中国养老金筹资模式基金制改革潜在经济效率研究
2022-02-09王云多
王云多
摘 要:随着人口老龄化加剧,无论从养老金需求角度,还是从养老金供给角度,人口老龄化均给我国养老金制度可持续发展带来一定挑战,如何化解养老金财务支付危机成为急需解决的重要社会经济问题。通过探讨可计算一般均衡模型的形成过程,将其与正在进行的养老金制度基金制转变相结合,探索运用动态可计算一般均衡模型解决人口老龄化引发的养老金财务危机。通过深入研究人口老龄化对资本市场以及劳动力市场的影响,进一步探究老龄社会如何运用一般均衡模型优化养老基金和养老金制度改革方案,最后指出我国养老金制度发展的可能方向。
关键词:人口老龄化;一般均衡模型;养老金;现收现付;基金制
基金项目:国家社会科学基金项目“生育率下降与预期寿命延长双重约束下养老保险制度可持续性研究”(16BRK016)。
[中图分类号] F224 [文章编号] 1673-0186(2022)001-0096-015
[文献标识码] A [DOI编码] 10.19631/j.cnki.css.2022.001.008
随着人口老龄化不断加剧,养老金财政压力已经成为经济政策制定者急需解决的一个重要社会经济问题。目前,养老金领域的研究通常关注两个方向:一个是人口老龄化带给现收现付养老金制度的负面影响,另一个是改革现收现付养老金制度,引入基金积累的养老金制度。可计算一般均衡模型是用于分析养老金财务压力和解决养老金困境的重要分析工具,并可基于一定的参数设定进行模拟检验。本研究并非预测未来养老金制度发展的道路,也不给出具体的政策建议,而是基于一定的养老金制度设计探讨人口老龄化对经济可持续发展的影响,本文认为这是可计算一般均衡模型的突出优势。本文将围绕传统可计算一般均衡模型展开研究,但是研究不局限于探讨和构建理论模型,而是在更复杂制度环境下分析实际政策产生的不同经济效果,探讨一般均衡模型结构及其政策应用,最终得出一些对于未来养老金制度发展的个人看法。
一、文献述评
可计算一般均衡模型最早由奥尔巴赫和科特里科夫(Auerbach and Kotlikoff)在20世纪80年代创立[1],然而早期可计算一般均衡模型多采用多部门比较静态分析方法研究养老金制度及其影响因素,研究者使用这一模型计算养老金收支规模。但是,早期可计算一般均衡模型没有考虑时间因素对养老金制度的影响,也没有考虑人口动态变动对养老金收支的影响。为弥补模型的这一缺陷,奥尔巴赫和科特里科夫构建了动态优化模型,将研究方向从静态多部门分析转向动态单一部门分析,并且提出养老金制度向稳态过渡的方法[2]。此后,部分国内外学者还将动态可计算一般均衡模型用来评估宏观经济运行、收入分配、保险以及其他政策改革的经济效果[3-5]。还有学者将动态可计算一般均衡模型用于解决国民福利以及养老金制度改革中遇到的问题[6]。例如,国内外一些学者使用动态可计算一般均衡模型估算人口老龄化产生的短期和长期经济影响,并且就人口老龄化对现行养老金制度的财务持久性影响进行评估,评估结果表明养老金财务制度面临严峻的压力,有必要对养老金制度进行大范围改革,引入基金积累模式[7-9]。此外,费尔等、科特里科夫等学者还将人口老龄化与国际资本市场联系起来,运用多国模型以一种十分相似的方式模拟国家层面人口老龄化对国际资本市场的影响,研究表明,随着人口老龄化不断加剧,国际资本流动对要素价格产生抑制作用,导致利率上升,实际工资下降,但是能极大提高技能工人的技能溢价[10-12]。当然,费尔等还使用可计算动态一般均衡模型预测了人口老龄化对现收现付型养老金制度的长期财政可持续性的影响,也模拟预测了基金制改革的效果[13]。
与上述学者研究观点不同,一些学者研究指出,难以使用动态一般均衡模型准确核算和解决由现收现付养老金制度向基金制转变产生的经济效率。例如,福斯特等使用动态一般均衡模型研究指出,在一个劳动供给相对固定的模型中,由现收现付制向基金制过渡不会提高养老金制度改革经济效率[14];奥洛夫松(Olovsson)研究指出,随着人口老龄化加剧,尽管现收现付养老金制度会产生一定隐性债务负担,但是向基金制转变仅仅是将隐性债务转变为显性债务,将隐性税收转变为显性税收,不会提高经济收益[15],然而奥洛夫松的研究没有考虑劳动供給减少是否会产生更多有效收入,也没有考虑养老金制度转型期所有过渡人群是否可以获得经济补偿。近年来,很多学者试图采用各种动态可计算一般均衡模型来说明这一问题,但是都没有很好地加以解决[16-17]。
在深入探讨细节之前,需要探讨基金制改革与为提高经济效率而建立的补偿机制之间的关系。
为了深入研究养老金制度改革产生的经济效率,克鲁格(Krueger)曾使用动态可计算一般均衡模型模拟检验养老金制度基金制改革过渡期间消费税增长产生的经济效率[18],费尔等还使用一般均衡模型进一步拓展了养老金制度基金制改革的范围,将每一组研究对象分为十二个收入等级,研究了基金制改革对不同收入等级人群产生的不同经济影响。还有研究试图找到一种最优养老金制度基金制改革方案,并指出这种最优基金制方案将提高经济效率和改善收入再分配机制[19]。此外,一些学者还使用可计算一般均衡模型计算基金制改革的福利计算基金制改革带来的经济效率。例如,西山和斯迈特斯(Nishiyama and Smetters)在劳动力供给可变假设下使用可计算一般均衡模型模拟检验养老金制度由现收现付逐步实现50%基金制转变带来的福利,研究结果表明在养老金制度改革年代大于等于65岁人的福利不会因为改革而受到损害,但年轻家庭会受影响,收入呈线性下降,预计改革年份25岁或以下的群体在达到65岁时只能获得一半的福利,进一步研究指出,养老金制度改革不仅减少了劳动力供给扭曲,而且还减少了养老金制度的保险条款[20]。此外,科特里科夫等也研究了人口老龄化对养老金财务制度的影响[12]。他们计算了人口老龄化对可选择性预融资计划福利的影响,但是没有计算人口老龄化对效率的影响。还有一些学者将一些欧洲国家纳入考察对象,例如,彼特斯玛等[21]、费尔等[19]在研究德国养老金制度时得出与上述学者类似的研究结论。他们研究指出,与美国养老金制度相比,由于荷兰与德国养老金制度规定养老金待遇与工作期养老金缴费额密切相关,这一机制减少了劳动力供给扭曲,同时也减少了针对收入冲击的保险条款。此外,费尔等模拟分析解释了重要的借贷约束,并比较了基金制改革对理性和非理性消费者产生的不同经济影响。
上述国内外学者研究表明,只要现收现付养老金制度没有收紧税收—待遇联动机制,那么融资可能会产生潜在的帕累托改进。然而,正如上面所述,人们不应该轻易认同这种观点。总之,上述研究都假设市场是完全竞争的和人是完全理性的,完全忽略了最初创建养老金制度的动因,除了考虑收入再分配,还要考虑到金融、保险市场上的市场失灵以个体的不完全理性。因此,有必要在一般均衡模型中引入强制性基金制养老金制度,根据收入冲击和贴现反映不完全竞争市场中个体的终身年金以及保险收益。
与已有研究不同,本文的贡献如下:第一,拓展动态可计算一般均衡模型,在一个统一框架内比较完全竞争市场和不完全竞争条件下养老金制度基金制改革产生的不同经济效率;第二,使用动态可计算一般均衡模型考虑非理性决策、内生人力资本形成、退休、家庭关系、遗赠动机、劳动收入、寿命不确定性、流动性约束和代际异质性等因素对养老金制度基金制改革效率的影响;第三,基于给定的参数,对养老金制度基金制改革效率进行模拟检验,并对模拟检验结果加以解释,指明人口老龄化背景下我国养老金制度发展的潜在方向。
由于我国出生率下降以及预期寿命延长,面临人口老龄化的挑战,不考虑通过人口净迁入补充人口不足,人口老龄化将导致工作年龄人口减少,进入劳动力市场的年轻人数量也会减少。与此同时,由于生育高峰期出生的一代逐渐退休,以及年轻人生育意愿的持续下降,未来几十年我国人口老龄化会呈加速上涨趋势。
可以明确的是,人口老龄化将会在我国的经济发展过程中产生深远影响,而现收现付型养老金制度是联系人口老龄化和经济发展之间最直接的纽带,人口老龄化将导致现收现付型养老金制度缴费者数量减少的同时受益者数量增加,导致这一制度财务上将难以维持,从而必须提高缴费率或者选择降低待遇水平。此外,人口老龄化也将会影响要素市场,虽然尚不确定人口老龄化对于要素需求和国际资本市场的影响,而且也不确定这一影响的具体方向,但是,可以预见人口老龄化将导致资本供给减少,进而引发劳动力价格上涨。为此,可以考虑用动态可计算一般均衡模型来分析人口老龄化的经济影响。
二、动态可计算一般均衡模型分析
本文设定的动态可计算一般均衡模型与可计算一般均衡模型的主要不同之处在于设定55个世代交叠(对应年龄21岁至75岁),由根据离散时间设计的效用函数代表一个新进入劳动力市场的代表性个人的偏好结构(见式1):
式(1)中变量c和l分别代表消费和闲暇,参数δ代表时间权重,ρ代表期内替代弹性,γ代表跨期替代弹性,α代表闲暇权重。假定新进入劳动力市场的代表性个人跨期预算约束如下(见式2),并假定个人追求一生效用最大化。
式(2)中w和r分别代表个人税前工资和储蓄回报(利率),hj为个人在j年龄时挣得收入的能力(即个人的人力资本),Gj为个人包括社保缴费在内所需缴纳的税款,Pj为年龄为j岁的代表性个人在达到退休年龄(由jR代表)后领取的养老金。假定将个人时间资源禀赋标准化为1,可用于劳动和闲暇两种用途,因此个人对闲暇时间(由lj代表)的消费受其拥有的时间禀赋限制,也就是说,lj≤1。个人在预算约束下进行消费优化,以实现效用最大化。效用函数和预算约束强调了最初模型的主要假设:第一,个体为理性经济人,个人在21岁时进入劳动力市场,可活到75岁,此时他具有与年龄相对应的生产力(hj),个人剩余的55年中大部分时间参与市场性工作,到达法定退休年龄后退休。在职业生涯后期,由于存在劳动力可能做出退出劳动市场的决定,政府有必要规定养老金最低受益年龄(jR);第二,最初模型考虑单个家庭情况,也就是说,这个模型从一个纯粹个体视角出发,忽视了遗赠动机、继承或者其他的私人代际转移;第三,研究对象对资金需求没有流动性约束,也就是说他们可以在年轻时不断累积债务,在年老后偿还;第四,工资和利率为非随机变量,因此,这个模型没有区分不同风险收益的金融资产;第五,假定企业只生产一种消费品,没有对消费结构和生产部门进行分类;第六,只構建与年龄相对应的单个变量,没有对国籍、收入等级或者性别等研究对象进行分类。因此,这个模型不能解决由于国别或世代不同而存在的问题。
在另一方面,这一模型能够通过个体缴纳税收以及养老金收入从而展现出较为详细的税收和养老金制度。就养老金制度而言,养老金收入如下:
式(3)中和yj表示某年平均劳动收入和劳动者在第j年时家庭年收入,本文通过函数φj将收入转换成养老金收入,ρ代表累进等级,即衡量养老金替代率是不变还是随着收入增加而减小。如果ρ=0,那么养老金收入就仅仅取决于个人劳动所得,对于所有收入水平而言,养老金替代率相同。也意味着只算入一些最佳年份收入或者将整个职业生涯收入都带入计算养老金。如果ρ=1,表明养老金收入固定不变,也就是说养老金收入不取决于每一年劳动收入,养老金替代率会随着劳动收入增加而降低。如果ρ>1,那么养老金收入会随着劳动收入增加而降低。φ1代表单纯替代率,而φ2可用来计算单个劳动者的养老储蓄,并且可在养老储蓄和养老金收入之间构建模型。
在一般均衡情况下,家庭在劳动力市场和资本市场上的行为决定实际工资和资本回报。在劳动力市场上的实际工资可衡量一个企业对于家庭提供劳动的需求程度,资本市场的资本回报可衡量企业对于资本市场需求程度以及家庭预期总资产负债水平。一方面,政府实行代际财富再分配的现收现付型养老金制度,由在职者缴纳养老金为养老金领取者提供退休后收入。另一方面,政府通过税收收入和发行公债为社会发展提供公共产品。当然,公共预算必须要达到跨期平衡。由于在每一年里年龄最大的一组老人都会陆续离世,在新的一年里仍在世的人的剩余生存时间也不同,因此,养老金制度改革对当代人和改革后出生的人的预算约束的影响也不同。在实行养老金制度改革后,这一模型可计算出一个能达到新的长期均衡的过渡路径,研究者们能够用这个模型的解评估养老金制度改革对于宏观经济的过渡增长效应,以及养老金制度改革给当代人和子孙后代带来的不同后果。
为了理解可计算动态一般均衡模型的经济意义,有必要掌握不同养老金融资方案的影响。一方面,由于不考虑不确定的生命期限、遗赠动机和流動性约束,个体可以完美地通过私人储蓄来支撑他们的老年生活消费。最终,强制性个人基金制养老金计划仅是使用公共养老基金替代私人储蓄,对于整体经济运行并没有实质性帮助。另一方面,现收现付型养老金制度的运作与公债十分相似,它将资源从年轻人和后代中挤出,并且将资源再分配给老年人群,最终结果就是从现收现付制向基金制的转变将会提升经济中的资本总额,还会使得当代的资源在子孙后代中进行再分配。
当然,这些后果是否会发生取决于上述假设,原则上需要考虑非理性决策、内生人力资本形成、退休、家庭关系、遗赠动机、劳动收入、寿命不确定性、流动性约束和代际异质性等因素。下面将关注两个具体养老金制度改革措施:第一,是否逐步减少或完全排除养老金基金制改革产生的经济收益;第二,在现收现付养老金制度下是否获得收益应该与缴费挂钩。
三、养老金制度改革对代际福利和经济效率的影响
已有研究指出,从现收现付养老金制度向基金制养老金制度转变主要会产生两方面收益:一方面,鉴于养老金基金制改革会增加资本积累,人们从基金制养老金制度获得的实际资本收益比隐性资本收益高;另一方面,这样一种制度转变将会降低由工资税引起的额外损失。因此,有必要设计一个向基金制养老金制度过渡的计划,使得每一代人在基金制养老金制度下比现收现付养老金制度下生活得更好。
(一)主要参数设定
参照奥尔巴赫和科特里科夫的研究,本文将跨期替代弹性设定为1,期内消费和闲暇的替代弹性为0.5,人力资本技术弹性设定为0.7,已经获得的人力资本对人力资本生产的弹性为1,产品中资本贡献份额为0.33。根据我国养老金替代率现状,本文将养老金替代率设定为0.6。其他参数的选择是基于2019年统计年鉴的数据计算所得,利息率用我国金融机构短期贷款平均利率(0.055)来代表,消费税税率用我国政府消费税收入占国内生产总值的比重(0.07)来代表,资本折旧率用固定资产折旧率(0.055)来代表,个人所得税率用个人所得税收入占国内生产总值的比重(0.05)来代表,资本收入税率用企业所得税收入占国内生产总值的比重(0.25)来代表。
(二)含有和不含有一次性转移支付对养老金制度改革效率的影响
本文探究实施一项养老金制度改革的过渡路径,通过实施这一改革,将使经济进入新的过渡路径。鉴于经济方面存在含有一次性转移支付和不含有一次性转移支付这两个可能的过渡路径,本文模拟计算出在两种过渡路径下养老金制度改革开始后引起的不同人群经济福利的改变。图1描绘了养老金制度改革中代际福利水平的变化,图1中横轴代表年龄,纵轴代表福利水平的变化(通常由效用水平的等价值变化代表,本文用剩余生命资源的百分比表示)。假定养老金制度改革转变在第0年时实施,所涉及的既有在养老金制度改革年份之前出生的人群,也有在养老金制度改革中或改革后出生的人群。
图1中不含一次性转移支付曲线的变化表明养老金制度改革减少了当前工作者的福利和已经退休人群的福利,而目前年龄低于20岁尚未工作的人和尚未出生的人会获得更多福利。虚横线代表养老金制度改革对于未来各代产生的福利比当代人产生的福利要高。如果忽略过渡代的话,改革会产生较高福利。然而,大多数生活在改革年代的人的利益都将受到损失。纯粹长期分析忽略了对过渡代的影响,但是综合评价养老金制度改革需要考虑代际分配效应。一旦确定了养老金制度改革中的获利者和受损者,理论上下一步需要弄清楚获利者是否能够补偿受损者。在图1中的福利仅仅描述了过渡代福利损失或者改革是否引起净效率增长,可通过一次性转移支付来解答这一问题。模拟结果表明,改革后出生的人群最终将获得与改革前出生的人群同样的福利水平。为了平衡一次性转移支付的跨期预算问题,新生儿和未来即将出生的人需要支付总量税以补偿改革时期政府的一次性转移支付。为了促进效率和福利的比较,将在新生儿和未来出生孩子中重新分配用于补充一次性转移支付的税收,因此在缴纳补偿一次性转移支付的税收后新生儿和未来即将出生的人将承受同样的福利损失。由图1可知,在制度改革时向大于20岁的人群支付一次性转移支付,并在改革后向更年轻的人群征收总量税用于补充一次性转移支付。由于养老金制度改革,这些一次性转移支付占了福利的一大部分,因此在补偿之后新生儿和未来出生孩子能够造成相同的福利损失(见图1中含有一次性转移支付的曲线),这些福利损失反映了养老金制度改革的总效应。
(三)不同市场环境下养老金制度改革效率比较研究
为了进一步考虑养老金制度基金制改革效率,下面将分别研究完全竞争和不完全竞争情况下养老金制度改革的效率,重点分析不完全竞争情况下非理性决策对养老金制度基金制改革效率的影响。
1.完全竞争条件下养老金制度改革效率研究
一般均衡模型通常以外源性劳动供给为特征分析完全竞争市场环境下劳动供给变化对养老金供求的影响,通过帕累托改进和效率计算,将劳动供给变化纳入考察范围,在这方面,已有研究考虑了这一问题。例如,科特里科夫曾运用一般均衡模型模拟人口老龄化对基金制改革的影响,分析在一定的融资假设下现收现付养老金制度彻底退出的可能。研究结果表明,在初始稳态下,至少保持20%的企业所得税率和12%的个人所得税率才能为现收现付养老金制度提供较为充裕的融资,以确保退休者领取的养老金待遇相当于退休前工作期间75%的平均工资收入。但是随着人口老龄化加剧,为保持现收现付养老金制度运行,必须进一步提高企业和个人缴费税率,而这将加重企业和个人负担。因此,有必要改革现收现付养老金制度,引入基金制养老金制度。对养老金制度进行基金制改革包括即时取消工资税和逐步退出现收现付养老金制度。最终,所有的退休人员通过工作期为个人养老的缴费以获得一定养老金待遇,而且工作期个人缴费经由投资公司采取的待遇确定型养老金给付模式的年金化市场运作,保证退休人员能够获得之前被承诺的所有经济待遇。接下来的逐步退出过程确保了所有在改革时的工作者能够在他们退休后享受一定经济福利。表1列出养老金制度改革的经济福利和三种养老金制度改革方案的效率比较:基本方案假定没有税收—待遇联动和使用所得税来补偿养老金待遇下降;税收—待遇联动方案假定人们最初相信投入养老金制度的每一元钱都能获得与现值相同的未来收益;最终,消费税方案又一次忽略了税收—待遇联动,但是可通过消费税来为养老金制度改革过渡期养老金待遇发放提供资金。
模拟结果表明:从养老金制度改革后最初世代到未来世代的福利状况方面看,消费税的再分配程度比所得税强,税收—待遇联动方案效率最差。當对第一代进行经济补偿时,新生儿和未来出生的孩子将经历0.8%的效用增长。这一基本情况下效用增长率远远小于9.7%的长期未补偿的福利增长率,但是这表明存在一个潜在的帕累托改进空间,一般情况下效用增长率由劳动力供给扭曲减少造成。在第二种情况下,养老金制度进行基金制转变导致3.1%的效率损失。第三个方案中用消费税来补偿养老金制度改革过渡期福利会导致效率显著增长,是三个方案中效果最好的一个。
2.不完全竞争情况下养老金制度改革效率研究
市场机制并非能够不受限制地发挥作用,现实中不完全竞争市场更符合实际。为深入研究不完全竞争市场下人口老龄化对养老金制度改革的影响,有必要用劳动收入以及寿命不确定性构建一个用来模拟现收现付养老金制度逐步退出的模型。前者研究人口老龄化,后者研究家庭对于非正式保险条款的最优决策问题。因此,为了分离养老金制度改革对整体效率的影响,本文在单独模拟中考虑了不含一次性转移支付和税收的影响,并且首先在没有收入不确定性的经济体中模拟养老金制度基金制改革的影响。正如所预料的那样,结果显示老年人和中年人(即年龄小于60岁)将收入再分配给年轻和未来出生的人群。在补偿了老年人的福利损失之后,该研究发现因养老金基金制改革导致每个家庭效率增加。因此,劳动力市场扭曲减少和年轻家庭流动性增加过度补偿了年金准备金的损失。接下来,用特殊的劳动收入不确定性模拟养老金制度改革的影响,表2列出基金制改革对不同群组和收入等级人群的福利变化(即无补偿)和效率影响(即有补偿金)。
长远来看,从低收入家庭到最高收入家庭,养老金制度部分基金制改革受益不等,低收入家庭受益较少,而富裕家庭受益较多。上面讨论的研究也阐述了类似的数据,这些研究只计算了养老金制度改革的长期后果。然而,因为养老金制度进行基金制改革时的老年人群要为现有的养老金需求提供资金,他们需要更高的收入或缴纳更多的消费税,从而造成老年人极大的福利损失。如表3所示,如果引入一次性转移支付并且通过政府转移支付对养老金制度进行基金制改革时代利益受损的人进行补偿,那么在养老金制度进行基金制改革年份或之后开始工作的每个家庭必须支付一定数量的货币来偿还一次性转移支付的债务。换句话说,因为对长寿和收入波动提供保险,导致劳动力供给扭曲,也通过增加借贷约束带来一定损失,养老金制度采取部分基金制确实会降低经济效率。
模型通过简单地消除养老金财富的进一步积累来实现养老金制度基金制改革。进行基金制改革后,由工资税为现有养老金需求提供资金,由消费税平衡政府跨期预算缺口。因此,在内生性公共债务下,缓解了当前和后代的负担。改革使得工资税减少8%,消费税减少大约3.5%,导致个人可支配收入增加,储蓄增加。由于消费税快速减少,已经退休的群体受益于基金制改革,中年群体有所损失(因为缴纳的税收份额低于工资税)而后代获益(由于工资税较低)。本文在含有税收优惠退休账户的理性和非理性消费者经济体中比较基金制改革的经济效率,表3比较了不同方案下养老金制度改革总效率的差异。为了分离对劳动力市场扭曲的影响,以及保险和流动性对总效率的影响,本文模拟了开放经济中基金制改革的影响,其中包括关于税收累进性、寿命不确定性以及流动性约束的假定。在每次模拟中调整利率,使资本产出比率始终保持不变。
方案1刻画了与累进税制、寿命不确定性以及对年轻低收入家庭具有约束力的流动性约束有关的基本假设。研究发现,基金制改革会降低经济效率,使个人一生资源降低0.54%。由于现收现付养老金制度是政府对个人认知非理性时的给付承诺,因此在具有非理性消费者的经济体中基金制改革带来的效率损失增加1.72%。方案2中假设初始均衡中的比例所得税为10%,将减少税收制度的收入保险效应和劳动力供给扭曲。由于两种效应相互抵消,因此总效率几乎不受影响。从方案2中可以看出,由于取消了过度补偿(积极的)流动性影响的长寿保险,导致总效率损失(理性情况下损失0.52%,非理性情况下损失1.4%)。因此,方案3通过模拟具有80年特定寿命的模型来消除现收现付养老金制度无法应对的长寿保险。研究结果表明,流动性效应和税收扭曲导致效率增加,方案3和方案2之间的差异大致反映了养老金制度提供的长寿保险,尤其部分理性消费者更受益于这种保险,这是由于他们预计其在老年时的消费效用远高于非理性消费者老年时的消费效用。最后,方案4模拟了在初始均衡中无借贷约束的模型。方案4和方案3之间的差异反映了基金制改革后流动性约束减少,效率提升。流动性效应在随机经济体中尤为重要,在这些经济体中,贫困年轻人的收入能够攀升至更高的水平。在方案4中,基金制改革将会减少借贷约束,反过来这又使得总资源效率增加。由于部分非理性消费者在年老后将会后悔年轻时进行的消费行为,借贷约束将扮演一种承诺工具,退出现收现付养老金制度将减少这种借贷约束,在具有非理性特征的经济体中由于减少借贷约束,造成总体经济效率增加得较少。相比方案3,方案4中基金制改革对总剩余效率影响较小。
这一点可以由我国现有养老金制度的特点来加以解释,我国现行养老金制度在税收—待遇联动(即式(3)中的ρ=0)机制下完全可以进一步构建一个消除即期支付的额外方案。在这种情况下,基金制改革可以通过一次性降低缴费率完全将隐性税收、储蓄和债务显性化,但是对当前和后代的产出和福利并没有影响。鉴于在人们退休之前退休账户中储蓄不流动,这也代表了一种短视消费者的缴费计策。然而,这些结果也证明,现收现付养老金制度采用一种重要的保险和缴费制度过度补偿了消极的流动性影响。
因此,基于上述分析可知,不应以效率为由而倡导基金制改革。现收现付养老金制度为短视的消费者提供了一个重要的缴费计策,以及为不完全保险市场提供了保险机制。如果施行强制性税收—待遇联动机制的政策,那么就可以在没有基金制改革的情况下实现减少劳动供给扭曲行为这一政策目标。因此,下面将在养老金制度可以抵御收入风险的假定下讨论最优税收—待遇联动机制。
(四)最优税收—待遇联动机制对养老金制度运行效率的影响
上述分析已经指出,在现收现付养老金制度下,不需要通过实施根本的筹资政策改革,而是只需要通过简单地收紧缴费和待遇两者之间的联系,就可以减少边际税率对劳动供给的影响。近年来瑞典和意大利等国家已经遵循了这样的改革策略,并引入了所谓的名义缴费确定型养老金制度。为了加强缴费和养老金待遇之间的联系,前者在个人账户上登记并产生与实际工资增长率密切相关的收益。在退休后,考虑到账户中累积的养老金资产,以较新颖的精算法计算未来养老金待遇。由于个人的缴费与养老金待遇成比例,没有代内收入再分配,劳动与闲暇之间的扭曲不可避免地减少为利率和经济增长率之间的差额。
采用可计算一般均衡模型模拟研究的结果不仅支持向名义缴费确定型养老金制度发展,而且研究结果还表明提高税收会大大提高效率。但是,因为所有的收入波动最终都会随着退休而消失,如果收入不确定,增加税收也会降低养老金制度的风险分担属性。改变养老金制度的保险条款可能会增加劳动市场扭曲和减少税收—待遇联动机制效率。本文在一个特殊经济体中,即收入、寿命不确定性和流动性限制下分析了最佳的渐进性养老金计划,按照时间区分个人对商品和闲暇消费的选择,采用设定的不变替代弹性的效用函数,将跨期替代和风险规避分开。参照奥尔巴赫和科特里科夫提出的研究方法,假定相对风险规避系数为4,劳动力供给工资弹性为-0.03,补偿弹性为0.3。假定当人们去世时拥有的遗产为正且在活着的人中均匀分配,均匀分配的收益份额影响到制度改革的总效率。当均匀分配的收益份额增加时,个体经历的保险效应为正值,由于劳动力供给扭曲,激励效应为正值,由于预防性储蓄减少,流动性效应为负值,所以流动性限制会受到更大的影响。表4列出对于特定偏好结构和制度环境下其他均匀分配的收益份额的补偿性福利变化。
表4列出养老金累进性的效率估计结果。其中,第1行列出使用标准情况估计结果,第2行到第5行分别列出风险中性偏好、没有流动性约束、比例所得税和存在遗产情况下的估计结果。研究发现,只要养老金与工资正相关,那么保险效应将支配劳动力供给和流动性效应。对于ρ>1,随着工资和额外劳动供给扭曲上升,养老金下降,流动性约束增强,这对边际保险效应有较大影响。因此第1行列出效率随着均匀分配收益水平的上升而上升,直至ρ=1之后开始减小。就第2行列出的风险中性偏好下养老金制度改革的总效率而言,改革养老金制度导致效率逐渐下降。紧接着,再次做出风险厌恶假设,并假设没有流动性约束,效率增长总是高于各自的标准模拟。当然,最优养老金制度改革也取决于可能提供风险分担的经济体中的其他制度安排,例如,税收体制或者遗赠分配导致更多(更少)的风险分担,要求相应减少(增加)养老金制度保险条款。因此,表4最后两行给出当改变某些养老金制度安排时的总效率变化。当政府在初始均衡征收10%比例所得税时,相比于标准情况,保险收益随养老金累进性增加而增加。最后,考虑累进所得税规定,但假定在一代人中均匀分配遗产,与实际生产力无关。由于遗赠某种程度上提供了抵御收入冲击的保险,所以抑制了养老金累进性的保险收益,与标准状态相比,流动性限制不那么具有约束力。
本文认为这些结论并非暗示我国养老金制度应该向着均匀分配收益制度进行大范围改革。但需要再次强调,应对劳动力供给扭曲不应成为政府唯一的政策目标。可计算一般均衡模型研究结果清楚地表明,养老金制度可能在不确定世界中提供有效保障。正如我们所看到的那样,在标准模型中,在一定参数设定范围内,这些正的保险效应甚至可能支配着负的劳动力供应和流动性效应。因此,越来越依赖精算公平的养老金制度本身不包含任何养老金制度的代内再分配元素,使得维持养老金制度以防止老年贫困变得更加迫切。
四、研究结论、建议及展望
尽管近年来国内外有关学者使用具有世代交叠特征的动态可计算一般均衡模型研究了人口结构变动对养老金财务及制度改革的影响,但是并未全面系统考虑基金制改革的效率,也未考虑非理性等因素对基金制改革效率的影响。本文在已有研究基础上,对动态一般均衡模型进行延伸,在这一模型中引入人力资本、经济增长、借贷约束和退休等经济因素,研究结果表明:
第一,使用扩展后的动态可计算一般均衡模型研究发现,在完全竞争市场下,由现收现付制向基金制过渡有利于大多数人,但一旦考虑到不完善市场和个体的非理性行为,基金制改革提升的效率有限,并没有达到预期目标,而现收现付制更有利于提高社会总体效率。第二,即使在具有累进所得税制度的情况下,最好选择具有一些均匀分配收益的渐进式养老金制度改革方案,以便能够对代内养老风险进行分担。第三,研究结果表明,家庭仍可以提供长寿保险,通过将父母和子女的双面利他主义联系起来,以便公共政策引起的代际再分配(至少部分地)被生存者转移和被遗赠所抵消。第四,研究结果表明,通过引入一种能够直接反映跨代传递总体风险的机制,即最优税收—待遇联动机制,将养老金待遇以工资或资本回报为指数,将会改善长期福利。
基于上述研究结论,结合我国正在建设的社会统筹与个人账户相结合的公共养老金制度,为实现我国公共养老金制度可持续发展,建议如下:
一是改革我国个人账户养老金制度,使其适度体现代际和代内之间收入再分配功能。尽管实行基金积累的个人账户制度有利于激励参保者缴费,以应对人口老龄化对养老金可持续发展的挑战,也有利于为经济发展积累资金,但现实中基金积累制下个人账户制采用的是一种个人跨期收入再分配机制,缺少代际和代内之间收入再分配功能,无法真正反映社会养老保险的养老风险共担属性。基于本文的研究结论,可考虑将高收入缴费者死亡后留有的养老金个人账户遗产更多地在代内之间和代际再分配,以提高养老金资产运行效率。二是鼓励养老保障形式多样化。尽管社会养老保障制度可为广大工薪阶层提供基本生活保障,但考虑到不斷加剧的人口老龄化带给政府养老保障制度严峻的财政压力,以及不同收入阶层缴费能力不同引起的养老金待遇差异,建议政府应鼓励个人养老金来源多样化,养老保障形式多样化,出台一些优惠政策或便民措施,对于缴费能力较低的人,应更多依靠家庭子女负担一部分养老责任,政府也应大力发展社区养老。三是鼓励发展现收现付缴费确定型养老金制度,旨在实现人口老龄化背景下公共养老金制度可持续发展。我国统账结合的养老金制度规定用人单位缴纳的社会统筹养老金实行现收现付,但发放中并没有完全贯彻缴费确定型给付制度,而是较多参考了待遇确定型模式;而个人账户养老金实行的是基金积累的缴费确定型制度,但实际上个人账户经常被挪用,实为名义账户。因此,长远考虑下,为解决人口老龄化带来的养老压力,鼓励参保人多缴多得,进而提高养老金缴费水平,应该突出现收现付缴费确定型给付模式在我国统账结合养老金制度中的作用,大力发展名义缴费确定型养老金制度。
本研究还存在很多不足和需要进一步研究之处,对于未来养老金制度发展而言,有必要从以下两个方向作进一步研究,以取得富有成效的成果。
一是需要进一步探讨家庭作为一个决策单位和保险个体的作用。未来的研究工作需要区分夫妻双方共同决定婚姻和生育决策、劳动力供给和家庭生产对养老金制度发展的影响。在这样的框架中,基于模型结构的假设,可能抑制或加剧养老金制度的风险共担属性。
二是资本市场中引入总体风险是可计算一般均衡模型解决未来养老需求的方向。虽然已有理论研究已经考察了代际风险分担的潜在影响,但定量分析养老金制度在这种框架中的作用才刚刚开始。由于养老金制度完全基金制改革后年轻一代和老年一代之间不存在风险分担,考虑到长期中存在的资本存量的挤出效应,来自代际风险分担的福利收益占主导地位,那么在最优投资组合中实施低收益的现收现付养老金支付制度可能是最佳选择。他们能够证明在一个开放型经济体系中,对于风险厌恶者而言,养老金制度能够提高个人长期福利,然而,在封闭型经济体系中,资本存量的挤出效应可能主导风险分担机制的改善,模型中间接存在对冲总体风险,缺少对劳动力供给扭曲的效率评估和对代际风险分担带来的好处的研究。如果后者占主导地位,将进一步增强养老金制度改革的效率。
参考文献
[1] AUERBACH A J, KOTLIKOFF L J. Simulating alternative social security responses to the demographic transition[J]. National Tax Journal,1985, 38(2): 153-168.
[2] AUERBACH A J, KOTLIKOFF L J, HAGEMANN R, et al. The economic dynamics of an ageing population: The case of four OECD countries[J]. OECD Economic Studies, 1989,12(3): 97-130.
[3] 李方超,张成科,朱怀念.Heston模型下DC型养老金等价管理费用问题研究[J].中国管理科学,2019(12):11-21.
[4] 张勇.偿付能力、生命周期与养老金动态调整策略[J].金融研究,2019(9):57-74.
[5] 张燕婷,董克用,王丹.持续推进养老金制度建设,积极应对人口老龄化[J].中国行政管理,2020(5):58-62.
[6] 付渴,曹静.基于跳—扩散模型的DC型养老金时间一致最优投资策略的研究[J].经济数学,2020(2):24-36.
[7] BRSCH-SUPAN A, LUDWIG A, WINTER J. Ageing, pension reform and capital flows: A multi-country simulation model[J]. Economica, 2006, 73(292): 625-658.
[8] 王颖,李琦,孙梦珍.养老金积累制的战略时机选择与路径分析——基于两种老年抚养比交叉点的视角[J].保险研究,2019(8):98-112.
[9] 金博轶,闫庆悦,于文广.养老金统筹账户与个人账户最优组合策略研究[J].中国管理科学,2020(2):48-57.
[10] FEHR H, HABERMANN C. Risk sharing and efficiency implications of progressive pension arrangements[J]. The Scandinavian Journal of Economics, 2008, 110(2): 419-443.
[11] FEHR H. Computable stochastic equilibrium models and their use in pension and ageing research[J]. De Economist, 2010, 157(4): 359-416.
[12] KOTLIKOFF L J, SMETTERS K, WALLISER J. Mitigating America's demographic dilemma by pre-funding social security[J]. Journal of Monetary Economics, 2005, 54(2): 247-266.
[13] FEHR H, KINDERMANN F. Pension funding and individual accounts in economics with life-cyclers and myopes[J]. CESito Economic Studies, 2010, 56(3): 404-443.
[14] FUSTER L, IMROHOROGLU A, IMROHOROGLU S. Elimination of social security in a dynastic framework[J]. The Review of Economic Studies, 2007, 74(1): 113-145.
[15] OLOVSSON C. Quantifying the risk-sharing welfare gains ofsocialsecurity[J]. Journal of Monetary Economics, 2010, 57(3): 364-375.
[16] 杨钒.延迟退休对养老金可持续性影响研究[J].宏观经济研究,2020(5):91-101.
[17] 耿志祥,孙祁祥.延迟退休年龄、内生生育率与养老金[J].金融研究,2020(5):77-94.
[18] KRUEGER D. Public insurance against idiosyncratic and aggregate risk: The case of social security and progressive income taxation[J]. CESito Economic Studies, 2006, 52(2): 587-620.
[19] FEHR H, HABERMANN C, KINDERMANN F. Social security with rational and hyperbolic consumers[J]. Review of Economic Dynamics, 2008, 11(4): 884-903.
[20] NISHIYAMA S, SMETTERS K. Does social security privatization produce efficiency gains[J]. The Quarterly Journal of Economics, 2007, 122(4):1677-1719.
[21] BEETSMA R, BETTENDORF L, BROER P. The budgeting and economic consequences of ageing in the Netherlands[J]. Economic Modelling, 2003, 20(5): 987-1013.
(責任编辑:易晓艳)