石墨烯浸种处理对萝卜生长和品质的影响
2022-02-04李紫薇支彩艳雷振宇霍金仙赵建国
李紫薇,乔 俊,支彩艳,雷振宇,霍金仙,2,赵建国,2,3
石墨烯浸种处理对萝卜生长和品质的影响
李紫薇1,乔 俊1,3※,支彩艳1,雷振宇1,霍金仙1,2,赵建国1,2,3
(1. 山西大同大学化学与化工学院,大同 037009;2. 山西大同大学炭材料研究所,大同 037009;3. 石墨烯林业应用国家林业和草原局重点实验室,大同 037009)
为了揭示石墨烯浸种和处理对萝卜生长的影响,该研究开展石墨烯4个浓度处理萝卜种子和浇灌土壤,对萝卜发芽和田间生长影响试验,分析石墨烯浸种对萝卜种子发芽、植株生长生理及肉质根品质指标影响。结果发现,石墨烯浓度在20~100 mg/L范围内,对萝卜种子萌发均有促进作用,40 mg/L的石墨烯促进效果最显著;石墨烯施加浓度为40 mg/L时,在萝卜叶片生长旺盛期可显著提高叶片叶绿素含量,增强光合作用,提高植株对氮吸收能力,并促进植株增高;石墨烯能够提高萝卜肉质根产量3.6%~13.8 %,显著提高萝卜肉质根可溶性糖和维生素A含量。研究结果对促进萝卜生产和品质提高具有较大参考意义。
农作物;试验;石墨烯;生长;品质;萝卜
0 引 言
石墨烯(graphene)是一种新型的碳纳米材料,它是由碳原子组成并以sp2杂化轨道杂化而成的六角型呈蜂巢晶格的二维纳米片层材料[1]。石墨烯具有大的比表面积,是目前已知的强度最高、导电性、导热性最好的物质,被认为是一种革命性的材料,在材料学、能源、生物医学、药物传递、微纳加工等领域具有广阔的应用前景[2]。
近年来,随着石墨烯应用研究的不断深入和拓展,研究石墨烯对植物生长的影响,探讨其在农林业领域的应用受到关注[3-4]。越来越多的研究表明,石墨烯对植物生长的影响与石墨烯添加量有关,较高的添加量会对植物形成胁迫,抑制植物的生长[5-7],但适宜的浓度则会促进植物的生长,尤其是促进植物根系的生长,并最终提高植物的生物量。Liu等[8]发现5 mg/L石墨烯溶液对水稻侧根的数量、根鲜质量有明显的促进作用;胡晓飞等[9]研究发现,2.0 mg/L的石墨烯处理后的树莓组培苗,根长、根面积、根尖和分叉数提高了2倍;姚建忠等[10]发现,3.0 mg/L的石墨烯能促进欧洲山杨组培苗主根形成,并促进不定根数量增加;刘泽慧等[11]发现,20~25 mg/L的石墨烯能够促进蚕豆的总根长、根体积显著增加,且根瘤的数量和体积也显著增加。许多学者从石墨烯的结构、石墨烯处理后的植物生理以及转录组基因差异性表达等探索了石墨烯促进植物生长的机理。He等[12]研究表明,石墨烯凭借含氧官能团的亲水性促进了菠菜、香葱对水分的吸收和生长;Chen等[13]研究发现,适量石墨烯可提高盐碱环境苜蓿的叶绿素含量,降低丙二醛含量,显著促进紫花苜蓿生长;适量石墨烯可提高白榆的光合作用效率并促进根系生长[14];Guo等[15]研究表明,石墨烯显著增加了番茄根系生长素的含量并诱导根发育相关基因表达上调;Zhao等[16]发现,适量石墨烯可促进大豆根系生长,水杨酸、茉莉酸和脱落酸等激素含量提高,耐旱相关基因表达上调,显著提高了大豆的抗旱能力;Chen等[17]研究了石墨烯对48种植物根系生长的影响,根系转录组测序研究发现,石墨烯可诱导呼吸途径有关基因表达上调,增强根系细胞线粒体呼吸功能,从而促进植物根系生长。此外,也有研究表明适量石墨烯在促进作物生长、提高产量的同时还可改善作物的品质。蒋月喜等[18]在朝天椒定植后淋施0.35%的石墨烯溶液,发现可显著提高朝天椒维生素C、辣椒素的含量和产量;Younes等[19]发现,青椒和茄子叶面喷施适量石墨烯可激活光合活性,显著增加果糖、蔗糖和淀粉的含量;Park等[20]研究表明,适量石墨烯可促进西瓜根系生长,叶面积和叶片数增加,并促进果径和含糖量增加。因此,基于国内外关于石墨烯可显著促进各类植物根系生长、生物量增加乃至品质改善的研究报道,研究石墨烯对肉质根类蔬菜、经济作物生长的影响,探讨其在根部利用类作物种植中的应用潜力和价值,尤为值得关注。
萝卜(.L)为十字花科萝卜属的草本植物,是常见的食用肉质根类蔬菜作物,四季均适宜栽培。本研究以萝卜为供试材料,通过种子发芽和田间栽培试验,探讨石墨烯对萝卜生长发育全过程(包括种子萌发、植株生长、肉质根产量及品质等)的影响,以期为石墨烯在农业领域应用提供借鉴和参考。
1 材料与方法
1.1 试验材料
供试种子为“板叶大红袍”萝卜种子,河北高碑店市蔬菜研究中心提供。该品种萝卜外表皮为红色,直根肉质,生长期约90 d。该品种对土壤酸碱度适应范围较广,全国各地均有种植,在气候适宜的地区可四季栽培,是大众日常消费的蔬菜品种,产销量足。
石墨烯由山西大同大学炭材料研究所提供,石墨烯片层平均直径为40 nm,片层厚度约为3 nm,层数约为5层,为多层石墨烯。该石墨烯表面含有一定量的羧基和羟基官能团,可在水中稳定分散形成石墨烯溶胶。
1.2 试验方法
1.2.1 发芽试验
发芽试验中石墨烯浓度设置4个水平:0、20、40、100 mg/L,分别记为CK、G-20、G-40、G-100。选取大小均匀、籽粒饱满的萝卜种子300粒左右,用70%的乙醇溶液消毒2 min,消毒后用蒸馏水冲洗3~4次,再用蒸馏水浸泡2 h。选择直径为90 mm的玻璃培养皿,皿底铺双层滤纸,每个培养皿放置20粒萝卜种子,添加对应浓度的石墨烯溶液15 mL,置于恒温培养箱中培养7 d,培养箱温度为20~25 ℃,相对湿度为70%~80%,每个处理设置3个平行。每隔24 h统计一次发芽数以及胚根长度,统计7 d。
1.2.2 田间种植试验
田间试验于2021年6—9月在山西大同大学炭材料研究所试验田进行,小区面积为9 m×12 m。将萝卜种植区域平均划分为4个区域设置不同浓度水平试验,播种前将种子用对应浓度的石墨烯溶液浸泡2 h,以穴播的播种方式播种,每穴3粒。种植前起垄挖沟做畦,每个处理种植三畦(3次重复),行株距为57 cm×23 cm。将石墨烯与尿素和磷酸二氢钾混合配制为肥料,尿素和磷酸二氢钾浓度分别为3.0、1.0 g/L,石墨烯浓度则与发芽试验的石墨烯浓度相同。每一个穴用石墨烯溶液一周浇灌一次,肥料混合液一个月浇灌一次,一次均为0.5 L,石墨烯溶液共浇灌12次,肥料混合液共浇灌3次。常规种植方式施肥、翻地、播种、收获。期间浇水、除草、防治病虫害等同周边田间管理相同[21]。
1.3 测定指标与方法
1.3.1 萝卜发芽率及胚根长度
在种子发芽试验中,每天在相同时间内统计种子的发芽率,以胚根长度大于2 mm视为“发芽”,用毫米刻度尺测量种子胚根长度。
1.3.2 萝卜生物量及形态学指标
播种45 d随机取样,千分刻度尺测量株高,统计植株的叶片数,测定植株叶片最大长度、鲜质量。90 d后将萝卜整株挖出,将根系的土壤冲洗干净,保留完整根系,测定萝卜单根鲜质量及总产量。
1.3.3 萝卜叶片光合特性
播种45 d后用利用光合仪(CIRAS-3; PP Systems, USA)进行萝卜叶片光合特性的测定。选择晴朗无风、阳光充足的天气,对植株自上而下完全展开、绿色健康的第二片叶子进行测定。为减小系统误差,测定部位均选择叶片的中上部,且避开中央叶脉的位置进行。测定前仪器预热30 min,测定叶片的净光合速率(P)、蒸腾速率(T)、气孔导度(G)、胞间CO2浓度(C),分析植物水分利用效率(WUE=P/T)。每个处理3个重复。
1.3.4 萝卜生化指标及品质指标
分别在萝卜生长的幼苗期、叶片生长旺盛期、肉质根生长旺盛期以及贮藏休眠期对各处理植株叶片的叶绿素、氮含量测定。叶绿素含量的测定采用分光光度法[22];叶片氮含量的测定采用靛酚比色法[23]。萝卜收获后,对肉质根可溶性糖、维生素A的含量进行测定,可溶性糖含量的测定采用蒽酮比色法[24],维生素A含量的测定采用高效液相色谱法[25]。
所得数据使用WPS Office以及IBM SPSS Statistics软件进行各项数据分析(单因素显著差异性分析为≤0.05)。
2 结果与分析
2.1 石墨烯对萝卜种子萌发的影响
种子萌发是植物生长开端,会受到内部自身因素及外部因素影响[26]。由图1可知,经石墨烯溶液处理(20~100 mg/L)后萝卜种子的发芽率均高于对照,表明适宜石墨烯浓度可促进萝卜种子萌发。在整个发芽过程中,G-40处理萝卜种子的发芽率最高,其次是G-100和G-20。培养至7 d时,G-20、G-40、G-100处理萝卜种子发芽率比对照(CK)分别提高6.7%,26.7%和24.0%。
注:CK、G-20,G-40,G-100分别代表石墨烯浓度0、20、40、100 mg·L-1。下同。
种子胚根长度变化也是衡量种子发芽情况重要指标。从图2看出,不同浓度石墨烯处理萝卜种子的胚根长度均高于对照,G-40与G-100处理对萝卜种子胚根生长促进效果尤为显著。试验第3 天时,G-40与G-100处理萝卜胚根长度比对照分别提高49.1%、50.9%;7 d时G-40与G-100萝卜胚根长度比对照分别提高43.8%和37.5%,G-40与G-100间无显著性差异(>0.05)。整体上,石墨烯溶液处理对萝卜种子胚根生长影响与对发芽率影响趋势基本一致,结合发芽率,G-40处理(即石墨烯浓度为40 mg/L)对萝卜种子萌发促进效果最好。
吴金海等[27]研究发现5~100 mg/L氧化石墨烯处理可显著促进甘蓝型油菜种子的萌发,Khodakovsk等[28]和Zhang等[4]研究发现,石墨烯对西红柿种子发芽产生促进作用,可加速种子发芽过程,缩短发芽时间。本研究表明适量石墨烯对萝卜种子萌发具有促进作用,与上述研究结论一致。
注:不同字母代表不同处理之间差异显著(P<0.05)。下同。
2.2 石墨烯对萝卜植株生长和生理指标的影响
2.2.1 石墨烯对萝卜植株生长的影响
播种45 d时萝卜处叶片生长旺盛期,对不同处理萝卜生长统计结果列表1。株高方面,G-40>G-100>CK> G-20,其中G-40与CK间有显著性差异,其余无显著性差异。观察各处理的植株叶片数、最大叶片鲜质量和长度数据,发现各处理数据在统计学上无显著性差异。上述结果表明石墨烯浓度为40 mg/L时对萝卜植株生长有促进作用,表现在播种45 d时株高比对照提高24.5%,但对植株叶片生长促进作用不显著。
表1 不同浓度的石墨烯溶液对萝卜植株株高、叶片数、最大叶片鲜质量、叶片长度的影响
2.2.2 石墨烯对萝卜叶片光合作用的影响
光合作用是作物生长的重要代谢过程[29],光合作用强弱决定植株的生物量[30-31]。为分析石墨烯影响萝卜生长的生理原因,对播种45d后各处理叶片光合作用强度测定如表2所示。G-40光合作用各指标数值均最高,G-40处理萝卜P、T、G及C显著高于CK,分别提高275.6%,251.1%,214.5%和42.6%;G-100处理T、G显著高于CK,而P和C与CK无显著性差异。
水分利用效率(WUE)系指植物消耗单位水量生产出的同化量,是反映植物生长中能量转化效率的重要指标。分析各处理叶片的WUE值可知,G-20和G-40处理的叶片WUE高于CK,而G-100处理的WUE显著低于CK(表2),这表明适量石墨烯可提高萝卜叶片水分利用效率,促进植株能量转化和生长,而石墨烯施加浓度过高会对植物生长带来不利影响。
表2 不同浓度石墨烯溶液对萝卜植株光合作用的影响
注:P是净光合速率;T是蒸腾速率;C是气孔导度;C是胞间CO浓度;WUE是水分利用效率。
Note:Pis net photosynthetic rate;Tis transpiration rate;Cis stomata conductance;Cis internal cellular CO2concentration; WUE is water use efficiency.
气孔作为CO2和水汽进出的共同通道,调节着植物固碳和水分散失的平衡关系,但由于光合产物和水分的运输系统和方向不同,往往造成气孔对CO2和水汽扩散不同步,进而影响植物的水分利用效率[32]。本研究中G-40处理各项光合作用指标最高但WUE值低于G-20,这是由于G-40处理下胞间CO2浓度(C)值较G-20增加19.3%,C值升高将减弱蒸腾速率,同时伴随着WUE值升高[33-34],然而其气孔导度(C)较G-20增加202.8%,气孔是蒸腾过程中水蒸气由内到外的主要出口,影响着蒸腾作用,C值增加引起蒸腾速率的提升[35],综合C和C的影响最终导致G-40处理叶片的蒸腾速率(T)增加,降低了水分利用效率。
叶片叶绿素的含量与光合作用强度密切相关[36]。幼苗期(30 d)、叶片生长旺盛期(45 d)、肉质根生长旺盛期(65 d)以及贮藏休眠期(90 d)萝卜叶片叶绿素含量测定结果见图3。萝卜生长周期内各处理叶绿素含量都呈现先升高后降低趋势。叶片生长旺盛期(45 d)时,各处理叶绿素含量差异显著,其他时期差异补显著。播种45 d时,G-40处理的叶绿素含量最高,这与前文G-40处理的株高、光合作用指标在所有处理中数值最高的结果相一致。光合作用及叶绿素含量的数据进一步表明,适量的石墨烯能够提高萝卜叶片叶绿素含量,促进萝卜光合作用能力提高,进而促进萝卜生长。石墨烯促进植物叶片叶绿素含量提高,并促进植物生长,这与其他学者的研究结果一致[37-38]。
图3 不同浓度的石墨烯溶液对萝卜叶片叶绿素含量的影响
2.2.3 石墨烯对萝卜养分吸收及生理生化指标的影响
氮是植物细胞组成和功能代谢必不可少的元素[39],也是植物生长发育过程中需求最大的必须营养元素之一[40-41]。为评估石墨烯对萝卜生长的影响,萝卜生长期中对各处理萝卜叶片中氮(N)的含量测定见图4,发现各处理萝卜叶片中N的含量随着萝卜生长呈先增高后降低趋势。结果表明,G-40处理在萝卜叶片生长旺盛期(45 d)和肉质根生长旺盛期(65 d)均能促进植株对N的吸收,增加了植株体内N的含量,因而对萝卜生长产生促进作用,该结果也与前文株高、光合作用等研究结果相互印证。
图4 不同浓度的石墨烯溶液对萝卜叶片营养元素N含量的影响
有研究表明,石墨烯等碳纳米材料能够提高土壤对氮、磷、钾等元素的持留作用,并促进植物对养分元素的吸收。隋祺祺等[42]土柱淋溶试验发现,石墨烯能够显著减缓降水、灌溉等对土壤中氮磷钾的淋溶作用,减少养分元素的流失。高荣光等[43]研究表明,盆栽桃植株施用纳米碳后,桃植株叶、枝、根中,元素氮、钾、镁、钙、锰、铜、锌的含量均高于对照,并推测纳米碳的表面效应和小尺寸效应,能增强土壤对肥料的吸附,减少肥料流失、淋失。王小燕等[44]研究表明,纳米碳通过改变植株根系周围的水环境,提高根系活力,并提高土壤脲酶活性,且土壤脲酶活性增加是促进植物对氮素吸收的主要原因。
2.3 石墨烯对萝卜产量及品质的影响
2.3.1 石墨烯对萝卜产量的影响
从表3可知,石墨烯各处理的萝卜单根重量、单根长度虽略高对照,但无显著性差异。G-20、G-40和G-100的萝卜产量分别为比对照提高3.6%、13.8%和8.5%,表明适量石墨烯能够提高萝卜产量。结合前文发现石墨烯浓度对萝卜前期生长指标的影响与萝卜最终产量结果相一致。
国内外学者在石墨烯等碳纳米材料对作物产量影响方面有类似报道。赵娜等[45]研究表明施入纳米碳溶胶的玉米产量均高于不施溶胶处理。Chakravarty等[46]研究表明200 mg/L石墨烯能明显促进香菜和大蒜根、茎、叶、花和果实的生长,并最终促进产量提高。
表3 不同浓度石墨烯溶液对萝卜肉质根长度、质量以及产量的影响
2.3.2 石墨烯对萝卜品质的影响
蔬菜或作物品质也是农业领域关注的重点。萝卜肉质根可溶性糖含量和维生素是衡量其品质的重要指标[47],可溶性糖含量和维生素含量越多,萝卜的口感、营养价值更高,品质更好。由表4可知,石墨烯处理的萝卜的肉质根的可溶性糖和维生素A含量均有提高,G-20处理可溶性糖、维生素A含量与对照无显著性差异,G-40和G-100萝卜肉质根可溶性糖含量均值分别比对照提高54.0%和40.4%,萝卜肉质根维生素A含量比对照分别提高64.8%和39.5%。
表4 不同浓度石墨烯溶液对萝卜可溶性糖含量和维生素A含量的影响
3 结 论
本研究设置4个石墨烯浓度水平(0、20、40和100 mg/L),探讨石墨烯浓度对萝卜浸种萌发和田间生长的影响,得出如下结论:
1)石墨烯浓度在20~100 mg/L范围浸种能有效促进萝卜种子萌发,表现为发芽率和胚根长度显著增加,石墨烯浓度为40 mg/L时促进效果尤为显著。
2)石墨烯施加浓度为40 mg/L时,在萝卜叶片生长旺盛期可显著提高叶片叶绿素含量,增强光合作用,提高植株对氮的吸收能力,并促进植株增高。石墨烯浓度过高(100 mg/L)时,会降低叶片的水分利用效率,不利于植株生长。
3)施加石墨烯浓度在20~100 mg/L范围可提高萝卜肉质根产量3.6%~13.8%,当浓度为40 mg/L时,能显著提高肉质根可溶性糖和维生素A含量,改善萝卜口感,提升营养价值和品质。
综上,适宜浓度的石墨烯可以促进萝卜植株生长,提高产量和品质,将石墨烯用于农业生产可以提高经济效益,具有应用潜力。随着石墨烯材料制备生产技术和工艺的不断进步,石墨烯的价格必然会随之降低,这将为石墨烯在农业领域的规模化应用创造可能。此外,在将石墨烯用于农业生产之前,还需要对其生态环保性和食品安全等进行充分研究和评估。
[1] 刘霞. 石墨烯及其复合材料的制备与性能研究[D]. 北京:东华大学,2016.
Liu Xia. Preparation and properties of graphene based ceramics[D]. Beijing: Donghua University, 2016. (in Chinese with English abstract)
[2] 田甜,吕敏,田旸,等. 石墨烯的生物安全性研究进展[J]. 科学通报,2014,59(20):1927-1936.
Tian Tian, Lv Min, Tian Yang, et al. Progress in biological safety of graphene[J]. Science Bulletin, 2014, 59(20): 1927-1936. (in Chinese with English abstract)
[3] Anjum N A, Singh N, Singh M K, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (L.)[J]. Science of the Total Environment, 2014, 472: 834-841.
[4] Zhang M, Gao B, Chen J, et al. Effect of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research, 2015, 17(2): 1-8.
[5] Begum P, Fugetsu B. Induction of cell death by graphene in Arabidopsis thaliana () T87 cell suspensions[J]. Journal of Hazardous Materials, 2013, 260: 1032-1041.
[6] 刘顿,吕月玲,骆汉. 氧化石墨烯对紫穗槐种子萌发及幼苗生长的影响[J]. 种子,2022,41(1):14-18,37.
Liu Dun, Lv Yueling, Luo Han. Effects of oxidized graphene on seed germination and seedling growth of[J]. Seed, 2022, 41(1): 14-18, 37. (in Chinese with English abstract)
[7] Weng Y N, You Y, Lu Q, et al. Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings[J]. Environmental Pollution, 2020, 262: 114224.
[8] Liu S J, Wei H M, Li Z Y, et al. Effects of graphene on germination and seedling morphology in rice[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 2695-2701.
[9] 胡晓飞,赵建国,高利岩,等. 石墨烯对树莓组培苗生长发育影响[J]. 新型炭材料,2019,34(5):447-454.
Hu Xiaofei, Zhao Jianguo, Gao Liyan, et al. Effect of graphene on growth and development of raspberry tissue culture seedlings[J]. New Carbon Materials, 2019, 34(5): 447-454. (in Chinese with English abstract)
[10] 姚建忠,张占才,薛斌龙,等. 石墨烯对欧洲山杨组培苗不定根表观形态影响作用的研究[J]. 山西大同大学学报(自然科学版),2018,34(5):1-4.
Yao Jianzhong, Zhang Zhancai, Xue Binlong, et al. Effect of graphene on adventitious roots' of tissue culture seedlings of[J]. Journal of Shanxi Datong University(Natural Science Edition), 2018, 34(5): 1-4. (in Chinese with English abstract)
[11] 刘泽慧,陈志文,赵建国,等. 石墨烯对蚕豆生长发育的效应研究[J]. 首都师范大学学报(自然科学版),2020,41(5):33-39.
Liu Zehui, Chen Zhiwen, Zhao Jianguo, et al. Effect of graphene on the growth and development ofL.[J]. Journal of Capital Normal University (Natural Science Edition), 2020, 41(5): 33-39. (in Chinese with English abstract)
[12] He Y J, Hu R R, Zhong Y J, et al. Graphene oxide as a water transporter promoting germination of plants in soil[J], Nano Research, 2018, 11(4): 1928-1937.
[13] Chen Z, Wang Q Z. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (L.)[J]. Plant Physiology and Biochemistry, 2021, 163: 128-138.
[14] 张晓,曹慧芬,赵建国,等. 石墨烯对白榆扦插苗生长和生理生化特征的影响[J]. 山西农业大学学报(自然科学版),2020,40(4):97-103.
Zhang Xiao, Cao Huifen, Zhao Jianguo, et al. Effects of graphene on the physiological, biochemical characteristics and growth of elm (L.) cutting seedlings[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(4): 97-103. (in Chinese with English abstract)
[15] Guo X H, Zhao J G, Wang R W, et al. Effects of graphene oxide on tomato growth in different stages[J]. Plant Physiology and Biochemistry, 2021, 162: 447-455.
[16] Zhao L, Wang W, Fu X H, et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants[J]. Frontiers in Plant Science, 2022, 13: 810905.
[17] Chen Z W, Zhao J G, Qiao J, et al. Graphene-mediated antioxidant enzyme activity and respiration in plant roots[J]. ACS Agricultural Science & Technology, 2022, 2(3): 646–660.
[18] 蒋月喜,蒋哲,王晓国,等. 碳化石墨烯对朝天椒产量及其根区土壤养分和微生物群落结构的影响[J]. 南方农业学报,2022,53(5):1337-1347.
Jiang Yuexi, Jiang Zhe, Wang Xiaoguo, et al. Effects of carbonized graphene on yield, soil nutrient of rhizosphere and microbial community structure ofL[J]. Journal of Southern Agriculture, 2022, 53(5): 1337-1347. (in Chinese with English abstract)
[19] Younes N A, Dawood M F A, Wardany A A. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits ofL. andL.[J]. Chemosphere, 2019, 228: 318-327.
[20] Park S, Choi K S, Kim S, et al. Graphene oxide-assisted promotion of plant growth and stability[J]. Nanomaterials, 2020, 10(4): 758.
[21] 彭玉净,高进华,卞会涛,等. 黄腐酸钾对春萝卜生长及产量的影响研究[J]. 腐植酸,2016(1):12-15.
Peng Yujing, Gao Jinhua, Bian Huitao, et al. Effect of potassium fulvic acid potassium on growth and yield of spring radish[J]. Humic Acid, 2016(1): 12-15. (in Chinese with English abstract)
[22] 高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.
[23] 林桂范. 植物全氮快速测定靛酚比色法[J]. 北方园艺,1988(2):5-7.
Lin Guifan. Indiphenol colorimetry for rapid determination of total nitrogen in plants[J]. Northern Horticulture, 1988(2): 5-7. (in Chinese with English abstract)
[24] 张述伟,宗营杰,方春燕,等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化[J]. 食品研究与开发,2020,41(7):196-200.
Zhang Shuwei, Zong Yingjie, Fang Chunyan, et al. Optimization of anthrone colorimetric method for rapid determination of soluble sugar content in barley leaves[J]. Food Research and Development, 2020, 41(7): 196-200. (in Chinese with English abstract)
[25] 周远华,陈静,张立雯,等. HPLC法测定维生素AD微丸中维生素A棕榈酸酯的有关物质[J]. 中国药品标准,2022,23(1):40-45.
Zhou Yuanhua, Chen Jing, Zhang Liwen, et al. Determination of related substance of vitamin A palmitate in vitamin AD pellets by HPLC[J]. Drug Standards of China, 2022, 23(1): 40-45. (in Chinese with English abstract)
[26] 段代祥,刘俊华. 重金属铅胁迫对绿豆种子萌发及幼苗生长的抑制效应[J]. 种子,2021,40(1):84-87,98.
Duan Daixiang, Liu Junhua. Inhibitory effects of plumbum(Pb) stress on seed germination and seedling growth of mung bean[J]. Seed, 2021, 40(1): 84-87, 98. (in Chinese with English abstract)
[27] 吴金海,焦靖芝,谢伶俐,等. 氧化石墨烯处理对甘蓝型油菜生长发育的影响[J]. 基因组学与应用生物学,2015,34(12):2738-2742.
Wu Jinhai, Jiao Jingzhi, Xie Lingli, et al. Effects of graphene oxide on growth and development ofL.[J]. Genomics and Applied Biology, 2015, 34(12): 2738-2742. (in Chinese with English abstract)
[28] Khodakovskaya M, Vaňková R, Malbeck J, et al. Enhancement of flowering and branching phenotype in chrysanthemum by expression ofunder the control of a 0.821 kb fragment of the LEACO1 gene promoter. [J]. Plant Cell Reports, 2009, 28(9): 1351-1362.
[29] 赵黎明,郑殿峰,冯乃杰,等. 耕作与植物生长调节剂对优质粳稻产量及光合特性的影响[J]. 农业工程学报,2022,38(15):93-103.
Zhao Liming, Zheng Dianfeng, Feng Naijie, et al. Effects of tillage and plant growth regulators on the yield and photosynthetic characteristics of high-quality japonica rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 93-103. (in Chinese with English abstract)
[30] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98(4): 1222-1227.
[31] 邢阿宝,崔海峰,俞晓平,等. 光质及光周期对植物生长发育的影响[J]. 北方园艺,2018(3):163-172.
Xing Abao, Cui Haifeng, Yu Xiaoping, et al. Effects of different lights qualities and photoperiods on plant growth and development[J]. Northern Horticulture, 2018(3): 163-172. (in Chinese with English abstract)
[32] 王建林,于贵瑞,房全孝,等. 不同植物叶片水分利用效率对光和CO2的响应与模拟[J].生态学报,2008,28(2):525-533.
Wang Jianlin, Yu Guirui, Fang Quanxiao, et al. Responses of water use efficiency of nine plant species to light and CO2and it's modeling[J]. Acta Ecologica Sinica, 2008, 28(2): 525-533. (in Chinese with English abstract)
[33] Cohen I, Lichston J E, Macêdo C E C, et al. Leaf coordination between petiole vascular development and water demand in response to elevated CO2in tomato plants[J]. Plant Direct, 2022, 6(1): e371.
[34] Wu Y N, Zhong H X, Li J B, et al. Water use efficiency and photosynthesis ofleaves under drought stress through CO2concentration increase[J]. Journal of Plant Interactions, 2022, 17(1): 60-74.
[35] Xiong Z, Dun Z, Wang Y C, et al. Effect of stomatal morphology on leaf photosynthetic induction under fluctuating light in rice[J]. Frontiers in Plant Science, 2021, 12: 754790.
[36] 印玉明,王永清,马春晨,等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报,2021,37(12):169-180.
Yin Yuming, Wang Yongqing, Ma Chunchen, et al. Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 169-180. (in Chinese with English abstract)
[37] 曹慧芬,张晓,赵建国,等. 氧化石墨烯对银白杨扦插苗生长的影响[J]. 首都师范大学学报(自然科学版),2021,42(3):31-36.
Cao Huifen, Zhang Xiao, Zhao Jianguo, et al. Effects of graphene oxide on the growth ofL. cutting plantlets[J]. Journal of Capital Normal University (Natural Science Edition), 2021, 42(3): 31-36. (in Chinese with English abstract)
[38] 郭绪虎,赵建国,刘建霞,等. 不同浓度石墨烯对藜麦幼苗形态和生理特性的影响[J]. 山西农业科学,2021,49(9):1040-1044.
Guo Xuhu, Zhao Jianguo, Liu Jianxia, et al. Effects of graphene with different concentrations on morphological and physiological characteristics of quinoa seedlings[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(9): 1040-1044. (in Chinese with English abstract)
[39] 杨屹宇,崔爽,张芸香,等. 油松人工林新生枝叶碳氮磷含量及化学计量比对氮添加的响应[J]. 广西林业科学,2022,51(1):10-16.
Yang Yiyu, Cui Shuang, Zhang Yunxiang, et al. Responses of C, N and P contents and their stoichiometric ratios of new branches and leaves of Pinus tabulaeformis plantations to N addition[J]. Guangxi Forestry Science, 2022, 51(1): 10-16. (in Chinese with English abstract)
[40] 康静,韩国栋,任海燕,等. 不同降水条件下荒漠草原植物的养分含量及回收对增温和氮素添加的响应[J]. 西北植物学报,2019,39(9):1651-1660.
Kang Jing, Han Guodong, Ren Haiyan, et al. Responses of plant nutrient contents and resorption to warming and nitrogen addition under different precipitation conditions in a desert grassland[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(9): 1651-1660. (in Chinese with English abstract)
[41] 袁凯凯,卢苗,李慧敏,等. 基于U弦长曲率的番茄氮肥调控目标区间获取方法[J]. 农业工程学报,2022,38(11):188-196.
Yuan Kaikai, Lu Miao, Li Huimin, et al. Data acquisition of regulating target range for tomato nitrogen fertilizer using U-chord curvature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 188-196. (in Chinese with English abstract)
[42] 隋祺祺,焦晨旭,乔俊,等. 石墨烯溶胶配施化肥对土壤中养分流失的影响[J]. 水土保持学报,2019,33(1):39-44.
Sui Qiqi, Jiao Chenxu, Qiao Jun, et al. Effect of combined application of graphene solution and fertilizer on soil nutrient loss, 2019, 33(1): 39-44. (in Chinese with English abstract)
[43] 高荣广,赵鑫,高晓兰,等. 纳米碳对桃园土壤肥力及植株养分吸收的影响[J]. 落叶果树,2018,50(3):11-14.
Gao Rongguang, Zhao Xin, Gao Xiaolan, et al. Effects of nano carbon on soil fertility and plant nutrient uptake in peach orchard[J]. Deciduous Fruits, 2018, 50(3): 11-14. (in Chinese with English abstract)
[44] 王小燕,王燚,田小海,等. 纳米碳增效尿素对水稻田面水氮素流失及氮肥利用率的影响[J]. 农业工程学报, 2011,27(1):106-111.
Wang Xiaoyan, Wang Yi, Tian Xiaohai, et al. Effects of NMUrea on nitrogen runoff losses of surface water and nitrogen fertilizer efficiency in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 106-111. (in Chinese with English abstract)
[45] 赵娜,姚玉鹏,刘晓东,等. 不同用量纳米碳溶胶对玉米生长及产量的影响[J]. 北方农业学报,2017,45(6):62-66.
Zhao Na, Yao Yupeng, Liu Xiaodong, et al. Effects of different dosages of nano-carbon sol on growth and yield of maize[J]. Journal of Northern Agriculture, 2017, 45(6): 62-66. (in Chinese with English abstract)
[46] Chakravarty D, Erande M B, Late D J. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants[J]. Journal of the Science of Food and Agriculture, 2015, 95(13): 2772-2778.
[47] 肖时运,刘强,荣湘民,等. 不同施氮水平对莴苣产量、品质及氮肥利用率的影响[J]. 植物营养与肥料学报,2006(6):913-917.
Xiao Shiyun, Liu Qiang, Rong Xiangmin, et al. Effects of N applying rates on yield, quality ofand the N use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2006(6): 913-917. (in Chinese with English abstract)
Effects of graphene soaking and treatment on radish growth and quality
Li Ziwei1, Qiao Jun1,3※, Zhi Caiyan1, Lei Zhenyu1, Huo Jinxian1,2, Zhao Jianguo1,2,3
(1.,037009,; 2.,037009,; 3.,037009,)
Graphene is a new type of carbon nanomaterial with a broad application prospect in modern agriculture in recent years. Most studies have reported that the effect of graphene on the plant growth is closely related to the amount of added graphene. An appropriate concentration can promote the growth of plants, especially the growth of plant roots, and ultimately increase the biomass of plants. However, the high amount of graphene can inhibit the growth of plants. Therefore, it is very necessary to clarify the influence of graphene on the growth and quality of various crops with the great economic value of roots, in order to explore the application potential and value. Taking the radish (a popular fleshy root vegetable crop) as the research object, this study aims to reveal the influence of graphene soaking and treatment on the growth and quality of some root-utilizing crops. A scientific basis was also provided for the graphene application in the high-efficiency and high-quality cultivation of radish. Four concentrations of graphene (0, 20, 40, and 100 mg/L) were used to treat the radish seeds and irrigate soil. An analysis was then made on the effects on the radish seed germination and field planting. In the seed germination experiment, the germination rate of radish seeds was counted to measure the bacon length, in order to characterize the effect of graphene on the radish seed germination. In the field planting experiment, the effect of graphene on the radish growth was evaluated to measure the plant height, leaf number, leaf fresh weight, and leaf length. Some photosynthetic parameters were measured to calculate the leaf Water Use Efficiency (WUE), leaf nitrogen content, fleshy root yield and weight, soluble sugar and vitamin A content, further to comprehensively evaluate the effect of graphene on the radish yield and quality. The results showed that the concentration of graphene in the range of 20-100 mg/L was greatly promoted the germination of radish seeds, where the 40 mg/L graphene presented the most significant effect. Furthermore, the growth of radish plants was significantly improved, when the concentrations of graphene were 20 and 40 mg/L in the field experiment. There was an increase in the chlorophyll content, enhanced photosynthesis, and the leaf WUE. Among them, the WUE referred to the light and function that produced by the unit transpiration water consumption of leaves. The higher WUE value indicated the stronger drought resistance of plants. Specifically, there was the higher WUE of radish leaves that treated with 20 and 40 mg/L graphene, whereas the lower with the 100 mg/L graphene, compared with the control. All graphene treatments were promoted the absorption of N by plants in the main growth and development stage of radish. A leading role of N component was found in the plant life activities, crop yield, and quality, particularly in many important organic compounds, such as the enzymes and protein, nucleic acids, vitamins, alkaloids, and plant hormones. Therefore, the graphene was applied to increase the yield of radish fleshy roots by 3.6%-13.8%. There was also an increase in the contents of soluble sugar and vitamin A. The soluble sugar was the direct product of plant photosynthesis for the normal physiological activities and functions of cells in the plant carbon metabolism. The main process was dominated by the plant growth and development, yield and quality. Vitamin A was also closely related to the plant growth and cell division. Consequently, the graphene with the appropriate concentration can be expected to promote the radish seed germination and plant growth. As such, the absorption of nutrients can also be improved in the radish plant for the high yield and quality. Anyway, the graphene has great an application potential in the high-efficiency and high-quality cultivation of radish in agricultural production.
crops; experiment; graphene; growth; quality; radish
10.11975/j.issn.1002-6819.2022.19.010
S529
A
1002-6819(2022)-19-0087-07
李紫薇,乔俊,支彩艳,等. 石墨烯浸种处理对萝卜生长和品质的影响[J]. 农业工程学报,2022,38(19):87-93.doi:10.11975/j.issn.1002-6819.2022.19.010 http://www.tcsae.org
Li Ziwei, Qiao Jun, Zhi Caiyan, et al. Effects of graphene soaking and treatment on radish growth and quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 87-93. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.010 http://www.tcsae.org
2022-08-03
2022-09-21
国家自然科学基金项目(52071192);中央预算内投资项目(晋发改审批发〔2021〕118号);大同市重点研发项目(2019023)
李紫薇,研究方向为碳纳米材料对植物生长的影响。Email:1750252141@qq.com
乔俊,博士,副教授,研究方向为环境化学、碳纳米材料对环境影响。Email:qiaojun_nk@163.com