APP下载

细胞焦亡的研究进展

2021-12-25胡颖超

关键词:焦亡小鼠炎症

胡颖超,杨 硕

南京医科大学免疫学系,江苏 南京 211166

1 前言

细胞死亡是一种包括动物、植物和真菌在内的多细胞生物必不可少的生物学过程,有助于机体清除受损或多余的细胞,在维持机体内环境稳态、帮助胚胎发育和提高宿主防御功能等方面具有重大意义。细胞焦亡作为一种程序性细胞死亡方式,其特征在于由Gasdermin 家族蛋白介导细胞孔洞形成,引起细胞肿胀破裂,释放白介素(IL)⁃1β、IL⁃18、HMGB1 等炎症介质,促进炎症反应。越来越多的报道证明细胞焦亡在多种炎症性疾病的发生发展中扮演重要角色,因此理解细胞焦亡的特征、分子机制及其与炎症疾病的关系对于寻找靶向治疗药物具有重要意义。

2 细胞焦亡的发现和定义

1997 年,Hilbi等[1]发现志贺菌感染巨噬细胞引起的细胞死亡依赖Caspase⁃1 蛋白酶活性。2000年,Brennan 等[2]发现沙门氏菌感染宿主细胞也能引发Caspase⁃1依赖的细胞死亡,这种细胞死亡方式与细胞凋亡的特征不同,过程不伴有Caspase⁃3 的活化,但有胞膜的破坏。2001 年,迈阿密大学医学院教授Boise等[3]采用希腊语“Pyroptosis”命名这种Caspase⁃1依赖的细胞死亡方式,“Pyro”意为“火”,表明细胞焦亡能够引发炎症反应,“ptosis”是落下的意思,表明细胞程序性死亡的本质。之后很长一段时间内,细胞焦亡被认为是只依赖Caspase⁃1 活性的细胞死亡方式,直到2011 年,有研究发现小鼠Caspase⁃11 能够以不依赖Caspase⁃1的方式感知病原菌感染,进而引起细胞焦亡[4]。2014 年,邵峰等[5]报道胞质内Caspase⁃4/5/11 能够作为感受器直接结合革兰阴性菌表面LPS,介导非经典途径的细胞焦亡。2015年,有研究发现Caspase⁃1/11 的底物GSDMD 是介导细胞焦亡的关键执行分子[6⁃8]。2017年,Wang等[9]发现Caspase⁃3能够识别切割Gasdermin家族的另一成员GSDME分子,形成的N端片段也能够介导细胞焦亡发生。2018 年,Egil Lien 团队在Science发文报道了耶尔森菌感染能够引起宿主细胞Caspase⁃8 活性依赖的细胞焦亡[10]。2018 年,Kambara 等[11]发现中性粒细胞丝氨酸蛋白酶ELANE能够以不依赖Caspase⁃1/11 的方式切割GSDMD,引发中性粒细胞焦亡。因此,这些研究成果表明细胞焦亡发生并不由Caspase 酶决定,而是由其识别水解的底物Gasder⁃min 家族蛋白决定。至此,细胞焦亡的定义由之前的“Caspase⁃1/11 切割Gasdermin 家族蛋白引起焦亡”逐渐完善成“一种依赖于Gasdermin 家族蛋白成孔毒性的细胞死亡,经常但不总因Caspase 的活化而完成”[12]。

3 细胞凋亡、细胞坏死和细胞焦亡

细胞凋亡、细胞坏死和细胞焦亡3 大程序性死亡方式具有特定的形态变化和激活机制,并且相互之间的信号转导也具有一定的联系。

3.1 细胞凋亡

细胞凋亡在生理病理情况下都能发生,过程不伴有炎症介质释放,因而不能引发炎症反应。凋亡细胞不断皱缩,细胞核在核膜处断裂,形成核碎片,然后整个细胞通过发芽、起泡等方式形成凋亡小体。Caspase蛋白酶是引发细胞凋亡的关键蛋白,参与凋亡的蛋白酶包括Caspase⁃2/3/6/7/8/9/10 等,在细胞凋亡发生时,凋亡Caspase 通过内源性凋亡途径和外源性凋亡途径介导凋亡信号。

3.2 细胞坏死

细胞坏死是细胞肿胀破裂的死亡形式之一,坏死细胞的细胞核和线粒体等细胞器变形肿胀,膜通透性增高,最后质膜破裂,胞内容物释放到胞外。细胞内容物中含有各种促炎分子,因此细胞坏死能够引发炎症反应。细胞坏死受到级联信号分子的调控,在坏死发生时,受体相互作用蛋白激酶1/3(receptor interacting protein kinase 1,RIPK1/3)磷酸化激活混合系激酶区域样蛋白(mixed lineage ki⁃nase domain like protein,MLKL),后者插入质膜,形成孔洞,导致细胞内容物释放。

3.3 细胞焦亡

细胞焦亡在形态学上兼具凋亡和坏死的部分特点。细胞焦亡发生后细胞核的特征变化与凋亡类似,如核皱缩,染色质DNA 断裂降解。在焦亡早期,细胞膜上出现众多孔洞,引起细胞渗透性肿胀,焦亡后期,肿胀的细胞最终崩解,释放出大量细胞炎性内容物,快速激发机体炎症反应。细胞焦亡是由Gasdermin 家族蛋白激活后释放的N端片段通过寡聚并易位插入胞膜形成孔洞介导发生。

3.4 三者相互关系

焦亡和凋亡信号通路存在交叉影响。凋亡执行蛋白Caspase⁃3 能够在87 位天冬氨酸切割GSD⁃MD,形成的短N 端片段没有孔洞形成能力,阻止了细胞焦亡的发生,而在GSDMD 缺失情况下,焦亡的信号刺激能够使细胞发生Caspase⁃1 介导的细胞凋亡[13-14]。化疗药物能够激活某些肿瘤细胞的Cas⁃pase⁃3,继而活化GSDME,引发细胞焦亡[9]。活化的Caspase⁃8 能够抑制RIPK3 介导的细胞坏死途径从而促进细胞凋亡的发生,而Caspase⁃8的酶活性受到抑制时,RIPK1、RIPK3 和MLKL 发生级联反应执行了不依赖Caspase的细胞坏死[15]。另外,活化的Cas⁃pase⁃8能够剪切激活GSDMD,诱发细胞焦亡[10]。因而,Caspase⁃8在细胞凋亡、细胞坏死和细胞焦亡3种死亡方式中起到了分子开关作用。

4 Gasdermin家族蛋白

Gasdermin 家族蛋白是细胞焦亡的关键执行者。根据序列同源性目前已鉴定的人源Gasdermin家族成员包括GSDMA、GSDMB、GSDMC、GSDMD、GSDME(DFNA5)和PJVK(DFNB59)。鼠源Gasder⁃min家族成员缺乏GSDMB,另外GSDMA具有3种同系物(GSDMA1~3),GSDMC 具有4 种同系物(GSD⁃MC1~4)。

4.1 GSDMA

人源GSDMA 的表达范围较为广泛,在皮肤、食道、胃、乳腺和脐带的上皮细胞中均有表达,而鼠源GSDMA 3个亚类的表达分布也略有区别,其中GSDMA1 主要表达在毛囊和胃;GSDMA2 主要表达在胃;GSDMA3主要表达在皮肤。

已发现鼠源GSDMA3共有9个自发突变与小鼠严重的皮肤炎症和皮肤干细胞耗竭相关[6]。另有报道,GSDMA3 突变小鼠的乳腺发育也存在缺陷[16]。在人类中,GSDMA的单核苷酸多态性(SNP)与哮喘有关,但GSDMA促成哮喘的机制仍不清楚[17]。

4.2 GSDMB

GSDMB在食道、皮肤、胃、肝脏和结肠上皮中都有表达。研究表明,GSDMB 与克罗恩病、溃疡性结肠炎和哮喘的发病存在相关性[18]。GSDMB 在多种人类肿瘤组织中高表达,包括乳腺癌、胃癌、肝癌、结肠癌、子宫癌、食道癌、胃癌和宫颈癌以及衍生的肿瘤细胞系等,提示GSDMB 在肿瘤发生、进展和转移中发挥重要作用[19]。

4.3 GSDMC

人源GSDMC 主要表达在食道、胃、肠、气管、脾脏、膀胱和皮肤等组织器官,鼠源GSDMC 主要在皮肤、食道、肠道、胃、膀胱等部位分布。

研究显示皮肤角质形成细胞中GSDMC 的表达在紫外线照射引起的皮肤损伤过程发挥重要作用[20]。另外,GSDMC 上调表达也是预测肺腺癌预后不良的重要指标[21]。然而,最近Hou 等[22]报道抗生素类化疗药物能够促进GSDMC 的剪切激活进而诱导肿瘤细胞焦亡发生。

4.4 GSDMD

GSDMD 在人和哺乳动物的不同组织和细胞中广谱表达,其中人源GSDMD 在免疫细胞表达丰度最高,鼠源GSDMD 主要分布在免疫细胞和肠道上皮细胞。GSDMD 介导的细胞焦亡有助于机体清除病原,促进损伤修复,维持稳态,但另一方面,不受控制的细胞焦亡能够造成组织病理损伤,与多种疾病,如脓毒血症、炎症性肠病、动脉粥样硬化以及自身炎症性疾病等的发生密切相关。

GSDMD与脓毒血症:病原微生物感染能够激活炎性Caspase⁃1/4/5/11,启动GSDMD 依赖的经典和非经典途径细胞焦亡,促使炎症介质的释放,进而扩大炎症反应。研究表明GSDMD 基因敲除小鼠能够明显抵抗病原菌感染引起的炎症因子风暴,延长生存时间[7]。

GSDMD 与炎症性肠病:有研究显示,肠道上皮细胞发生GSDMD 激活介导的细胞焦亡,阻碍了病原菌对肠道的侵袭,并通过释放IL⁃18 促进上皮细胞修复、肠道黏膜免疫和抗菌肽的形成,进而起到保护肠道的作用[23]。也有报道,结肠巨噬细胞中的GS⁃DMD可抑制cGAS⁃STING信号通路激活介导的炎症反应,从而缓解DSS诱导的小鼠结肠炎症状[24]。

GSDMD与动脉粥样硬化:血脂异常和炎性环境中的炎症介质能够触发内皮细胞Caspase⁃1 依赖的炎症小体激活,引发细胞焦亡,进而扩大炎症反应造成血管损伤。另外,内皮细胞炎性死亡引起血管收缩反应受损,并通过诱导血管黏附分子的产生进一步促进血管炎症[25]。

GSDMD 与自身炎症性疾病:GSDMD 介导的细胞焦亡在驱动家族性地中海热(familial Mediterra⁃nean fever,FMF)的发病中起着至关重要的作用。研究者发现GSDMD基因的缺失完全抵抗了FMF模型小鼠的发病[26]。最近有报道,GSDMD驱动的细胞焦亡参与新生儿发病多系统炎性疾病(neonatal⁃on⁃set multisystem inflammatory disease,NOMID)的发病,GSDMD 的缺失能够改善NOMID 小鼠的炎症表型[27]。

GSDMD与神经退行性疾病:细胞焦亡及其介导的炎症反应,通过不同方式广泛参与神经系统疾病发生发展,抑制Caspase⁃1介导的细胞焦亡具有神经元保护和认知保护功能[28]。研究表明细胞焦亡可通过促进IL⁃1β的分泌来增强炎症反应,进而破坏神经元,引起帕金森病(PD)的发生[29]。细胞焦亡与阿尔茨海默症(AD)发生也密切相关,具有AD症状的APPswe/PS1dE9转基因小鼠大脑中NLRP1表达上调,体外培养的皮质神经元在淀粉样β蛋白刺激下引发NLRP1 介导的Caspase⁃1 依赖性细胞焦亡[30]。另外,研究发现,焦亡蛋白GSDMD在外周髓系细胞中控制免疫激活过程,从而促进多发性硬化症的发生[31]。

4.5 GSDME

GSDME在人的胎盘、大脑、心脏、肾脏、耳蜗、肠中均有表达,在小鼠中主要分布在脾脏、肾脏、大肠、小肠、睾丸、胃等器官。

GSDME 与人类听力损失相关,此外GSDME 与肿瘤的关系也非常密切,研究显示GSDME 敲低后肿瘤细胞生长、侵袭增加[32]。在黑色素瘤细胞中,GSDME缺失增加了细胞对依托泊苷的抗性,提示GS⁃DME促进黑色素瘤细胞对化疗药物的敏感性[33]。然而,最近报道显示来自杀伤细胞的颗粒酶B 能够切割激活GSDME 诱导肿瘤细胞焦亡进而抑制肿瘤发生[34]。

4.6 DFNB59

人源和鼠源DFNB59 主要分布在耳蜗、听觉神经元细胞体,此外,人源DFNB59在睾丸也有表达。

在人类中,DFNB59 的突变与非综合征性感觉神经性听力损失有关。DFNB59缺失小鼠的耳蜗感觉毛细胞和听觉神经元极易受到噪音的伤害。研究发现,DFNB59 能够调控过氧化物酶体的抗氧化活性进而保护听觉系统免受噪声引起的损害[35]。

5 细胞焦亡激活机制

5.1 炎症小体激活的焦亡

在病原微生物入侵或内部损伤因子作用下,机体固有免疫系统启动炎症小体的组装激活。作为炎症小体激活的下游事件,GSDMD分子介导的细胞焦亡进一步扩大炎症反应,增强宿主防御能力,但另一方面,过强的炎症反应能够造成机体多器官损伤。

5.1.1 经典炎症小体

根据炎症小体核心蛋白的不同,目前鉴别的经典炎症小体主要包括NLRP3、NLRC4、AIM2、NLRP1、Pyrin炎症小体等。

NLRP3炎症小体:NLRP3炎症小体激活物包括细菌表面蛋白、真菌毒力蛋白、病毒核酸等病原相关分子模式(PAMP)或尿酸钠(MSU)、二氧化硅、β淀粉样蛋白等损伤相关分子模式(DAMP)。NLRP3炎症小体激活机制包括K+外流、活性氧(ROS)产生和溶酶体破裂等,最近研究表明NLRP3在反面高尔基体网(trans Golgi network,TGN)和微管组织中心(microtubule organizing centers,MTOC)的募集定位对于NLRP3炎症小体的激活是必需的[36]。

NLRC4炎症小体:现有研究表明,伤寒沙门菌、弗氏志贺菌、嗜肺军团菌等感染可激活宿主细胞NLRC4 炎症小体。NLRC4 激活的方式是细菌通过功能性细菌Ⅲ型分泌系统(type Ⅲsecretion system,T3SS)将鞭毛蛋白或毒力蛋白PrgJ 导入宿主细胞,NAIP蛋白在接受细菌配体作用后活化,促进NLRC4寡聚和炎症小体的组装活化。

AIM2炎症小体:研究显示,结核分枝杆菌、弗朗西斯菌等胞内寄生菌,以及乙肝病毒、肠道病毒71(EV71)等病毒感染能够激活AIM2 炎症小体,继而引发GSDMD 调控的细胞焦亡,促进炎症介质释放,扩大炎症反应[37]。

NLRP1 炎症小体:炭疽致死毒素、胞壁酰二肽和某些寄生虫能够激活NLRP1 炎症小体。最近新的研究表明,炭疽致死毒素和人鼻病毒的3C蛋白酶能够诱导NLRP1 通过N 端介导的蛋白酶体降解完成炎症小体组装和下游活化[38-39]。

Pyrin炎症小体:当细胞受到细菌毒素如艰难梭菌毒素TcdB的刺激后,Pyrin蛋白发生去磷酸化,进而募集ASC、Caspase⁃1、诱导Pyrin炎症小体激活[40]。

5.1.2 非经典炎症小体

大肠杆菌、柠檬酸杆菌等革兰阴性菌的LPS 能够直接结合并激活宿主免疫细胞胞浆受体Caspase⁃4/5/11,促进GSDMD 剪切激活从而引发非经典途径的细胞焦亡。

5.2 非炎症小体激活的焦亡

研究发现化疗药物引起肿瘤细胞Caspase⁃3 的激活,活化的Caspase⁃3 能够在Asp270 位点剪切GSDME[9]。还有研究发现耶尔森菌感染抑制TAK1活性,从而引起Caspase⁃8 对GSDMD 的剪切激活[10,41]。2020年洪明奇团队发现活化的Caspase⁃8在D365处剪切GSDMC 诱导肿瘤细胞焦亡的发生[22]。除了凋亡Caspase 介导细胞焦亡以外,中性粒细胞中的丝氨酸蛋白酶ELANE能够以不依赖Caspase⁃1/11的方式在半胱氨酸268位切割激活GSDMD,引发中性粒细胞焦亡[11]。细胞毒性淋巴细胞中的颗粒酶Gran⁃zyme A 能够水解肿瘤细胞中的GSDMB引发细胞焦亡[42]。另外,NK细胞和CTL中的颗粒酶Granzyme B能够直接切割GSDME,诱导肿瘤细胞焦亡[34]。总之,非炎症小体激活机制在细胞焦亡过程扮演的角色被越来越多的研究发现和揭示。

6 Gasdermin孔洞形成机制

根据解析的GSDMA3和GSDMD结构,GSDMA3和GSDMD N端结构具有可变性,C端主要由结构稳定的α螺旋构成。C 端与N 端通过两个疏水界面紧密结合,因而限制了N端的功能活性[43]。在GSDMs自抑制状态解除后,GSDMNT发生构象变化,形成四链双亲性β片层结构,该结构从N 端片段核心球状折叠中延伸产生3个寡聚界面,随后GSDMNT片段寡聚,并结合胞膜形成插入膜中的β桶结构,继而引起胞膜肿胀破裂,诱发细胞炎性死亡[44]。最近有报道,Caspase⁃1/11自发水解激活产生的p10亚基对于GSDMD的识别剪切是必要的[45]。

7 细胞焦亡的分子调控

细胞焦亡的关键执行分子GSDMD 的表达和激活受到多种因素调控。有报道转录因子IRF2 通过直接结合GSDMD 启动子区域内的调节元件控制GSDMD 的转录表达[46]。Kang等[47]发现谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)降低脂质氧化进而限制GSDMD N 端的胞膜定位从而负调控GSDMD 介导的细胞焦亡。Fitzgerald 课题组发现三羧酸循环中间代谢产物富马酸能够在Cys191 位点(小鼠Cys192 位点)琥珀酰化GSDMD,进而阻止GSDMD N端片段的寡聚激活[48]。另外,细胞能够通过转运必需内吞体复合体Ⅲ(Endosomal sorting com⁃plex required for transport⁃Ⅲ,ESCRT⁃Ⅲ)依赖的胞吐作用清除细胞焦亡形成的破裂胞膜,实现胞膜孔洞的修复[49]。鉴于GSDMD 在炎症疾病中的重要作用,深入了解其分子调控机制,对我们更好地掌握炎症疾病发生规律,进而开发干预炎症疾病的新方法具有重要意义。

8 抑制细胞焦亡的小分子化合物

NLRP3炎症小体激活伴随细胞焦亡的发生,通过炎症介质的释放扩大炎症反应,在炎症疾病的发生发展中扮演重要角色,因而靶向炎症小体激活和细胞焦亡,是炎症疾病的有效治疗策略。

MCC950能够特异性靶向抑制NLRP3炎症小体激活,在小鼠实验性变态反应性脑脊髓炎(experi⁃mental allergic encephalomyelitis,EAE)模型、Cryo⁃pyrin 相关周期性综合征(Cryopyrin⁃associated peri⁃odic syndromes,CAPS)模型、PD 模型上能够较大程度减轻小鼠发病程度[50]。NLRP3 抑制剂CY⁃09 对NLRP3 驱动的小鼠疾病模型(如T2D 和CAPS)具有显著的治疗作用[51]。Caspase⁃1的抑制剂VX⁃765能够抑制血管平滑肌焦亡从而限制动脉粥样硬化的病程,另外,VX⁃765 在小鼠EAE 模型上具有很好疗效[52]。GSDMD 介导的细胞焦亡途径与人类炎症疾病的发展密切相关,筛选设计特异性靶向GSDMD的小分子抑制剂能够阻止炎症疾病的发生。有报道,磺酰胺类药物NSA 能够直接结合修饰GSDMD C191位点,抑制其成孔活性,从而抑制细胞焦亡,在LPS诱导的小鼠脓毒血症中具有很好的疗效[53]。最近发现用于治疗酒精成瘾的药物双硫仑在人和小鼠细胞中能够有效抑制GSDMD 孔的形成,可接受剂量给药的双硫仑能够抑制LPS诱导的小鼠脓毒症死亡[54]。有报道,三羧酸循环中间体富马酸酯能够将GSDMD 中的半胱氨酸琥珀酰化,阻止其与半胱氨酸蛋白酶的相互作用以及随后的加工活化,从而抑制细胞焦亡的发生[48]。

9 总结

细胞焦亡作为近年来新发现的细胞炎性死亡方式,越来越多地被认识到在炎症性疾病中发挥重要作用。本文阐述了细胞焦亡的特征和目前已知的核心分子调控机制,并概述了其在各炎症疾病中的作用和影响,以及以其为靶标的治疗策略。关于细胞焦亡的研究目前仍然有很多悬而未决的问题,例如,在疾病状态下细胞死亡很可能是以多种方式并存的,而炎症小体与Caspase 等蛋白的激活也并不一定全部引起焦亡,如何准确地区分与鉴别不同的细胞死亡类型?这需要开发新的鉴别方法。此外,作为关键的焦亡执行分子,对GSDMD 蛋白本身的分子调节机制研究并不多,除了上游炎症小体和Caspase蛋白外,是否存在其他的效应靶点仍有待发现。

猜你喜欢

焦亡小鼠炎症
细胞焦亡在重要器官缺血再灌注损伤中的研究进展*
细胞焦亡在妇科恶性肿瘤中的研究进展
针刺对脑缺血再灌注损伤大鼠大脑皮质细胞焦亡的影响
miRNA调控细胞焦亡及参与糖尿病肾病作用机制的研究进展
miR-373通过P2X7R影响抑郁症小鼠行为的作用机制
锻炼肌肉或有助于抵抗慢性炎症
脯氨酰顺反异构酶Pin 1和免疫炎症
《感染、炎症、修复》杂志版权转让约定
欢迎订阅《感染、炎症、修复》杂志
双咖酚酸在小鼠体内的药物代谢动力学与组织分布