进显微CT、三维重构技术和GCTS岩石力学综合试验系统等先进手段加强细观试验研究,将进一步完善弱胶结地层遇水劣化性质对影响因素变化的反馈特征及响应关系。
(2)已有研究为硬岩下方支承压力和基本顶载荷分布随地层劣化的响应规律的深入分析奠定了良好基础,但对于软化基础下的硬岩破断失稳着重利用有限元计算和概率分布函数替代等方式研究支承压力和载荷分布形态,若对软化地基的支承作用和岩层上覆隆起增量载荷分布规律进行深入研究,并实现软化地基性质和岩层赋存特征的表征,将阐明弱胶结地层遇水劣化对上硬岩层下方支承压力和基本顶上方载荷分布的影响。
(3)已有研究关于岩层破断失稳规律着重分析了固支、简支或弹性基础条件,表明岩层破断存在对下方地层或水体的动力传递作用;目前关于浅埋、近松散层采场溃砂灾害和部分关于厚基岩顶板溃砂灾害的研究侧重分析水压、自重和通道对灾害的影响,尚未从矿山压力作用角度进行分析探讨。相关成果为顶板动力溃砂灾害研究提供了良好借鉴,侧面表明弱胶结地层遇水劣化诱发上部硬岩破断失稳效应是顶板动力溃砂形成的关键,而下部基本顶失稳形成的溃砂通道决定了溃砂危害程度和溃砂方量。因此,对于硬岩失稳作用下劣化弱胶结地层溃涌动力和基本顶破断产生的溃砂通道演化规律需深入分析和研究。
4 弱胶结岩层动力溃砂研究的关键科学问题及思路
针对采场顶板溃水溃砂与强矿压显现并发灾害,从灾害形成的覆岩结构特征和地层条件出发,分析灾害形成的动力源、表象和物源,提炼科学问题,调研分析以往研究不足,总结得到研究和解决的主要内容和问题(图4)。
4.1 关键科学问题
(1)硬岩下方支承压力和基本顶载荷分布对弱胶结地层劣化的响应规律。弱胶结地层遇水劣化导致其上部硬岩基础软化、下部基本顶载荷增大,而岩层支承条件和载荷分布是分析岩层内力、弯矩、挠度、应变能及结构失稳特征的重要条件,决定了岩层破断的动力显现规律,是揭示顶板动力溃砂机制的前提。
(2)硬岩破断作用下劣化弱胶结地层溃涌的动力形成机制和通道演化规律。硬岩破断产生的动能是劣化弱胶结地层溃涌、传递增量载荷和通道演化特征的主控因素,是揭示顶板动力溃砂形成机制的关键;通道是溃砂的必要条件,基本顶失稳产生的通道的演化规律是动力溃砂机制的重要组成部分。
图4 研究思路Fig.4 Research roadmap
4.2 研究思路
针对西部矿区黄陇、宁东2个大型煤炭基地采场顶板溃水溃砂和强矿压显现并发灾害频发难题,聚焦灾害背后的基础问题:采场顶板弱胶结岩层的动力溃砂机制,分析采场顶板特征,挖掘灾害发生的普遍客观条件,研究灾害形成的动力源、通道、物源等必要条件的特征规律。因此,为深入理解采场顶板弱胶结岩层的动力溃砂机制,需研究解决以下主要问题:① 弱胶结地层遇水劣化的物理力学性质随自身黏土矿物含量、空隙率、承受载荷等影响因素变化而呈现的特征及响应关系。② 上硬岩层和基本顶受力条件随弱胶结地层遇水劣化的变化规律及表征。③ 硬岩失稳作用下劣化弱胶结地层溃涌动力的形成机制和增量载荷作用下基本顶破断产生的溃砂通道的演化规律。
5 结论与展望
5.1 结 论
(1)采场顶板弱胶结岩层动力溃砂是受回采扰动而劣化的顶板弱胶结岩层在其上方硬岩破断和下方基本顶失稳带来的矿压显现效应下而产生突涌的一种突发性强、破坏性大、冲击力大的矿井灾害,其实质是弱胶结顶板劣化诱发硬岩破断失稳效应下的顶板动力溃砂。该类型灾害在动力源、溃涌物源、表象上均与以往浅埋、近松散层采场溃水溃砂或压架切顶灾害不同,是亟待防控的一种新型顶板灾害。
(2)研究得到硬岩下方支承压力和基本顶载荷分布对弱胶结地层劣化的响应规律、硬岩破断作用下劣化弱胶结地层溃涌的动力形成机制和通道演化规律等2个关键科学问题,形成了以解决弱胶结地层遇水劣化对影响因素的反馈特征及响应关系、上硬岩层和基本顶受力条件随弱胶结地层劣化的变化规律、劣化弱胶结地层溃涌动力机制和增量载荷作用下通道演化规律等3个主要问题的研究思路。
5.2 展 望
采场弱胶结顶部动力溃砂灾害具有溃水溃砂和强矿压显现叠加效应,相比以往采掘溃砂灾害危害性更大,因此,应在探明灾害形成机制基础上采取针对性防控措施,避免灾害再次发生。
笔者在分析黄陇煤田某煤矿顶板动力溃砂灾害形成机理时提出灾害防控可采用“查清客观必要条件、避免和控制诱发因素”的技术路线,客观必要条件包括物源(弱胶结地层)和动力源(上方硬岩),诱发因素包括上方富水含水层、较小支架工作面阻力、临近工作面支承压力叠加等。近几年,随着水平定向钻在煤矿顶板硬岩强矿压显现防治和水害超前治理方面应用的日益成熟,弱胶结顶板动力溃砂可采用硬岩超前预裂和弱胶结地层注浆改性的综合主动防控技术,从根本上改变灾害发生的客观条件。
[1] 徐智敏,高尚,孙亚军,等. 西部典型侏罗系富煤区含水介质条件与水动力学特征[J]. 煤炭学报,2017,42(2):444-451.
XU Zhimin,GAO Shang,SUN Yajun,et al. A study of conditions of water bearing media and water dynamics in typical Jurassic coal rich regions in western China[J]. Journal of China Coal Society,2017,42(2):444-451.
[2] 柴肇云,张亚涛,张学尧. 泥岩耐崩解性与矿物组成相关性的试验研究[J]. 煤炭学报,2015,40(5):1188-1193.
CHAI Zhaoyun,ZHANG Yatao,ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society,2015,40(5):1188-1193.
[3] FAN Gangwei,CHEN Mingwei,ZHANG Dongsheng,et al. Experimental study on the permeability of weakly cemented rock under different stress states in triaxial compression tests[J]. Geofluids,2018:1-9.
[4] WANG Shuai,HAN Lijun,MENG Qingbin,et al. Investigation of pore structure and water imbibition behavior of weakly cemented silty mudstone[J]. Advances in Civil Engineering,2019:1-13.
[5] 魏久传,吴复柱,谢道雷,等. 半胶结中低强度围岩导水裂隙带发育特征[J]. 煤炭学报,2016,41(4):974-983.
WEI Jiuchuan,WU Fuzhu,XIE Daolei,et al. Development characteristic of water flowing fractured zone under semi-cemented medium-low strength country rock[J]. Journal of China Coal Society,2016,41(4):974-983.
[6] 王渭明,赵增辉,王磊. 考虑刚度和强度劣化时弱胶结软岩巷道围岩的弹塑性损伤分析[J]. 采矿与安全工程学报,2013,30(5):679-685.
WANG Weiming,ZHAO Zenghui,WANG Lei. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering,2013,30(5):679-685.
[7] YIN Jiadi,FU Baojie,ZHANG Hualei. Failure mechanism and control technology for a large-section roadway under weakly cemented formation condition[J]. Geofluids,2020:1-11.
[8] 蔡金龙,涂敏,张华磊. 侏罗系弱胶结软岩回采巷道变形失稳机理及围岩控制技术研究[J]. 采矿与安全工程学报,2020,37(6):1114-1122.
CAI Jinlong,TU Min,ZHANG Hualei. Deformation and instability mechanism and control technology of mining gateway for Jurassic weak-cemented soft rock roadways[J]. Journal of Mining & Safety Engineering,2020,37(6):1114-1122.
[9] 纪洪广,蒋华,宋朝阳,等. 弱胶结砂岩遇水软化过程细观结构演化及断口形貌分析[J]. 煤炭学报,2018,43(4):993-999.
JI Hongguang,JIANG Hua,SONG Zhaoyang,et al. Analysis on the microstructure evolution and fracture morphology during the softening process of weakly cemented sandstone[J]. Journal of China Coal Society,2018,43(4):993-999.
[10] 郝育喜,王炯,袁越,等. 沙吉海煤矿弱胶结膨胀性软岩巷道大变形控制对策[J]. 采矿与安全工程学报,2016,33(4):684-691.
HAO Yuxi,WANG Jiong,YUAN Yue,et al. Large deformation control technology for expansive and weak-cemented soft rock roadways in Shajihai Coal Mine[J]. Journal of Mining & Safety Engineering,2016,33(4):684-691.
[11] 孙利辉,纪洪广,杨本生. 西部典型矿区弱胶结地层岩石的物理力学性能特征[J]. 煤炭学报,2019,44(3):865-873.
SUN Lihui,JI Hongguang,YANG Bensheng. Physical and mechanical characteristic of rocks with weakly cemented strata in western representative mining area[J]. Journal of China Coal Society,2019,44(3):865-873.
[12] 吕玉广,肖庆华,程久龙. 弱富水软岩水-沙混合型突水机制与防治技术——以上海庙矿区为例[J]. 煤炭学报,2019,44(10):3154-3163.
LÜ Yuguang,XIAO Qinghua,CHENG Jiulong. Mechanism and prevention of water-sand inrush in soft rock with weakly abundant water:A case study in Shanghai temple mining area[J]. Journal of China Coal Society,2019,44(10):3154-3163.
[13] 乔伟,王志文,李文平,等. 煤矿顶板离层水害形成机制、致灾机理及防治技术[J]. 煤炭学报,2021,46(2):507-522.
QIAO Wei,WANG Zhiwen,LI Wenping,et al. Formation mechanism,disaster-causing mechanism and prevention technology of roof bed separation water disaster in coal mines[J]. Journal of China Coal Society,2021,46(2):507-522.
[14] 潘俊锋,简军峰,刘少虹,等. 黄陇侏罗纪煤田冲击地压地质特征与防治[J]. 煤矿开采,2019,24(1):110-115.
PANG Junfeng,JIAN Junfeng,LIU Shaohong,et al. Geological characteristic and control of rock burst of Huanglong jurassic coal mine field [J]. Coal Mining Technology,2019,24(1):110-115.
[15] 任胜文. 大采深煤层弱胶结厚层砾岩突水溃沙灾害研究[J]. 煤炭科学技术,2019,32(9):249-255.
REN Shengwen. Study on disaster of water and sand inrush of weakly cemented thick conglomerate on deep mining coal seam[J]. Coal Science and Technology,2019,32(9):249-255.
[16] 柳昭星,董书宁,靳德武,等. 深埋采场压架切顶诱发井下泥石流形成机理与防控[J]. 煤炭学报,2019,44(11):3515-3528.
LIU Zhaoxing,DONG Shuning,JIN Dewu,et al. Formation mechanism and prevention and control of underground debris flow induced by roof-cutting of pressured support in deep-buried face[J]. Journal of China Coal Society,2019,44(11):3515-3528.
[17] 隋旺华,梁艳坤,张改玲,等. 采掘中突水溃砂机理研究现状及展望[J]. 煤炭科学技术,2011,39(11):5-9.
SUI Wanghua,LIANG Yankun,ZHANG Gailing,et al. Study status and outlook of risk evaluation on water inrush and sand inrush mechanism of excavation and mining[J]. Coal Science and Technology,2011,39(11):5-9.
[18] 隋旺华,刘佳维,高炳伦,等. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报,2019,44(8):2419-2426.
SUI Wanghua,LIU Jiawei,GAO Binglun,et al. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society,2019,44(8):2419-2426.
[19] 宋亚新. 哈拉沟煤矿22402工作面初采期溃水溃沙机理及防治技术[J]. 煤矿安全,2012,43(12):91-93.
SONG Yaxin. Water inrush and sand inrush mechanism and prevention technology during the initial mining period in 22402 working face of Halagou coal mine[J]. Safety in Coal Mines,2012,43(12):91-93.
[20] 郭小铭,董书宁,刘英锋,等. 深埋煤层开采顶板泥砂溃涌灾害形成机理[J]. 采矿与安全工程学报,2019,36(5):889-897.
GUO Xiaoming,DONG Shuning,LIU Yingfeng,et al. Formation mechanism of mud and sand inrush disaster during the mining of deep-buried coal seam[J]. Journal of Mining & Safety Engineering,2019,36(5):889-897.
[21] 张华磊,涂敏,程桦,等. 浅埋薄基岩煤层采场顶板破断机制研究[J]. 采矿与安全工程学报,2017,34(5):825-831.
ZHANG Hualei,TU Min,CHENG Hua,et al. Study on mechanism of stope roof fracture in deep-buried coal seam with thin bedrock [J]. Journal of Mining & Safety Engineering,2017,34(5):825-831.
[22] 缪协兴,王长申,白海波. 神东矿区煤矿水害类型及水文地质特征分析[J]. 采矿与安全工程学报,2010,27(3):285-291,298.
MIAO Xiexing,WANG Changshen,BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering,2010,27(3):285-291,298.
[23] 李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探,2019,47(2):129-136.
LI Chaofeng. Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield [J]. Coal Geology & Exploration,2019,47(2):129-136.
[24] 刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970-1976.
LIU Yingfeng,WANG Shidong,WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.
[25] 孙庆先,牟义,杨新亮. 红柳煤矿大采高综采覆岩“两带”高度的综合探测[J]. 煤炭学报,2013,38(S2):283-286.
SUN Qingxian,MOU Yi,YANG Xinliang. Study on“two-zone”height of overlying of fully-mechanized technology with high mining height at Hongliu Coal Mine[J]. Journal of China Coal Society,2013,38(S2):283-286.
[26] 杜锋,李振华,姜广辉,等. 西部矿区突水溃沙类型及机理研究[J]. 煤炭学报,2017,42(7):1846-1853.
DU Feng,LI Zhenhua,JIANG Guanghui,et al. Types and mechanism of water-sand inrush disaster in west coal mine[J]. Journal of China Coal Society,2017,42(7):1846-1853.
[27] 许家林,朱卫兵,鞠金峰. 浅埋煤层开采压架类型[J]. 煤炭学报,2014,39(8):1625-1634.
XU Jialin,ZHU Weibing,JU Jinfeng. Supports crushing types in the longwall mining of shallow seams[J]. Journal of China Coal Society,2014,39(8):1625-1634.
[28] 郭卫彬,刘长友,吴锋锋,等. 坚硬顶板大采高工作面压架事故及支架阻力分析[J]. 煤炭学报,2014,39(7):1212-1219.
GUO Weibin,LIU Changyou,WU Fengfeng,et al. Analyses of support crushing accidents and support working resistance in large mining height workface with hard roof[J]. Journal of China Coal Society,2014,39(7):1212-1219.
[29] 郭惟嘉,王海龙,陈绍杰,等. 采动覆岩涌水溃砂灾害模拟试验系统研制与应用[J]. 岩石力学与工程学报,2016,35(7):1415-1422.
GUO Weijia,WANG Hailong,CHEN Shaojie,et al. Development and application of simulation test system for water and sand inrush across overburden fissures due to coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1415-1422.
[30] 张杰,侯忠杰. 浅埋煤层开采中的溃沙灾害研究[J]. 湖南科技大学学报(自然科学版),2005,20(3):15-18.
ZHANG Jie,HOU Zhongjie. Study on sand inrush disaster in shallow seam mining[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2005,20(3):15-18.
[31] 宣以琼. 薄基岩浅埋煤层覆岩破坏移动演化规律研究[J]. 岩土力学,2008,29(2):512-516.
XUAN Yiqiong. Research on movement and evolution law of breaking of overlying strata in shallow coal seam with a thin bedrock[J]. Rock and Soil Mechanics,2008,29(2):512-516.
[32] XU Yanchun,LUO Yaqi,LI Jianghua,et al. Water and sand inrush during mining under thick unconsolidated layers and thin bedrock in the Zhaogu No. 1 Coal Mine,China[J]. Mine Water and the Environment,2018,37:336-345.
[33] LI H J,LI J H,LI L,et al. Prevention of water and sand inrush during mining of extremely thick coal seams under unconsolidated Cenozoic alluvium[J]. Bulletin of Engineering Geology and the Environment,2020,79:3271-3283.
[34] 张蓓,张桂民,张凯,等. 钻孔导致突水溃沙事故机理及防治对策研究[J]. 采矿与安全工程学报,2015,32(2):219-226.
ZHANG Bei,ZHANG Guimin,ZHANG Kai,et al. Water and sands bursting mechanism induced by geological borehole and control measures[J]. Journal of Mining & Safety Engineering,2015,32(2):219-226.
[35] 吕兆海,张艺耘,赵长红,等. 富水砂层巷道溃水溃沙因素分析及防治对策[J]. 煤炭工程,2015,47(6):73-75.
LÜ Zhaohai,ZHANG Yiyun,ZHAO Changhong,et al. Factor analysis and control strategy for roadway water inrush and sand inrush in water-rich sand stratum[J]. Coal Engineering,2015,47(6):73-75.
[36] 石磊. 弱胶结地层条件下工作面溃水溃砂规律模拟研究[J]. 煤炭科学技术,2020,48(7):347-353.
SHI Lei. Numerical simulation study on law of water and sand inrush in working face undercondtion of weakly cemented stratum[J]. Coal Science and Technology,2020,48(7):347-353.
[37] 王宝贤. 任楼煤矿提高回采上限首采面突水溃砂原因分析[J]. 煤矿安全,2013,44(6):189-192.
WANG Baoxian. Cause analysis of water and sand inrush at the first working face of improving mining upper limit in Renlou Coal Mine[J]. Safety in Coal Mines,2013,44(6):189- 192.
[38] 杨伟峰,隋旺华,吉育兵,等. 薄基岩采动裂隙水砂流运移过程的模拟试验[J]. 煤炭学报,2012,37(1):141-146.
YANG Weifeng,SUI Wanghua,JI Yubing,et al. Experimental research on the movement process of mixed water and sand flow across overburden fissures in thin bedrock induced by mining[J]. Journal of China Coal Society,2012,37(1):141-146.
[39] 钟江城,周宏伟,赵宇峰,等. 浅埋煤层开采突水溃砂两相流的耦合数值研究[J]. 工程力学,2017,34(12):229-238.
ZHONG Jiangcheng,ZHOU Hongwei,ZHAO Yufeng,et al. The two-phase flow of water-sand inrush under shallow coal seam mining:A coupled numerical study[J]. Engineering Mechanics,2017,34(12):229-238.
[40] 隋旺华,蔡光桃,董青红. 近松散层采煤覆岩采动裂隙水砂突涌临界水力坡度试验[J]. 岩石力学与工程学报,2007,26(10):2084- 2091.
SUI Wanghua,CAI Guangtao,DONG Qinghong. Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2084-2091.
[41] CHEN Jiarui,GU Wenhu,ZHANG Jihua,et al. Experimental study on flow characteristics of aeolian sand in fractures[J]. Advances in Civil Engineering,2021(9):1-12.
[42] 赵启峰,张农,韩昌良,等. 浅埋薄基岩含水层下煤层开采突水溃砂相似模拟实验研究[J]. 采矿与安全工程学报,2017,34(3):444-451.
ZHAO Qifeng,ZHANG Nong,HAN Changliang,et al. Simulation experiment of water-sand inrush during the mining of the shallow coal seam under roof aquifer with thin bedrock[J]. Journal of Mining & Safety Engineering,2017,34(3):444-451.
[43] 赵兰春,王树营,于建新. 软弱薄基岩裂隙发育特征及抑突(溃)机理[J]. 安徽理工大学学报(自然科学版),2020,40(3):77-80.
ZHAO Lanchun,WANG Shuying,YU Jianxin. Fracture development characteristics of weak-thin bedrock and the inhibition mechaism of water and sand inrushing[J]. Journal of Anhui University of Science and Technonlogy(Natural Science),2020,40(3):77-80.
[44] 浦海,倪宏阳,肖成. 基于格子Boltzmann理论的弱胶结裂隙岩体水沙两相流特性[J]. 煤炭学报,2017,42(1):162-168.
PU Hai,NI Hongyang,XIAO Cheng. Characteristics of water sediment two phase flows in weakly cemented fractured rock mass based on Lat-tice Boltzmann method[J]. Journal of China Coal Society,2017,42(1):162-168.
[45] 王家臣,杨敬虎. 水沙涌入工作面顶板结构稳定性分析[J]. 煤炭学报,2015,40(2):254-260.
WANG Jiachen,YANG Jinghu. Roof stability of the mining face under the condition of water and sand inrush[J]. Journal of China Coal Society,2015,40(2):254-260.
[46] 张杰,侯忠杰,马砺. 浅埋煤层老顶岩块回转过程中的溃沙分析[J]. 西安科技大学学报,2006,26(2):158-160,166.
ZHANG Jie,HOU Zhongjie,MA Li. Sand inrush in roof rock’s rotating in shallow seam mining[J]. Journal of Xi’an University of Science and Technology,2006,26(2):158-160,166.
[47] 张玉军,康永华,刘秀娥. 松软砂岩含水层下煤矿开采溃砂预测[J]. 煤炭学报,2006,31(4):429-432.
ZHANG Yujun,KANG Yonghua,LIU Xiue. Predicting on inrush of sand of mining under loosening sandstone aquifer[J]. Journal of China Coal Society,2006,31(4):429-432.
[48] 许延春,王伯生,尤舜武. 近松散含水层溃砂机理及判据研究[J]. 西安科技大学学报,2012,32(1):63-69.
XU Yanchun,WANG Bosheng,YOU Shunwu. Mechanism and criteria of crushing sand near loosening sand stone aquifer[J]. Journal of Xi’an University of Science and Technology,2012,32(1):63-69.
[49] 张士川,李杨杨,李金平,等. 采动裂隙突水溃砂过程物理参量变化特征试验研究[J]. 煤炭学报,2020,45(10):3548-3555.
ZHANG Shichuan,LI Yangyang,LI Jinping,et al. Experimental studies on variation characteristics of physical parameters during water and sand burst through mining fractures[J]. Journal of China Coal Society,2020,45(10):3548-3555.
[50] 杨斌,杨天鸿,徐曾和,等. 中国西部矿区厚松散层的溃沙临界流速与水沙流动特征[J]. 东北大学学报(自然科学版),2018,39(11):1648-1652,1657.
YANG Bin,YANG Tianhong,XU Zenghe,et al. Critical velocity of sand inrush and flow characteristics of water-sand in thick unconsolidated formations of mine in western China[J]. Journal of Northeastern University(Natural Science),2018,39(11):1648-1652,1657.
[51] 许延春. 含黏砂土流动性试验[J]. 煤炭学报,2008,33(5):496-499.
XU Yanchun. Fluidity test on sand blended with clay[J]. Journal of China Coal Society,2008,33(5):496-499.
[52] 伍永平,卢明师. 浅埋采场溃沙发生条件分析[J]. 矿山压力与顶板管理,2004(3):57-58.
WU Yongping,LU Mingshi. Analysis of sand inrush genera-tion condition in coal mining of shallow coal seam[J]. Ground Pressure and Strata Control,2004,20(3):57-58.
[53] 杨鑫,徐曾和,杨天鸿,等. 西部典型矿区风积沙含水层突水溃沙的起动条件与运移特征[J]. 岩土力学,2018,39(1):21-28,35.
YANG Xin,XU Zenghe,YANG Tianhong,et al. Incipience condition and migration characteristics of aeolian-sand aquifer in a typical western mine[J]. Rock and Soil Mechanics,2018,39(1):21-28.
[54] MA D,DUAN H Y,LIU W T,et al. Water-sediment two-phase flow inrush hazard in rock fractures of overburden strata during coal mining[J]. Mine Water and the Environment,2020,39,308-319.
[55] 王世东,沈显华,牟平. 韩家湾煤矿浅埋煤层富水区下溃砂突水性预测[J]. 煤炭科学技术,2009,37(1):92-95.
WANG Shidong,SHEN Xianhua,MOU Ping. Prediction of sand and water inrush in seam with shallow depth and under rich water aquifer in Hanjiawan mine[J]. Coal Science and Technology,2009,37(1):92-95.
[56] 刘宏源,毛善君,王振荣,等. 基于GIS的矿井溃水溃沙预警方法[J]. 煤炭科学技术,2010,38(4):86-89.
LIU Hongyuan,MAO Shanjun,WANG Zhenrong,et al. Water inrush and sand inrush pre-warning method based on GIS in mine[J]. Coal Science and Technology,2010,38(4):86-89.
[57] 范立民,马雄德,蒋辉,等. 西部生态脆弱矿区矿井突水溃沙危险性分区[J]. 煤炭学报,2016,41(3):531-536.
FAN Limin,MA Xiongde,JIANG Hui,et al. Risk evaluation on water and sand inrush in ecologically fragile coal mine[J]. Journal of China Coal Society,2016,41(3):531-536.
[58] 隋旺华,董青红. 近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J]. 岩石力学与工程学报,2008,27(9):1908-1916.
SUI Wanghua,DONG Qinghong. Variation of pore water pressure and its precursor significance for quicksand disasters due to mining near unconsolidated Formations[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1908-1916.
[59] 周振方,曹海东,朱明诚,等. 水泥-水玻璃双液浆在工作面顶板突水溃砂治理中的应用[J]. 煤田地质与勘探,2018,46(6):121-127.
ZHOU Zhenfang,CAO Haidong,ZHU Mingcheng,et al. Application of cement-sodium silicate mixed grout in control of water and sand bursting from roof of the working face[J]. Coal Geology & Exploration,2018,46(6):121-127.
[60] 赵庆彪,马念杰,刘斯筠. 注浆治理冲积层放顶煤综采工作面冒顶溃砂[J]. 煤矿安全,2002(10):33-35.
ZHAO Qingbiao,MA Nianjie,LIU Sijun. Grouting treatment of roof fall and sand break in fully mechanized mining face with top coal caving in alluvium[J]. Sefety in Coal Mines,2002(10):33-35.
[61] 王振荣. 厚松散含水层煤层开采突水溃沙防治技术[J]. 煤炭科学技术,2016,44(8):46-51.
WANG Zhenrong. Water inrush and sand inrush prevention and control technology for coal mining in seam with thick and loose aquifer[J]. Coal Science and Technology,2016,44(8):46-51.
[62] 刘洋. 浅埋开采工作面水沙溃涌灾害预测及防治对策[J]. 西安科技大学学报,2016,36(6):775-781.
LIU Yang. Disaster prediction and prevention countermeasures of water-sand inrush in shallow mining face[J]. Journal of Xi’an University of Science and Technology,2016,36(6):775-781.
[63] 李德彬. 煤矿顶板含水层溃水溃沙灾害井下挡水墙建造技术[J]. 矿业安全与环保,2019,46(3):74-77,81.
LI Debin. Construction technology of water-retaining wall after water and sand bursting in the aquifer of coal mine roof [J]. Mining Safety & Environmental Protection,2019,46(3):74- 77,81.
[64] 袁奇,王蓉蓉,袁鑫,等. 垮落带下金属网和双抗网防溃砂机理试验研究[J]. 煤炭工程,2017,49(6):82-84.
YUAN Qi,WANG Rongrong,YUAN Xin,et al. Experimental investigation on the mechanism of metal and double-antibody net for water and sand inrush prevention under caving zone[J]. Coal Engineering,2017,49(6):82-84.
[65] 林青,乔伟. 崔木煤矿顶板离层水防治技术[J]. 煤炭科学技术,2016,44(3):129-134.
LIN Qing,QIAO Wei. Water prevention and control technology of roof bed separation in Cuimu Mine[J]. Coal Science and Technology,2016,44(3):129-134.
[66] MOJTABA Rahimi,DAVE Chan,ALIREZA Nouri. Constitutive model for monotonic and cyclic responses of loosely cemented sand formations[J]. Journal of Rock Mechanics and Geotechnical Engineering,2018,10(4):740-752.
[67] TIENNOT M,MERTZ J D,BOURGES A. Influence of clay minerals nature on the hydromechanical and fracture behaviour of stones[J]. Rock Mechanics and Rock Engineering,2019,52:1599-1611.
[68] ROY D G,SINGH T N,KODIKARA J,et al. Effect of water saturation on the fracture and mechanical properties of sedimentary rocks[J]. Rock Mechanics and Rock Engineering,2017,50:2585-2600.
[69] CHERBLANC F,BERTHONNEAU J,BROMBLET P,et al. Influence of water content on the mechanical behaviour of limestone:Role of the clay minerals content[J]. Rock Mechanics and Rock Engineering,2016,49:2033-2042.
[70] 李廷春,卢振,刘建章,等. 泥化弱胶结软岩地层中矩形巷道的变形破坏过程分析[J]. 岩土力学,2014,35(4):1077-1083.
LI Tingchun,LU Zhen,LIU Jianzhang,et al. Deformation and failure process analysis of rectangular roadway in muddy weakly cemented soft rock strata[J]. Rock and Soil Mechanics,2014,35(4):1077-1083.
[71] 李桂臣,孙长伦,何锦涛,等. 软弱泥岩遇水强度弱化特性宏细观模拟研究[J]. 中国矿业大学学报,2019,48(5):935-942.
LI Guichen,SUN Changlun,HE Jintao,et al. Macro and meso scale simulation study of the strength-weakening property of soft mudstone affected by water[J]. Journal of China University of Mining & Technology,2019,48(5):935-942.
[72] 宋朝阳,纪洪广,刘志强,等. 饱和水弱胶结砂岩剪切断裂面形貌特征及破坏机理[J]. 煤炭学报,2018,43(9):2444-2451.
SONG Zhaoyang,JI Hongguang,LIU Zhiqiang,et al. Morphology and failure mechanism of the shear fracture surface of weakly cemented sandstone with water saturation[J]. Journal of China Coal Society,2018. 43(9):2444-2451.
[73] 乔卫国,韦九洲,林登阁,等. 侏罗白垩纪极弱胶结软岩巷道变形破坏机理分析[J]. 山东科技大学学报,2013,32(4):1-6.
QIAO Weiguo,WEI Jiuzhou,LIN Dengge,et al. The deformation failure mechanism of very weakly cemented soft rock formed during Jurassic-Cretacenous period in road ways[J]. Journal of Shandong University of Science and Technology,2013,32(4):1-6.
[74] 刘钦,孙亚军,徐智敏,等. 侏罗系弱胶结砂岩孔隙介质特征及其保水采煤意义[J]. 煤炭学报,2019,44(3):857-864.
LIU Qin,SUN Yajun,XU Zhimin,et al. Pore media characteristics of Jurassic weak cemented sandstone and its significance for water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):857-864.
[75] 李回贵,李化敏,汪华君,等. 弱胶结砂岩的物理力学特征及定义[J]. 煤炭科学技术,2017,45(10):1-7.
LI Huigui,LI Huamin,WANG Huajun,et al. Physical and mechanical characteristics and definition of weakly cemented sandstone[J]. Coal Science and Technology,2017,45(10):1-7.
[76] WANG Zhenkang,LI Wenping,WANG Qiqing,et al. Relationships between the petrographic,physical and mechanical characteristics of sedimentary rocks in Jurassic weakly cemented strata[J]. Environmental Earth Sciences,2019,78(5):131.
[77] 谢生荣,陈冬冬,孙颜顶,等. 基本顶弹性基础边界薄板模型分析(I)——初次破断[J]. 煤炭学报,2016,41(6):1360-1368.
XIE Shengrong,CHEN Dongdong,SUN Yanding,et al. Analysis on thin plate model of basic roof at elastic foundation boundary(I):First breaking [J]. Journal of China Coal Society,2016,41(6):1360-01368.
[78] WHITTAKER B N. An appraisal of strata control practice[J]. Transactions of the Institution of Mining and Metallurgy,Section A:Mining Technology,1974,11(11):9-24.
[79] EVERLING G. Die Vorausberechnung des Gebirgsbrucks fur einen Abbauplan[J]. Gluckauf,1973,109(23):1131-1133.
[80] PARK D W,GALL V. Supercomputer assisted three-dimensional finite element analysis of a longwall panel[A]. Rock Mechanics as a Guide for Efficient Utilization of Natural Resources:Proc 30th U. S. Rock Mechanics. Symp. [C]. Morgan Town,1989,26(6):133-140.
[81] 钱鸣高,茅献彪,缪协兴. 采场覆岩中关键层上载荷的变化规律[J]. 煤炭学报,1998,23(2):25-29.
QIAN Minggao,MAO Xianbiao,MIAO Xiexing. Variation of loads on the key layer of the overlying strata above the workings[J]. Journal of China Coal Society,1998,23(2):25-29.
[82] BEHERA B,YADAV A,SINGH G S P,et al. Numerical modeling study of the geo-mechanical response of strata in longwall operations with particular reference to Indian geo-mining conditions[J]. Rock Mechanics and Rock Engineering,2020,53:1827-1856.
[83] 刘双跃,钱鸣高. 老顶断裂位置及断裂后回转角的数值分析[J]. 中国矿业大学学报,1989,18(1):34-39.
LIU Shuangyue,QIAN Minggao. The numerical analysis of the craeked position and inelination of the main roof[J]. Journal of China University of Mining & Technology,1989,18(1):34-39.
[84] 马庆云,赵晓东,宋振骐. 采场老顶岩梁的超前破断与矿山压力[J]. 煤炭学报,2001,26(5):473-477.
MA Qingyun,ZHAO Xiaodong,SONG Zhenqi. Break of main roof ahead of workface and ground pressure[J]. Journal of China Coal Society,2001,26(5):473-477.
[85] 潘岳,顾士坦. 基于软化地基和弹性地基假定的坚硬顶板力学特性分析[J]. 岩石力学与工程学报,2015,34(7):1402-1414.
PAN Yue,GU Shitan. Mechanical properties of hard roof based on assumptions of soften founation elastic founation[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1402-1414.
[86] 李新元,马念杰,钟亚平,等. 坚硬顶板断裂过程中弹性能量积聚与释放的分布规律[J]. 岩石力学与工程学报,2007,26(S1):2786-2793.
LI Xinyuan,MA Nianjie,ZHONG Yaping,et al. Storage and release regular of elastic energy distribution in tight roof fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):2786-2793.
[87] MONDAL D,ROY P,BEHERA P K. Use of correlation fractal dimension signatures for understanding the overlying strata dynamics in longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2017,91:210-221.
[88] XU C,FU Q,CUI X Y,et al. Apparent-depth effects of the dynamic failure of thick hard rock strata on the underlying coal mass during underground mining[J]. Rock Mechanics and Rock Engineering,2019,52:1565-1576.
[89] 蒋金泉,张培鹏,聂礼生. 高位硬厚岩层破断规律及其动力响应分析[J]. 岩石力学与工程学报,2014,33(7):1366-1374.
JIANG Jinquan,ZHANG Peipeng,NIE Lisheng. Evolutionary characteristics of fracture laws of high-position hard thick strata with elastic foundaiton boundary[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1366-1374.
[90] YARDIMCI A G,KARAKUS M. A new protective destressing technique in underground hard coal mining[J]. International Journal of Rock Mechanics and Mining Sciences,2020,130:14.
[91] 黄庆享,张沛. 厚砂土层下顶板关键块上的动态载荷传递规律[J]. 岩石力学与工程学报,2004,23(24):4179-4182.
HUANG Qingxiang,ZHANG Pei. Study on dynamic load distribution on key roof blocks of under thick sandy soil stratum[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(24):4179-4182.
[92] 许家林,朱卫兵,鞠金峰,等. 采场大面积压架冒顶事故防治技术研究[J]. 煤炭科学技术,2015,43(6):1-8,47.
XU Jialin,ZHU Weibing,JU Jinfeng,et al. Study on prevention and control technology of large area powered support jammed and roof falling accident occurred in coal mining face[J]. Coal Science and Technology,2015,43(6):1-8,47.
[93] 乔伟,李文平,孙如华,等. 煤矿特大动力突水动力冲破带形成机理研究[J]. 岩土工程学报,2011,33(11):1726-1733.
QIAO Wei,LI Wenping,SUN Ruhua,et al. Formation mechanism of dynamic impact failure zone of super dynamic water inrush in coal mine[J]. Chinese Journal of Geotechnical Engineering,2011,33(11):1726-1733.
[94] 张培鹏,蒋力帅,刘绪峰,等. 高位硬厚岩层采动覆岩结构演化特征及致灾规律[J]. 采矿与安全工程学报,2017,34(5):852-860.
ZHANG Peipeng,JIANG Lishuai,LIU Xufeng,et al. Mining induced overlying strata structure evolution characteristics and disaster triggering under high level hard thick strata[J]. Journal of Mining & Safety Engineering,2017,34(5):852-860.
[95] 朱卫兵,王晓振,孔翔,等. 覆岩离层区积水引发的采场突水机制研究[J]. 岩石力学与工程学报,2009,28(2):306-311.
ZHU Weibing,WANG Xiaozhen,KONG Xiang,et al. Study of mechanism of stope water inrush caused by water accumulation in overburden separation areas[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):306-311.
[96] 柳昭星,董书宁,南生辉,等. 邯邢矿区中奥灰顶部空隙特征显微CT分析[J]. 采矿与安全工程学报,2021,38(2):343-352.
LIU Zhaoxing,DONG Shuning,NAN Shenghui,et al. Micro-CT analysis of void characteristics at the top of middle ordovician limestone in Hanxing mining area[J]. Journal of Mining & Safety Engineering,2021,38(2):343-352.