香豆素类化合物抗肿瘤机制的研究进展
2022-01-23黄思思周芊芊罗婷谢伟全
黄思思 周芊芊 罗婷 谢伟全
摘 要 香豆素类化合物是传统的中草药成分,在自然界中普遍存在。近年来,其抗肿瘤作用得到了广泛的关注。研究表明,香豆素类化合物可通过诱导肿瘤细胞凋亡、阻滞细胞分裂周期、抑制肿瘤血管生成及肿瘤细胞迁移和侵袭、抗氧化以及调控多种蛋白和酶的活性等机制发挥抗肿瘤作用。本文综述了近年来香豆素类化合物抗肿瘤机制的研究进展,以期为香豆素类化合物的进一步研究和开发提供理论基础和依据。
关键词 香豆素 抗肿瘤 机制
中图分类号:R965 文献标志码:A 文章编号:1006-1533(2022)01-0070-05
基金项目:湖南省自然科学基金项目(2019JJ40256)、2021年湖南省大学生创新创业训练计划项目(S202110555252)、2019年湖南省大学生创新创业训练计划项目(S201910555022)
Research progress in anti-cancer mechanism of coumarins
HUANG Sisi1, ZHOU Qianqian1, LUO Ting1, XIE Weiquan1,2
(1. School of Pharmacy, University of South China, Hengyang 421001, China; 2. School of Pharmacy, Guilin Medical University, Guilin 541001, China)
ABSTRACT Coumarins are traditional herbal ingredients that are commonly found in nature. In recent years, their anti-tumor effects have received widespread attention. Researches have shown that coumarins exert anti-tumor effects through inducing apoptosis, blocking cell cycle, inhibiting tumor angiogenesis, tumor cell migration and invasion and antioxidation, and regulating the activities of various proteins and enzymes. This article reviews the recent research progress in the anti-tumor mechanism of coumarins so as to provide theoretical basis for the further research and development of coumarins.
KEy wORDS coumarins; anti-tumor; mechanism
据全球最新统计数据显示,2020年全球约有1 930万例新增癌症病例和近1 000万例癌症死亡病例[1],癌症的发病率和死亡率逐年上升,已成为威胁人类健康的主要原因之一。在恶性肿瘤的三大疗法中,药物治疗占有重要的地位。然而,大部分抗肿瘤药物作用途径单一,且在杀灭癌细胞的同时,也会对正常细胞造成损伤,使其在目前的临床应用中存在一定的局限性。因此,寻找高效低毒的抗肿瘤药物具有重要意义。
近年来,由于香豆素类化合物分子量小、生物利用度高、对人体的不良反应少且能通过多种机制和途径发挥抗肿瘤作用而引起学者们的广泛关注。香豆素类化合物是一类以苯骈α-吡喃酮为母核的天然化合物,广泛存在于蛇床子、秦皮、补骨脂、白芷、独活、前胡、茵陈等中药材中。依据取代基在α-吡喃酮环上位置的不同,可将其分为简单、呋喃、吡喃和其他香豆素类化合物。香豆素类化合物的抗凝血、抗炎、抗菌、抗氧化、抗癌等多种生物活性功能已被证实[2]。大量研究表明,其在乳腺癌、前列腺癌、宫颈癌、结直肠癌、黑色素瘤、肾细胞癌、肺癌、肝癌、白血病等多种癌症中均表现出显著的抗肿瘤活性[3-4]。现就香豆素类化合物抗肿瘤机制的研究进展进行综述。
1 香豆素类化合物抗肿瘤作用机制
1.1 诱导肿瘤细胞凋亡
细胞凋亡有三条途径:①内源性途径,即线粒体凋亡通路;②外源性途径,即死亡受体(DR)信号通路;③内质网通路。多种香豆素衍生物被证实能通过上述途径诱导肿瘤细胞凋亡。Perumalsamy等[5]发现,苯乙烯双香豆素(SSBC)能显著诱导胃腺癌AGS细胞的凋亡,并推测SSBC通过内源性途径下调Bcl-2、上调Bax和细胞色素C的表达发挥作用。研究表明一种倍半萜香豆素GBA能通过激活半胱天冬酶(caspases)和DR5来增强肿瘤坏死因子相关的凋亡诱导配体(TRAIL)诱导的非小细胞肺癌H460/R细胞凋亡[6]。已证明补骨脂素可通过激活内质网应激信号通路诱导肝癌SMMC7721细胞凋亡[7]。
1.2 阻滞细胞分裂周期
细胞周期是细胞生命活动的基本过程,包括有丝分裂间期(G1、S、G2期)和有丝分裂期(M期)。香豆素类化合物可在癌细胞分裂周期的不同阶段发挥细胞毒性作用而阻滞细胞分裂,如伞形花内酯可将口腔癌KB细胞的细胞周期阻滞在G0/G1期[8];7,8-二羥基-3-(4-硝基苯基)香豆素可将肝癌HepG2细胞的细胞周期进程阻滞在S期[9];东莨菪素可触发宫颈癌HeLa细胞的G2/M细胞周期阻滞而发挥抗癌作用[10]。
参与细胞周期调控的分子主要有细胞周期蛋白(cyclin)、细胞周期蛋白依赖性激酶(CDK)和细胞周期蛋白依赖性激酶抑制剂(CKI)三大类。研究发现,香豆素类化合物对肿瘤细胞周期的阻滞作用主要与cyclin和CDK有关。Park等[11]用蛇床子素处理乳腺癌BT-474和MCF-7细胞后,发现cyclin D1、cyclin E1、CDK2、CDK6的表达均显著降低,表明蛇床子素在两种不同类型的乳腺癌细胞系中均可通过调节细胞周期相关因子的表达诱导细胞周期阻滞。
1.3 抑制肿瘤血管生成
肿瘤组织由于氧气和营养物质匮乏,需形成新生血管供其生长增殖。促血管生成因子和抗血管生成因子之间的不平衡驱动肿瘤组织异常的血管生成,这种不平衡主要是由血管内皮生长因子(VEGF)的过度产生所引起[12]。香豆素可通过调控VEGF表达发挥抗血管生成作用。Park等[13]发现,秦皮乙素能通过抑制VEGF-2磷酸化阻断血管内皮细胞中的信号传递,从而显著抑制VEGF诱导的血管生成。Kim等[14]证明,异紫花前胡内酯可抑制由VEGF-A介导的内皮细胞增生,发挥对癌症的防治效果。
1.4 抑制肿瘤细胞迁移和侵袭
细胞迁移是建立和维持细胞生物组织的基础,而异常的细胞迁移通常与多种疾病的发生发展有关,如恶性癌细胞扩散等[15]。在肿瘤细胞迁移与侵袭方面,研究较多的是抑制基质金属蛋白酶(MMP)的表达和上皮-间充质转化(EMT)过程。MMP是降解细胞外基质成分的重要酶,研究发现,香豆素类化合物能通过抑制MMP2和MMP9的表达来抑制肿瘤细胞的迁移和侵袭[16-17]。此外,天然香豆素类化合物可调控肿瘤细胞的EMT过程。如在肺癌A549细胞中,秦皮乙素能通过下调波形蛋白(vimentin)和Snail蛋白的表达,上调钙黏附蛋白E(E-cadherin)的表达来调控EMT[18],蛇床子素可通过下调NF-kB-Snail通路抑制转化生长因子-b(TGF-b)诱导的EMT[19]。
1.5 抗氧化
在肿瘤发生的初始阶段,由于肿瘤细胞的高代谢使活性氧(ROS)水平显著升高,ROS可通过加氢或去氢对碱基对进行修饰,从而诱导DNA链断裂或DNA交联引发基因突变,肿瘤细胞因此进入无限分裂过程[20]。香豆素及其衍生物是强效的活性氧自由基清除剂。其抗氧化活性可能与其结构和黄酮类、二苯甲酮类化合物相似有关,此种结构可通过结合过渡金属离子抑制由芬顿反应产生的羟自由基和过氧化氢[21]。此外,由于电子在分子中的离域作用,香豆素类化合物中的羟基还可为自由基提供氢原子[22],伞型花内酯、秦皮乙素、瑞香素和东莨菪素等具有酚羟基的结构,是天然的抗氧化剂[23]。Moustafa等[24]从茶饮醇中提取到一种结构罕见的香豆素类化合物,并证明其能显著抑制活性氧的产生,发挥对肺癌H23细胞的细胞毒作用。
1.6 调控多种蛋白和酶的活性
①抑制环氧合酶2(COX-2)活性:Lu等[25]设计了一系列香豆素衍生物,并表明引入酰基腙和氯香豆素得到的化合物可作为一种高效的选择性COX-2抑制剂逆转前列腺素E2(PGE2)诱导的癌细胞进展。②抑制端粒酶活性:Lv等[26]合成了一系列2-苯基嘧啶香豆素衍生物,其中大部分可抑制端粒酶活性而影响肿瘤细胞增殖。③抑制碳酸酐酶(CA)活性:Meleddu等[27]合成了一系列香豆素类化合物,并证明其可抑制CA Ⅵ和CAⅦ阻滞肿瘤发展进程。④抑制芳香化酶活性:Ramdani等[28]合成的香豆素类化合物4HC可抑制芳香化酶的活性,诱导乳腺癌细胞的凋亡。⑤抑制拓扑异构酶活性:Konko?ová等[29]设计并合成的含有他克林和香豆素药效基团的化合物均可抑制拓扑异构酶Ⅰ的活性从而发挥抗癌作用。⑥抑制15-脂氧合酶-1(15-LOX-1)的活性:Hosseinymehr等[30]发现一种香豆素的异戊基衍生物能够抑制15-LOX-1活性从而诱导前列腺癌细胞凋亡。⑦抑制热休克蛋白90(HSP90):Bai等[31]合成的一种新型香豆素吡唑啉衍生物DPB能抑制HSP90的活性并能诱导肺癌A549细胞凋亡。⑧抑制单羧酸转运蛋白(MCT)表达:Ji等[32]合成了一系列以香豆素为骨架的衍生物,证明其可作为MCT1的抑制剂使MCT1高表达的宫颈癌Hela细胞和大肠癌HCT116细胞凋亡。⑨抑制类固醇硫酸酯酶(STS)活性:一种新型香豆素化合物可作为STS抑制剂发挥抗肿瘤作用[33]。
1.7 其他机制
①诱导肿瘤细胞自噬:用新型东莨菪素衍生物SC-Ⅲ3处理肝癌HepG2细胞后可表现出自噬诱导作用[34]。②逆转耐药性:与单用顺铂相比,顺铂联合蛇床子素可显著降低转录相关因子2(NRF2)在耐药的CDDP宫颈癌细胞中的表达,逆转耐药的宫颈癌细胞对顺铂化疗的耐药性[35]。③雄激素受体拮抗作用:伞形花内酯衍生物可作为雄激素受体拮抗剂发挥对前列腺癌和乳腺癌的潜在治疗作用[36]。
2 展望
香豆素类化合物作为极具潜力的抗癌药物,其抗癌机制涉及癌症通路的多个方面,对大部分癌症有效,且不良反应较少。目前,基于对高效低毒的抗肿瘤药物的迫切需要,加之香豆素类化合物结构较为简单,易于进行化学合成和修饰,一些香豆素类化合物正在被开发和筛选为抗癌药物,如以香豆素为基础的irosustat作为第一代不可逆类固醇硫酸酯酶抑制剂已经完成了Ⅱ期临床试验[37],揭示了香豆素衍生物作为新型抗癌药物的潜力。
随着香豆素类化合物应用于癌症治疗的研究不断深入,学者们对香豆素类化合物提出了新的构想。近年来,香豆素与其他抗癌药效团的杂合或偶联被广泛研究,与母药相比,杂合分子具有克服交叉耐药、减少不良反应、提高疗效和特异性的潜力,如香豆素-青蒿素杂合、香豆素-三唑类杂合等,均证明香豆素杂合物是开发新型抗癌化療药物的有效骨架,可用于控制或甚至根除癌症,这为发现新的抗癌候选药物提供可能[38-39]。根据其作用机制,基于香豆素骨架的杂合物被广泛设计成抗癌药物。例如香豆素-鬼臼毒素杂合物能选择性抑制拓扑异构酶Ⅱb而发挥对多种癌细胞株的细胞毒性作用[40];三苯基乙烯-香豆素杂合物通过降低VEGF诱导的血管生成来抑制肿瘤进展[41]等。然而,我国对香豆素类化合物的抗肿瘤活性研究起步较晚,对其抗肿瘤作用机制的研究尚不完全,构效关系的研究尚不全面,导致其临床应用具有一定的局限性。因此,需要对香豆素类化合物进行更系统、更深入的研究,进一步阐明其抗肿瘤机制,总结其结构特点与活性和毒性的关系,从而更好地为开发抗肿瘤药物提供指导。
參考文献
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin. 2021, 71(3): 209-249.
[2] Annunziata F, Pinna C, Dallavalle S, et al. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities[J]. Int J Mol Sci, 2020, 21(13): 4618.
[3] Venkata Sairam K, Gurupadayya BM, Chandan RS, et al. A review on chemical profile of coumarins and their therapeutic role in the treatment of cancer[J]. Curr Drug Deliv, 2016, 13(2): 186-201.
[4] Ahmed S, Khan H, Aschner M, et al. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects[J]. Int J Mol Sci, 2020, 21(16): 5622.
[5] Perumalsamy H, Sankarapandian K, Veerappan K, et al. In silico and in vitro analysis of coumarin derivative induced anticancer effects by undergoing intrinsic pathway mediated apoptosis in human stomach cancer[J]. Phytomedicine, 2018, 46: 119-130.
[6] Kim YH, Shin EA, Jung JH, et al. Galbanic acid potentiates TRAIL induced apoptosis in resistant non-small cell lung cancer cells via inhibition of MDR1 and activation of caspases and DR5[J]. Eur J Pharmacol, 2019, 847: 91-96.
[7] Wang X, Peng P, Pan Z, et al. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells[J]. Biol Res, 2019, 52(1): 34.
[8] Vijayalakshmi A, Sindhu G. Umbelliferone arrest cell cycle at G0/G1 phase and induces apoptosis in human oral carcinoma(KB) cells possibly via oxidative DNA damage[J]. Biomed Pharmacother, 2017, 92: 661-671.
[9] Musa MA, Gbadebo AJ, Latinwo LM, et al. 7,8-Dihydroxy-3-(4-nitrophenyl) coumarin induces cell death via reactive oxygen species-independent S-phase cell arrest[J]. J Biochem Mol Toxicol, 2018, 32(12): e22203.
[10] Tian Q, Wang L, Sun X, et al. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signaling pathway[J]. J BUON, 2019, 24(3): 997-1002.
[11] Park W, Park S, Song G, et al. Inhibitory effects of osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress[J]. Nutrients, 2019, 11(11): 2777.
[12] Jászai J, Schmidt MHH. Trends and challenges in tumor antiangiogenic therapies[J]. Cells, 2019, 8(9): 1102.
[13] Park SL, Won SY, Song JH, et al. Esculetin inhibits VEGFinduced angiogenesis both in vitro and in vivo[J]. Am J Chin Med, 2016, 44(1): 61-76.
[14] Kim JH, Kim JK, Ahn EK, et al. Marmesin is a novel angiogenesis inhibitor: regulatory effect and molecular mechanism on endothelial cell fate and angiogenesis[J]. Cancer Lett, 2015, 369(2): 323-330.
[15] Trepat X, Chen Z, Jacobson K. Cell migration[J]. Compr Physiol, 2012, 2(4): 2369-2392.
[16] Jamialahmadi K, Salari S, Alamolhodaei NS, et al. Auraptene inhibits migration and invasion of cervical and ovarian cancer cells by repression of matrix metalloproteinases 2 and 9 activity[J]. J Pharmacopuncture, 2018, 21(3): 177-184.
[17] Wu MH, Lin CL, Chiou HL, et al. Praeruptorin A inhibits human cervical cancer cell growth and invasion by suppressing MMP-2 expression and ERK1/2 signaling[J]. Int J Mol Sci, 2017, 19(1): 10.
[18] Li H, Wang Q, Wang Y, et al. Esculetin inhibits the proliferation of human lung cancer cells by targeting epithelial-to-mesenchymal transition of the cells[J]. Cell Mol Biol (Noisy-le-grand), 2019, 65(7): 95-98.
[19] Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF b-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated snail activation in lung cancer A549 cells[J]. Cell Adh Migr, 2017, 11(5/6): 464-475.
[20] Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer[J]. Redox Biol, 2019, 25: 101084.
[21] Farombi EO, Nwaokeafor IA. Anti-oxidant mechanisms of kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats[J]. Clin Exp Pharmacol Physiol, 2005, 32(8): 667-674.
[22] Sharma SD, Rajor HK, Chopra S, et al. Studies on structure activity relationship of some dihydroxy-4-methylcoumarin antioxidants based on their interaction with Fe(Ⅲ) and ADP[J]. Biometals, 2005, 18(2): 143-154.
[23] Lin HC, Tsai SH, Chen CS, et al. Structure-activity relationship of coumarin derivatives on xanthine oxidaseinhibiting and free radical-scavenging activities[J]. Biochem Pharmacol, 2008, 75(6): 1416-1425.
[24] Moustafa ES, Swilam NF, Ghanem OB, et al. A coumarin with an unusual structure from Cuphea ignea, its cytotoxicity and antioxidant activities[J]. Pharmazie, 2018, 73(4): 241-243.
[25] Lu XY, Wang ZC, Ren SZ, et al. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis[J]. Bioorg Med Chem Lett, 2016, 26(15): 3491-3498.
[26] Lv N, Sun M, Liu C, et al. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents[J]. Bioorg Med Chem Lett, 2017, 27(19): 4578-4581.
[27] Meleddu R, Deplano S, Maccioni E, et al. Selective inhibition of carbonic anhydrase Ⅳ and Ⅶ by coumarin and psoralen derivatives[J]. J Enzyme Inhib Med Chem, 2021, 36(1): 685-692.
[28] Ramdani LH, Talhi O, Decombat C, et al. Bis(4-hydroxy-2H-chromen-2-one) coumarin induces apoptosis in MCF-7 human breast cancer cells through aromatase inhibition[J]. Anticancer Res, 2019, 39(11): 6107-6114.
[29] Konko?ová E, Hudá?ová M, Hamu?aková S, et al. Tacrinecoumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines[J]. Molecules, 2021, 26(4): 1133.
[30] Hosseinymehr M, Matin MM, Sadeghian H, et al. 8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity[J]. Anticancer Drugs, 2016, 27(9): 854-862.
[31] Bai SY, Dai X, Zhao BX, et al. Discovery of a novel fluorescent HSP90 inhibitor and its anti-lung cancer effect[J]. Rsc Advances, 2014, 4(38): 19887-19890.
[32] Ji H, Tan Y, Gan N, et al. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors[J]. Bioorg Med Chem, 2021, 29: 115870.
[33] Da?ko M, Demkowicz S, Biernacki K, et al. Novel steroid sulfatase inhibitors based on N-thiophosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates[J]. Drug Dev Res. 2019, 80(6): 857-866.
[34] Zhao P, Dou Y, Chen L, et al. SC-Ⅲ 3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria[J]. Fitoterapia, 2015, 104: 31-40.
[35] Su J, Zhang F, Li X, et al. Osthole promotes the suppressive effects of cisplatin on NRF2 expression to prevent drugresistant cervical cancer progression[J]. Biochem Biophys Res Commun, 2019, 514(2): 510-517.
[36] Kandil S, Westwell AD, McGuigan C. 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer[J]. Bioorg Med Chem Lett, 2016, 26(8): 2000-2004.
[37] Song F, Huo X, Guo Z. Anti-breast cancer potential of natural and synthetic coumarin derivatives[EB/OL]. (2021-03-03)[2021-03-19]. https://pubmed.ncbi.nlm.nih.gov/33655862/.
[38] Zhang L, Xu Z. Coumarin-containing hybrids and their anticancer activities[J]. Eur J Med Chem, 2019, 181: 111587.
[39] Song XF, Fan J, Liu L, et al. Coumarin derivatives with anticancer activities: an update[J]. Arch Pharm (Weinheim), 2020, 353(8): e2000025.
[40] Hao SY, Feng SL, Wang XR, et al. Novel conjugates of podophyllotoxin and coumarin: synthesis, cytotoxicities, cell cycle arrest, binding CT DNA and inhibition of Topo Ⅱb[J]. Bioorg Med Chem Lett, 2019, 29(16): 2129-2135.
[41] Cui N, Lin DD, Shen Y, et al. Triphenylethylene-coumarin hybrid tch-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis[J]. Anticancer Agents Med Chem, 2019, 19(10): 1253-1261.