APP下载

八种方法求解一道希望杯经典题

2021-12-26余铁青

数理化解题研究 2021年34期
关键词:对称轴一题思路

余铁青

(广东省中山市桂山中学 528463)

一、问题提出

一题多解没有唯一和固定的模式,教师可以通过纵横对比发散、知识串联、综合沟通等手段,由一题引发多种解答方法,为学生构建完善的知识体系.教师可以引导学生从不同角度入手,用不同的解答方法完成解题,并以此来帮助同学们更加深刻地理解数学的本质概念,掌握试题解答的思路与方法,帮助学生体会数学的多样美感,激发数学学习兴趣,拓宽学生思维的广阔度.

二、实例分析

题目(第九届希望杯全国数学邀请赛高一试题)若二次函数f(x)=ax2+bx,恒有f(x1)=f(x2)(x1≠x2),求f(x1+x2)的值.

策略1利用已知条件,直接带入化简,常规操作.

另一方面:f(x1+x2)=a(x1+x2)2+b(x1+x2)=(x1+x2)[a(x1+x2)+b],所以f(x1+x2)=0.

评注解数学题是有一定模式的,各种不同类型的题目有相应的基本解题策略,这就是常说的“套路”,实际上就是我们讲的“通性通法”.当学生在测试中面对一道试题的时候,如果不能很快思考出最优的策略,那么切不可忽略本源,即常见常用的解题思路,在时间不充足的情况下快速找到解决问题的策略是关键.毕竟时间有限,先得分,考完之后再进行反思优化是提高的必由之路,只会机械记住套路,甚至背套路是万万不提倡的,因为这会完全丧失解题的灵性.

策略2 进行代数运算时,适当进行变形配方.

又因为x1≠x2,所以f(x1+x2)=0.

评注该解法使用配方法改变了代数式的原有结构,从一个要求的结论出发,整理配凑出我们希望出现的结构,再利用整体代换的思想直接得出结果,而这种思维是在日常学习中要着重巩固的,不仅在该题有着很好的应用,在其它不等式等相关试题中的应用也是十分广泛的,所以工具越多,解题越从容.

策略3联想函数对称轴,利用二次函数性质.

评注函数诸多性质中,笔者最为推崇对称性,这是数学美学的最浅显的外在表征,当然在此处不过多去讨论奇偶性、单调性、周期性等.此解法有诸多巧合重叠,从函数对称轴出发,结合离函数对称轴距离相等的自变量所对应函数值相等这一结论使得对称之美展现得淋漓尽致!其中,在2017年新课标Ⅲ卷理11中的应用亦是美妙至极.

策略4 构造方程的根结合韦达定理.

评注实际上,如果不设f(x1)=f(x2)=-c,直接将x1,x2代入f(x)的解析式得到方程组,亦可求得所要结果.这样写仅仅是为了和学生平时所认知的一元二次方程形式进行统一,做这样的假设形式其实就是最近发展区理论,这能够很好地和学生所固有的认知契合,大家很容易接受,能够有效提高教学效率.

策略5 利用抽象函数的广义对称性质.

评注这种解法在于对抽象函数形式的理解和掌握,是前面解法的升华.因为该类函数性质实际上可以推广到任意具备对称性函数求值问题,这就比直接考虑二次函数对称性的思维更加深刻.

策略6 构造直线共线向量.

又x1≠x2,所以c=0.进而f(x1+x2)=0.

评注该解法笔者是基于微分思想的角度联想到的,“点线面”,“一维二维三维”是典型的思维迁移的模范!笔者试图将二次函数降次理解构造共线向量进行理解,试过之后,发现着实可以这么理解,在讲解中注重灵感思路的来源分析,能很好地启迪学生.

策略7 由外形结构f(x)=ax2+bx类比等差数列性质.

解法7 在等差数列{an}中,Sn是其前n项和,若Sm=Sn(m≠n),那么Sm+n=0.

结合f(x1)=f(x2)(x1≠x2),立马可得f(x1+x2)=0.

评注类似思想可以在此处得到最大的恩宠,一时间复杂的问题在此刻得到了瞬间的释放,这才是真正的秒解!是运气?是福气?都不是,是能力的完美体现!

是日积月累的思考与探究!发现新的事物往往是由所熟悉的事物进行迁移类比产生猜想,然后依赖于严谨的推理论证进行验证.猜想是做学问和锻炼创新思维的出发点,证明则是推理验证的落脚点与最终归宿.

策略8 利用行列式三角形面积公式.

评注基于教学实际,笔者认为学生有必要掌握该方法.首先,从高考命题角度与考试大纲要求来看,初等数学之中融入高等数学思想是命题的重点方向,类似的还有洛必达法则、端点效应、泰勒展开等,这就是其中很好的一例!其次,从考试直接应用来看,行列式求解三角形面积还广泛存在于平面解析几何之中,通过计算达到思路明晰,解题高效之效果.

纵观以上八种不同解法,可以说一种更比一种妙!实际上一题多解更能很好地帮助学生构建更加完善的知识体系,通过比较分析,会进一步认清哪些只是较为一般的解法,哪些是比较有创新的思路,哪种解法更简单等,这样能够使得学生的思维更开阔、更清晰,从而灵活地把握知识间的横向关系与纵向联系,提高解决问题的能力,培养学生审慎的解题习惯,发挥学生的创造性.

猜你喜欢

对称轴一题思路
不同思路解答
一题多解
一题多解在于活
轴对称图形的对称轴
拓展思路 一词多造
抓牢对称轴突破二次函数
有几条对称轴
我的思路我做主
生活中的轴对称检测题(一)