APP下载

温度升高和干旱对农田生态系统水碳交换动态影响的研究进展

2021-12-06高阳王洪博王兴鹏杨莹攀

灌溉排水学报 2021年12期
关键词:生物量农田降水

李 倩,高阳,王洪博,王兴鹏*,杨莹攀

温度升高和干旱对农田生态系统水碳交换动态影响的研究进展

李 倩1,高阳2,王洪博1,王兴鹏1*,杨莹攀1

(1.塔里木大学 水利与建筑工程学院,新疆 阿拉尔 843300;2.中国农业科学院 农田灌溉研究所,河南 新乡 453002)

气候变化是威胁全球农业可持续发展的重要因素之一。温度升高和干旱等极端天气频发是全球气候变化的主要体现方式。温度升高显著影响土壤-作物系统的表现和功能。深入理解温度升高和干旱对农田水碳动态的影响机理,需要揭示农田生态系统功能与环境因子间的互作关系及其尺度转化效应。本文从以下几个方面综述了升温和干旱胁迫对农田生态水碳动态的影响:①全球气候变化及其影响因素分析;②温度升高、干旱胁迫以及其他气候变化因子对农田生态系统水碳动态的影响;③存在问题与未来研究方向。文献显示,世界人口增加、化石燃料燃烧碳排放量增加等致使气候变暖,在此背景下,引发的气温上升以及干旱频率增加都会对农田生态系统水碳动态有一定程度的影响。温度升高改变农田生态系统的生物量积累,同时影响作物生长和水分利用过程。此外,温度升高加快了土壤活性有机碳的转化和固存。干旱条件下会降低植物光合速率、呼吸速率以及蒸腾速率,同时,在极端干旱条件下水分利用效率也会随之降低;干旱还显著影响土壤碳转化过程与排放通量。气候变化也会伴随降水格局变化,进一步会影响土壤呼吸作用,降水增加会抑制土壤呼吸,从而减缓农田水碳循环过程。然而,目前关于增温和干旱条件下农田水碳动态的研究等方面仍存在一些不足,如对单一环境因子的研究较多,而对多重胁迫的研究较少。在今后的研究中,需加强多因素(如水分、温度等)对农田生态系统水碳动态方面的研究,以期为深入认识温度和干旱对农田生态系统的影响机理提供理论支撑。

增温;干旱;生物量;水碳循环;农田生态系统

0 引言

世界人口从1990年的52.82亿增加到2020年的75.0亿,增长率从1.74下降为1.18[1]。尽管全球人口增长率有所下降,但还是呈增加的趋势。预计到2050年,世界人口将会增加到89.1亿[1]。由于人口的增长使得人类活动产生的CO2排放量也随之增加。人类活动所产生的CO2是引起气候变化的因素之一,这对全球变暖的影响是不可逆转的[2]。

1880—2012年全球陆地平均气温升高了0.85 ℃,北半球陆地则为0.64 ℃/100 a[3-4]。中国的升温趋势为0.76 ℃/100 a,据国家气象站网获取河南省1967—2016年50年气象数据显示,当地气温呈递增趋势。温度升高不利于作物生产,其带来的负面作用会抵消大气CO2量升高对产量的促进作用[5]。相关研究指出,在低纬度地区,升温对水稻干物质的形成会有抑制作用,而在温度和CO2量升高条件下,对高纬度地区水稻生产起到双重促进作用[5]。增温对玉米产量的影响效应与水稻相类似,例如,欧洲地区玉米在增温环境下产量有随温度升高而增加的趋势[6]。

大气环境质量与全球气候的变化情况极为密切。谭雪红等[7]研究指出:在1996、1999年和2003年,人类活动对大气环境影响的综合评价指数分别为0.556、0.565和0.568,整体呈递增趋势。随着化石燃料的使用增加,CH4、N2O等有害气体的排放量也随之增加,使得大气环境的污染指数递增,这些不可避免的因素使得温室效应愈演愈烈,从而导致全球变暖[8]。

全球气候变化引起了气温升高、干旱灾害频繁、CO2量升高和降水格局变化,是威胁农业可持续发展的重要因素。Wigley等[9]根据IPCC-TAR的预测结果结合其他有关资料综合分析指出,全球平均温度从1990年到2100年将上升1.7~4.9 ℃;降水格局将发生变化,变幅为±10 %[10]。中国西部的年平均气温将升高1.7~2.3 ℃,降水增加5%~23%。据分析,CO2体积分数已经由19世纪末的280 μL/L-1增加到当今的360 μL/L-1,预计到21世纪中后期将倍增[11]。

世界人口增加、人类活动等引起气候变暖从而使CO2量、降水格局等发生变化,在此背景下,利用温度升高和干旱来分析农田系统水碳交换动态的影响,进一步为气候变暖对农田作物的影响提供支撑。

1 温度升高对农田生态系统水碳动态的影响

1.1 温度升高对农田生物量的影响

温度是改变农田生态系统生物量的因素之一。与未增温处理相比,增温提升了小麦营养、生殖生长并进期和收获期的地上生物量,但未显著影响地下部生物量;小麦在营养与生殖生长并进期增温处理的总生物量显著高于未增温处理[12]。田间水分充足的条件下,增温在有效范围内可增强土壤的微生物活性[13];但在土壤水分不足条件下, 增温可能会抑制其活性升高, 反而会使得其活性下降[14-15]。另外,有试验得出,作物生育期会因升温而缩短,地上部生物量的积累会随温度的升高而增加,另外,增温也加快作物对地下营养物质的吸收和利用[16]。

升温促进了作物地上部分的生长发育[17],作物生产干物质的能力也会相应地增强,植物同化CO2的能力主要受叶面积的影响[18]。因此,温度升高对植物叶片数目、面积大小以及生长速率会产生一定程度的促进作用[19]。如Wang等[20]的研究得出,增温处理会优先促进植物进行光合作用器官的生长发育。可见,温度升高可以通过促进植物的代谢和微生物的活性,来进一步增加农田生物量[12-16]。吴杨周等[21]研究表明,增温与不增温相比,冬小麦各个生育期增温显著增加了地上部生物量,同时也增加了总生物量。温度变化对植物生物量分配多少可能与同一种植物不同器官代谢速率的异同相关[22]。通常认为,升温能够加快植物的周转速率,并减少光合产物向地下的分配[23]。温度对植物生物量分配的影响大于降水影响[24],因植物水分条件变化较快,生物量分配的能力会受到植物水分条件的限制[25]。丁乐乐等[26]和吴杨周等[27]以3 a和1 a的试验得出增温对冬小麦地上生物量的影响不一致,这主要由于增温年限不同所致。可见,在增温条件下会增加农田生态系统生物量。

1.2 温度升高对农田系统水循环的影响

温度升高是全球气候变化的一个主要体现方式,显著影响农田系统的水循环过程[28]。温度升高改变作物物候期、加剧土壤蒸发、降低冠层水汽压差(),影响作物生长和水分利用过程[29]。毛明翠等[30]指出增温会加快田间水分腾发,加大农田蒸散量。王石立等[31]认为在泰安和郑州2个地区温度升高1.5 ℃时,冬小麦生育期内潜在蒸发量分别增加24 mm和32 mm,比当前气候下多5.5%和8.5%,表明温度升高加快了农田土壤的水循环过程[32-35]。当温度升高对农田水分腾发量产生显著影响,研究其原因是温度升高改变作物物候期、土壤含水率等[29]。另外,温度控制对农田水循环的研究相对较少,极有必要深入开展关于温度升高对农田系统水循环过程的研究。

1.3 温度升高对农田系统碳循环的影响

农田碳循环系统的边界不仅限于土壤呼吸、生物量还有如肥料、杀虫剂等的使用带来的排放,另外还包括土壤CO2和CH4的排放以及秸秆还田后带来的土壤固碳,即考虑到各个环节温室气体排放及固碳的整个生命周期过程[36]。随着温度的升高,土壤CO2和CH4的排放量都呈明显增加趋势,但它们的排放量的多少还受到增温速率、幅度、土壤和微生物等其他条件的限制[37-40]。另外,Wan等[41]发现,气候变暖会改变试验因子(增温)对土壤碳排放的影响效应。增温会通过影响群落结构特征使得土壤有机碳的矿化过程发生变化以及使得土壤呼吸作用增强,进一步改变麦田中CO2的释放量[42-43]。Lu等[44]和Shi等[45]的增温试验得出,通过短期增温增加大气和土壤温度进一步促进了土壤微生物活性,同时也增加其数量,进而使土壤孔隙中的CO2排放量明显上升。Hou等[46]在华北地区农田的试验指出,在增温条件下农田土壤呼吸效应较不增温相比不显著,但延长增温时间土壤呼吸会表现出递增的趋势。

Kirschbaum等[47]研究发现,气温每上升1 ℃,土壤有机碳成分损失约10%。孔雨光等[48]研究指出,利用适度升温增强酶活性进而促进了土壤有机质的分解,加快了土壤CO2产生速率。增温使得土壤微生物代谢速率加快,酶活性增强,促进了有机碳的转化和分解,排放出更多的CO2[49-50]。李俊等[51]利用5~6 a对小麦的增温处理研究得出,在增温条件下甲烷菌种对CH4的吸收能力降低。刘艳等[52]通过模拟增温试验研究表明,在冬小麦生长季和大豆生长季增温均促进土壤CO2产生速率,但对大豆田的促进作用高于冬小麦田。增温会使叶绿素量减少、光合速率降低[53]、缩短作物生育期[54-55]、减少作物产量[54,56-59]。综上所述,温度升高对农田碳循环有促进作用。

2 干旱胁迫对农田系统水碳动态的影响

2.1 干旱胁迫对农田系统水循环的影响

气候变化条件下,干旱频率会显著增加,尤其是在干旱/半干旱地区。在农田生态系统水平上,干旱会影响群落生理特性以及结构组成,从而使得相应生态系统的光合固碳过程、蒸散耗水过程及水分利用过程发生改变[60-62]。虽然关于水分亏缺对生态系统不同层次水碳循环过程影响的研究较多,但在不同时空尺度下不同界面水碳耦合过程的系统性研究比较缺乏。

张文英[63]的试验表明,植物密度随着降水呈线性减少的趋势,农田水动态的循环及消耗速率也会减慢。干旱通过降低植物叶片气孔导度来进一步增加水分传输阻力等以减少水分损失[64],与此同时叶片的光合速率也会随气孔导度的降低而下降[64-65]。土壤水分状况是反应农田蒸发蒸腾大小及变化的一个重要因素[66-69]。夏玉米的蒸发蒸腾研究[70-73]表明:田间土壤水分通过影响植株生长进而影响植株的棵间蒸发,在水分不足时,叶片气孔会自动关闭使得植株蒸腾速率下降,从而减少组织内部的水分散失[74-75],此时,土壤蒸发消耗的水分也会随之减少[76]。作物会因适度缺水而保持较高的水分利用效率,而干旱较严重的条件下水分利用效率会随之降低[77-78]。干旱胁迫下叶片气孔关闭气孔导度降低,以此来减少作物植株水分损失提高蒸腾效率[79]。

综上可见,干旱会使光合固碳过程、蒸散耗水过程以及水分利用过程发生改变[60-61],另外,减少水量会引起植物密度随着降水呈现线性减少的趋势,农田水动态的循环及消耗速率也会随之减慢[63,74-76]。

2.2 干旱胁迫对农田系统碳循环的影响

当土壤中水分不足时会影响植物体内营养物质的合成和运输,也会阻碍植物对矿质养分的吸收,而进一步抑制作物产量形成[80]。在农田生态系统中,水分不足将会阻碍作物对土壤养分的获取,影响土壤有机物的转化速率,土壤缓效养分向速效养分的转化速率也会随之减慢[81]。降水对植物生物量分配的影响与干旱的严重程度有关,在严重干旱条件下,植物响应较为强烈。吕晓敏等[82]以降水和温度为研究条件来分析其对植物碳物质和生物量的影响,发现在同一温度水平下,降水量比常规情况下减少30%,生物量会明显减小,碳物质循环也会随之减缓,而降水减少15%以内对生物量以及碳物质没有显著影响。Deng等[83]指出在水分亏缺程度不同时植物叶片生物量也有所差异,农田系统生物量的分配对短期的干旱没有明显的响应[84]。另外,降水频率和降水量的多少也会影响生物量和生产力[85]。干旱也会阻碍作物对养分的获取,影响土壤有机物的转化速率[81],同时也会影响农田系统的生物量积累[82-84]。

一般来说,当外界环境处于正常状态且土壤水分为最大田间持水量时,土壤呼吸量会达到最大,当土壤水分过高或过低时会抑制土壤呼吸作用[86]。蔡祖聪等[87]的研究表明,农田系统中含水率对CH4氧化菌活性有一定程度的影响,当土壤含水率超过田间持水量时,其活性会随含水率的增加而受到抑制[88]。通过长期增温(5 a及以上)发现,农田土壤微生物分解能力会随着土壤含水率降低而下降,进而抑制了土壤中CO2的释放[89-91]。在水分亏缺条件下土壤有机碳量较高,无机固碳能力增强[92]。

3 其他气候因子对农田系统水碳动态的影响

3.1 CO2对农田系统水碳动态的影响

CO2是植物进行光合作用的基础,增加其浓度有利于促进植物产量和生物量的形成。随着CO2量升高,植物光合速率增加,农田系统作物耗水速率、耗水量也随之增加[93]。已有的研究表明,CO2量增加对作物生产力起促进作用[94],例如Jablonski等[94]利用Meta分析总结了大气CO2量升高对多种植物生殖生长指标的影响,结果表明大气CO2摩尔分数升高到510~790 µmol/mol,植物在生育期内的开花数量平均增加了19%,籽实数量平均增加了16%~18%。

CO2量升高,作物叶片固碳量增加,土壤呼吸增加,但是会导致叶片气孔密度下降,气孔密度对CO2的响应存在一定的阈值效应[93]。植物光合作用随着CO2量升高而增强,在一定的量处达到峰值[95],与此同时土壤呼吸也会随CO2量增加而增加;也有研究表明CO2量增加有利于CO2分子不断地被光合反应吸收利用,从而让更多的CO2进入叶片,来促进作物产量等[96]。植物对大气CO2量升高的响应不仅包括生物量或产量的变化,还包括糖及其他碳水化合物量变化,比如蔗糖、麦芽糖等量预计平均增加27%[97-98]。此外,当大气中CO2量增加后,与碳物质贮存和能量代谢转化相关的指标也会随之增加[99]。由相关CO2量的研究表明大气CO2摩尔分数升高到550 µmol/mol后,C3作物小麦和水稻籽粒蛋白质含量下降趋势相近,均在7.8%左右;C4作物玉米下降5%左右[100]。也有模型研究表明,大气CO2量升高对植物根系生物量多少有促进作用[101]。增加大气CO2量会提高农田作物对碳水化合物的合成、积累速度以及对矿质元素的吸收速度。有关树木的研究也指出,杨树在高CO2量环境下光合C固定能力将会增加55%左右[102]。这主要是以最大限度保证大气CO2量升高对光合C固定能力的促进作用[103]。显见,CO2量升高对农田水碳动态也有一定响应,在CO2量升高的条件下作物对碳水化合物的积累会增多,另外,碳贮存和能量代谢以及农田系统作物耗水速率也会随之增加[93,99]。

3.2 降水对农田系统水碳动态的影响

降水格局改变可通过影响作物生理生态、土壤微生物和土壤温湿度进而影响农田土壤呼吸和N2O的产生与排放。干旱区降水稀少[104],但降水格局较非干旱区变异较大[105-106]。随着温度升高,干旱区将形成单次降水量增多、缺水间隔期延长的降水格局[107]。陈隆勋[108]和翟盘茂[109-110]等采用统计分析指出我国平均年降水量呈递减趋势。作物受到降水减少的影响,其氮代谢过程和相关酶活性的改变也会影响土壤呼吸和N2O的产生与排放[111]。Jalota等[112]发现降水可以促进棉花的作物水分生产力,但是降水过多又会破坏作物生产力;姬兴杰等[113]通过对我国北方冬小麦生育期的研究表明,除成熟期外,其他均与降水量显著负相关;张明捷等[114]研究表明,冬小麦产量与1月、6—9月降水量显著相关;陈书涛等[115]研究长三角地区温度和降水对冬小麦生育期的影响表明,试验地区降水比较充沛,所以降水不是影响该地区冬小麦生育期的关键因子。徐新创等[116]对中国近几十年来降雨强度变化趋势研究表明,在全球变暖的背景下,中国东部和南部暖湿地区强降雨事件将会增多[117],降水还对土壤温湿度产生显著影响,进而影响土壤呼吸。综上,在气候变暖的背景下,降水格局也会发生变化,进一步会影响土壤呼吸作用,降水增加会抑制土壤呼吸,从而减缓农田水碳循环过程[111,117]。

4 存在问题与未来研究方向

由于全球气候变化影响以及试验因素的增加,进一步来研究增温和干旱对农田水碳动态的影响。增温会加剧农田系统的水循环过程,进一步加快田间水分腾发速率,加大田间蒸散量。通过升高温度以及干旱条件的试验表明,农田系统的生物量、水碳以及其他指标都会随之产生不同的影响。文献综述显示,国内外有关温度升高和干旱对农田水碳动态的影响研究已有很多,并取得了一定成果,但仍存在一些不足之处。

1)关于增温和干旱对农田土壤水碳(如何通过影响土壤微生物与土壤结构,来改变碳动态和水分运动?)以及植株水碳(如何影响气孔的碳输入和水分蒸腾间的耦合关系?)影响的研究比较欠缺。

2)虽然单因素条件下有详细的研究,但双因素(温度升高和干旱胁迫)以及多因素条件下小麦农田系统水碳动态的研究仍然缺乏。应加强多因素条件下农田土壤、作物水碳动态等方面的研究,揭示多因素条件下对农田系统水碳动态的影响。

3)关于升温和干旱对农田水碳动态影响的研究多是在单一尺度下开展的,缺乏单株-群体-区域不同尺度间的系统研究。

未来,应以分析不同地区气候变化特征和规模化节水来开展温度、水分等因子对作物各个生育期生长发育以及作物产量的影响研究,进而可以通过气候特征以及作物前期的生长状况更加准确判断农田水碳循环对环境的响应过程和作物生产变化趋势。

1)应多集中于多因素条件下对农田作物水碳的研究,如,增温和干旱条件下作物光合和蒸腾的耦合关系的响应机制等。

2)应加强未来农田水碳循环的研究,以便对区域水循环、碳循环以及地下水平衡有定量的把握,为农田系统作物生长发育进一步提供有力的支撑和依据。

3)多关注升温和干旱对农田水碳动态在单株-群体-区域不同尺度间的系统性研究,为节水高产农业发展提供理论参考。

[1] 褚劲风. 全球人口增长及其地区差异[J]. 地理教学, 2000(12): 4-5.

CHU Jinfeng. Global Population Growth and Regional Differences[J]. Geography Teaching, 2000(12): 4-5.

[2] 热伊莱•卡得尔, 伊卜拉伊木•阿卜杜吾普, 陈刚. 全球气候变化及其影响因素研究进展[J]. 农业开发与装备, 2020(9): 81-82.

JAYLE·Kader, IBRAHIM·Abduluup, CHEN Gang. Research progress on global climate change and its influencing factors[J]. Agricultural development and equipment, 2020(9): 81-82.

[3] IPCC. Climate change 2013: The physical science basis[M]. Cambridge: Cambridge University Press, 2013.

[4] 屠其璞, 邓自旺, 周晓兰. 中国近117年年平均气温变化的区域特征研究[J]. 应用气象学报, 1999, 10(S1): 35-43.

TU Qipu, DENG Ziwang, ZHOU Xiaolan. Study of regional characteristics on mean annual temperature variation of near 117 years in China[J]. Quarterly Journal of Applied Meteorlolgy, 1999, 10(S1): 35-43.

[5] AINSWORTH E A, ORT D R. How do we improve crop production in a warming world[J]. Plant Physiology, 2010, 154(2): 526-530.

[6] SUPIT I, VAN DIEPEN C A, DE WIT A J W, et al. Recent changes in the climatic yield potential of various crops in Europe[J]. Agricultural Systems, 2010, 103(9): 683-694.

[7] 谭雪红, 尤海梅, 张广琴. 徐州市区人类活动对大气环境质量影响的综合评价[J]. 内蒙古师范大学学报(自然科学汉文版), 2008, 37(5): 660-664.

TAN Xuehong, YOU Haimei, ZHANG Guangqin. Comprehensive ecological assessments of human impacts on air quality in Xuzhou city[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2008, 37(5): 660-664.

[8] 马忠海. 中国几种主要能源温室气体排放系数的比较评价研究[D].北京: 中国原子能科学研究院, 2002.

MA Zhonghai. Comparative evaluation of greenhouse gas emission coefficients of several major energy sources in China [D]. Beijing: China Institute of Atomic Energy, 2002.

[9] WIGLEY T M L, RAPER S C B. Interpretation of high projections for global-mean warming[J]. Science, 2001, 293(5529): 451-454.

[10] WALLACE J S. Increasing agricultural water use efficiency to meet future food production[J]. Agriculture, Ecosystems & Environment, 2000, 82(1/2/3): 105-119.

[11] ALCAMO J, KREILEMAN G, BOLLEN J, et al. Baseline scenarios of global environmental change[J]. Global Environmental Change, 1996, 6(4): 261-303.

[12] 李景蕻. 高海拔生态区氮肥运筹和增温措施对水稻生长发育的影响及高产栽培技术研究[D]. 南京: 南京农业大学, 2009.

LI Jinghong. Effects of nitrogen application and warming measures on rice plant growth and high yield rice cultivation in high-altitude ecological areas[D]. Nanjing: Nanjing Agricultural University, 2009.

[13] BERGNER B, JOHNSTONE J, TRESEDER K K. Experimental warming and burn severity alter soil CO2flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology, 2004, 10(12): 1 996-2 004.

[14] SOWERBY A, EMMETT B, BEIER C, et al. Microbial community changes in heathland soil communities along a geographical gradient: Interaction with climate change manipulations[J]. Soil Biology and Biochemistry, 2005, 37(10): 1 805-1 813.

[15] PEÑUELAS J, GORDON C, LLORENS L, et al. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient[J]. Ecosystems, 2004, 7(6): 598-612.

[16] DOBSON A P, BRADSHAW A D, BAKER A J M. Hopes for the future: Restoration ecology and conservation biology[J]. Science, 1997, 277(5325): 515-522.

[17] DRAKE J E, TJOELKER M G, ASPINWALL M J, et al. The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability[J]. New Phytologist, 2019, 222(3): 1 298-1 312.

[18] 祝介东, 孟婷婷, 倪健, 等. 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异[J]. 植物生态学报, 2011, 35(7): 687-698.

ZHU Jiedong, MENG Tingting, NI Jian, et al. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types[J]. Chinese Journal of Plant Ecology, 2011, 35(7): 687-698.

[19] 张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响[J]. 生态学报, 2018, 38(18): 6 670-6 676.

ZHANG Qiaoying, PENG Shaolin. Effects of warming on the biomass allocation and allometric growth of the invasive shrub Lantana camara[J]. Acta Ecologica Sinica, 2018, 38(18): 6 670-6 676.

[20] WANG D, MAUGHAN M W, SUN J D, et al. Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus)[J]. GCB Bioenergy, 2012, 4(6): 688-697.

[21] 吴杨周. 模拟增温和降水减少对旱作农田土壤呼吸和N2O通量的影响[D]. 南京: 南京信息工程大学, 2015.

WU Yangzhou. Effect of simulated warming and declining rainfall on soil respiration and N2O emission from arid farmland[D]. Nanjing: Nanjing University of Information Science & Technology, 2015.

[22] VENTER M, DWYER J, DIELEMAN W, et al. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea[J]. Global Change Biology, 2017, 23(11): 4 873-4 883.

[23] FANG Y R, ZOU X J, LIE Z Y, et al. Variation in organ biomass with changing climate and forest characteristics across Chinese forests[J]. Forests, 2018, 9(9): 521.

[24] REICH P B, LUO Y J, BRADFORD J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. PNAS, 2014, 111(38): 1 3721-1 3726.

[25] FARRIOR C E, TILMAN D, DYBZINSKI R, et al. Resource limitation in a competitive context determines complex plant responses to experimental resource additions[J]. Ecology, 2013, 94(11): 2 505-2 517.

[26] 丁乐乐, 程浩, 刘增富, 等. 环境增温对稻麦轮作生态系统中作物产量的影响[J]. 植物科学学报, 2013, 31(1): 49-56.

DING Lele, CHENG Hao, LIU Zengfu, et al. Experimental warming on the rice-wheat rotation agroecosystem[J]. Plant Science Journal, 2013, 31(1): 49-56.

[27] 吴杨周, 陈健, 胡正华, 等. 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响[J]. 环境科学, 2016, 37(1): 280-287.

WU Yangzhou, CHEN Jian, HU Zhenghua, et al. Effects of reduced water and diurnal warming on winter-wheat biomass and soil respiration[J]. Environmental Science, 2016, 37(1): 280-287.

[28] 张茜茜. 不同水分条件下CO2浓度和温度对冬小麦光合性能及水分利用率的影响[D]. 邯郸: 河北工程大学, 2020.

ZHANG Qianqian. Effects of CO2concentrations and temperature on photosynthesis and water use efficiency of winter wheat under different water conditions[D]. Handan: Hebei University of Engineering, 2020.

[29] 高传昌, 汪顺生, 傅渝亮, 等. 冬小麦沟灌土壤水分动态和生长发育的试验研究[J]. 南水北调与水利科技, 2011, 9(2): 77-79, 83.

GAO Chuanchang, WANG Shunsheng, FU Yuliang, et al. Experimental study on the soil water dynamics and growth effect of winter wheat in furrow irrigation mode[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(2): 77-79, 83.

[30] 毛明翠, 刘畅, 曹静, 等. 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响[J]. 环境与发展, 2019, 31(2): 15-16.

MAO Mingcui, LIU Chang, CAO Jing, et al. Effects of water deficit and warming treatments on biomass and soil respiration of winter wheat[J]. Environment and Development, 2019, 31(2): 15-16.

[31] 王石立, 赵艳霞, 王馥棠. 气候变暖对小麦蒸散和产量的可能影响[J]. 中国农业气象, 1996, 17(4): 18-22.

WANG Shili, ZHAO Yanxia, WANG Futang. Study on the possible impact of climate warming on the evapotranspiration and yield of winter wheat[J]. Agricultural Meteorology, 1996, 17(4): 18-22.

[32] 李玉山. 旱作高产田产量波动性和土壤干燥化[J]. 土壤学报, 2001, 38(3): 353-356.

LI Yushan. Fluctuation of yield on high-yield field and desiccation of the soil on dryland[J]. Acta Pedologica Sinica, 2001, 38(3): 353-356.

[33] 黄明斌, 党廷辉, 李玉山. 黄土区旱塬农田生产力提高对土壤水分循环的影响[J]. 农业工程学报, 2002, 18(6): 50-54.

HUANG Mingbin, DANG Tinghui, LI Yushan. Effect of advanced productivity in dryland farming of the loess plateau on soil water cycle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 50-54.

[34] WANG Z Q, LIU B Y, ZHANG Y. Soil moisture of different vegetation types on the Loess Plateau[J]. Journal of Geographical Sciences, 2009, 19(6): 707-718.

[35] 刘苏峡, 莫兴国, 李俊, 等. 土壤水分及土壤-大气界面对麦田水热传输的作用[J]. 地理研究, 1999, 18(1): 24-30.

LIU Suxia, MO Xingguo, LI Jun, et al. The effects of soil moisture and soil atmosphere interface on water heat transfer in winter wheat field[J]. Geographical Research, 1999, 18(1): 24-30.

[36] 薛建福. 耕作措施对南方双季稻田碳、氮效应的影响[D]. 北京: 中国农业大学, 2015.

XUE Jianfu. Effects of tillage on soil carbon and nitrogen in double paddy cropping system of Southern China[D]. Beijing: China Agricultural University, 2015.

[37] 韩雪, 陈宝明. 增温对土壤N2O和CH4排放的影响与微生物机制研究进展[J]. 应用生态学报, 2020, 31(11): 3 906-3 914.

HAN Xue, CHEN Baoming. Progress in the effects of warming on soil N2O and CH4emission and the underlying micro-bial mechanisms[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3 906-3 914.

[38] CHENG H, REN W W, DING L L, et al. Responses of a rice–wheat rotation agroecosystem to experimental warming[J]. Ecological Research, 2013, 28(6): 959-967.

[39] AGUILOS M, TAKAGI K, LIANG N S, et al. Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland[J]. Tellus B: Chemical and Physical Meteorology, 2013, 65(1): 20792.

[40] 刘杰云, 邱虎森, 张文正, 等. 节水灌溉对农田土壤温室气体排放的影响[J]. 灌溉排水学报, 2019, 38(6): 1-7.

LIU Jieyun, QIU Husen, ZHANG Wenzheng, et al. Response of greenhouse gas emissions to water-saving irrigation in croplands[J]. Journal of Irrigation and Drainage, 2019, 38 (6): 1-7.

[41] WAN S Q, NORBY R J, LEDFORD J, et al. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland[J]. Global Change Biology, 2007, 13(11): 2 411-2 424.

[42] 徐学池, 黄媛, 何寻阳, 等. 土壤水分和温度对西南喀斯特棕色石灰土无机碳释放的影响[J]. 环境科学, 2019, 40(4): 1 965-1 972.

XU Xuechi, HUANG Yuan, HE Xunyang, et al. Effect of soil moisture and temperature on the soil inorganic carbon release of brown limestone soil in the Karst region of southwestern China[J]. Environmental Science, 2019, 40(4): 1 965-1 972.

[43] 万盛, 秦天玲, 宋新山, 等. 冬小麦田春灌前后CO2排放通量的日变化特征及对比分析[J]. 灌溉排水学报, 2019, 38(6): 80-84.

WAN Sheng, QIN Tianling, SONG Xinshan, et al. Change in CO2emission flux before and after spring irrigation in winter wheat field [J]. Journal of Irrigation and Drainage, 2019, 38(6): 80-84.

[44] LU M, ZHOU X H, YANG Q, et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis[J]. Ecology, 2013, 94(3): 726-738.

[45] SHI F S, CHEN H, CHEN H F, et al. The combined effects of warming and drying suppress CO2and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau[J]. Ecological Research, 2012, 27(4): 725-733.

[46] HOU R X, OUYANG Z, WILSON G V, et al. Response of carbon dioxide emissions to warming under no-till and conventional till systems[J]. Soil Science Society of America Journal, 2014, 78(1): 280-289.

[47] KIRSCHBAUM M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry, 1995, 27(6): 753-760.

[48] 孔雨光, 张金池, 王因花, 等. 苏北淤泥质海岸典型防护林地土壤呼吸及其温度敏感性[J]. 生态学报, 2009, 29(8): 4 084-4 093.

KONG Yuguang, ZHANG Jinchi, WANG Yinhua, et al. Soil respiration and its sensitivity to temperature in the typical shelter forests in a silting coastal area of Northern Jiangsu Province[J]. Acta Ecologica Sinica, 2009, 29(8): 4 084-4 093.

[49] LI L J, YOU M Y, SHI H A, et al. Soil CO2emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture[J]. European Journal of Soil Biology, 2013, 55: 83-90.

[50] 薛晶月, 张洪轩, 全权, 等. 土地利用方式对中亚热带红壤碳矿化及其激发效应的影响[J]. 应用与环境生物学报, 2014, 20(3): 516-522.

XUE Jingyue, ZHANG Hongxuan, QUAN Quan, et al. Effect of land-use type on soil carbon mineralization and its priming effect on red soils in the mid-subtropics of China[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 516-522.

[51] 李俊, 同小娟, 于强. 不饱和土壤CH4的吸收与氧化[J]. 生态学报, 2005, 25(1): 141-147.

LI Jun, TONG Xiaojuan, YU Qiang. Methane uptake and oxidation by unsaturated soil[J]. Acta Ecologica Sinica, 2005, 25(1): 141-147.

[52] 刘艳, 陈书涛, 刘燕, 等. 增温对农田土壤碳氮循环关键过程的影响[J]. 中国环境科学, 2013, 33(4): 674-679.

LIU Yan, CHEN Shutao, LIU Yan, et al. Effects of simulated warming on the key processes of soil carbon and nitrogen cycling in a cropland[J]. China Environmental Science, 2013, 33(4): 674-679.

[53] 张吉旺, 董树亭, 王空军, 等. 大田增温对夏玉米光合特性的影响[J]. 应用生态学报, 2008, 19(1): 81-86.

ZHANG Jiwang, DONG Shuting, WANG Kongjun, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 81-86.

[54] LIU L L, WANG E L, ZHU Y, et al. Contrasting effects of warming and autonomous breeding on single-rice productivity in China[J]. Agriculture, Ecosystems & Environment, 2012, 149: 20-29.

[55] TIAN Y L, CHEN J, CHEN C Q, et al. Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China[J]. Field Crops Research, 2012, 134: 193-199.

[56] LOBELL D B, ASNER G P. Climate and management contributions to recent trends in US agricultural yields[J]. Science, 2003, 299(5609): 1032.

[57] PENG S, HUANG J, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Pnas, 2004, 101(27): 9 971-9 975.

[58] 卞晓波, 陈丹丹, 王强盛, 等. 花后开放式增温对小麦产量及品质的影响[J]. 中国农业科学, 2012, 45(8): 1 489-1 498.

BIAN Xiaobo, CHEN Dandan, WANG Qiangsheng, et al. Effects of different day and night temperature enhancements on wheat grain yield and quality after anthesis under free air controlled condition[J]. Scientia Agricultura Sinica, 2012, 45(8): 1 489-1 498.

[59] 谭凯炎, 房世波, 任三学. 增温对华北冬小麦生产影响的试验研究[J]. 气象学报, 2012, 70(4): 902-908.

TAN Kaiyan, FANG Shibo, REN Sanxue. Experiment study of winter wheat growth and yield response to climate warming[J]. Acta Meteorologica Sinica, 2012, 70(4): 902-908.

[60] 于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1): 1-13.

YU Guirui, GAO Yang, WANG Qiufeng, et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1-13.

[61] 张雪松. 冬小麦农田生态系统碳、水循环特征及冠层上方碳通量的模拟[D]. 南京: 南京信息工程大学, 2009.

ZHANG Xuesong. Characteristic of cycle of carbon and water and modeling of carbon flux in winter wheat agro-ecosystem[D]. Nanjing: Nanjing University of Information Science & Technology, 2009.

[62] 胡中民, 于贵瑞, 樊江文, 等. 干旱对陆地生态系统水碳过程的影响研究进展[J]. 地理科学进展, 2006, 25(6): 12-20.

HU Zhongmin, YU Guirui, FAN Jiangwen, et al. Effects of drought on ecosystem carbon and water processes: A review at different scales[J]. Progress in Geography, 2006, 25(6): 12-20.

[63] 张文英. 水碳互作对华北冬小麦水分生产力的影响[D]. 北京: 中国农业科学院, 2017.

ZHANG Wenying. Effects of water and carbon interaction on water productivity of winter wheat in the NCP[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.

[64] 赵成义. 陆地不同生态系统土壤呼吸及土壤碳循环研究[D]. 北京: 中国农业科学院, 2004.

ZHAO Chengyi. Study on soil respiration and soil carbon cycle of different terrestrial ecosystem[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004.

[65] 田晶会. 黄土半干旱区水土保持林主要树种耗水特性研究[D]. 北京: 北京林业大学, 2005.

TIAN Jinghui. Studies on water consumption characteristics of main tree species of soil and water conservation forest in semi-arid region on loess plateau[D]. Beijing: Beijing Forestry University, 2005.

[66] 李新有, 梁宗锁, 康绍忠. 节水灌溉对夏玉米蒸腾效率的影响[J]. 华北农学报, 1995, 10(4): 14-19.

LI Xinyou, LIANG Zongsuo, KANG Shaozhong. Effect of water saving irrigation on summer maize transpiration efficiency[J]. Acta Agriculturae Boreall Sinica, 1995, 10(4): 14-19.

[67] 高照全, 张显川, 王小伟. 桃树冠层蒸腾动态的数学模拟[J]. 生态学报, 2006, 26(2): 489-495.

GAO Zhaoquan, ZHANG Xianchuan, WANG Xiaowei. Mathematical simulation of canopy transpiration rate of peach tree canopy[J]. Acta Ecologica Sinica, 2006, 26(2): 489-495.

[68] 王健, 蔡焕杰, 陈凤, 等. 夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J]. 水利学报, 2004, 35(11): 108-113.

WANG Jian, CAI Huanjie, CHEN Feng, et al. Experimental study on evapotranspiration and soil evaporation in summer maize field[J]. Journal of Hydraulic Engineering, 2004, 35(11): 108-113.

[69] 康绍忠, 蔡焕杰, 梁银丽, 等. 大气CO2浓度增加对春小麦冠层温度、蒸发蒸腾与土壤剖面水分动态影响的试验研究[J]. 生态学报, 1997, 17(4): 412-417.

KANG Shaozhong, CAI Huanjie, LIANG Yinli, et al. Experimental research on effects of the atmospheric CO2concentration increase on the canopy temprature, evapotranspira tion andsoil moisture dirstributioni in root zone of spring wheat[J]. Acta Ecologica Sinica, 1997, 17(4):412-417.

[70] 谢华, 沈荣开. 用茎流计研究冬小麦蒸腾规律[J]. 灌溉排水, 2001, 20(1): 5-9.

XIE Hua, SHEN Rongkai. Experimental research on transpiration of winter wheat with stem flow gauge[J]. Irrigation and Drainage, 2001, 20(1): 5-9.

[71] 程维新.农田蒸发和作物蒸腾研究[M]. 郑州: 气象出版社, 2000: 11-12.

CHENG Weixin. Research on the evaporation and transpiration of crops in farmland[M]. Zhengzhou: China Meteorological Press, 2000: 11-12.

[72] 孙景生, 陈玉民, 康绍忠, 等. 夏玉米田作物蒸腾与棵间土壤蒸发模拟计算方法研究[J]. 玉米科学, 1996, 4(1):76-80.

SUN Jingsheng, CHEN Yumin, KANG Shaozhong, et al. Study on estimation of crop transpiration and soil evaporation in summer corn field[J]. Maize Science, 1996, 4(1):76-80.

[73] 孙景生, 康绍忠, 王景雷, 等. 沟灌夏玉米棵间土壤蒸发规律的试验研究[J]. 农业工程学报, 2005, 21(11): 20-24

SUN Jingsheng, KANG Shaozhong, WANG Jinglei, et al. Experiment on soil evaporation of summer maize under furrow irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(11): 20-24.

[74] MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? [J]. The New Phytologist, 2008, 178(4): 719-739.

[75] MCDOWELL N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155(3): 1 051-1 059.

[76] WANG H X, LIU C M. Soil evaporation and its affecting factors under crop canopy[J]. Communications in Soil Science and Plant Analysis, 2007, 38(1/2): 259-271.

[77] DONG G, GUO J X, CHEN J Q, et al. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in northeast China[J]. Ecohydrology, 2011, 4(2): 211-224.

[78] REICHSTEIN M, TENHUNEN J D, ROUPSARD O, et al. Severe drought effects on ecosystem CO2and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? [J]. Global Change Biology, 2002, 8(10): 999-1017.

[79] EDWARDS C E, EWERS B E, MCCLUNG C R, et al. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits[J]. Molecular Plant, 2012, 5(3): 653-668.

[80] 王建林, 于贵瑞, 房全孝, 等. 作物水分利用效率的制约因素与调节[J]. 作物杂志, 2007(2): 9-11.

WANG Jianlin, YU Guirui, FANG Quanxiao, et al. The restriction factors and regulation of crop water use efficiency[J]. Crops, 2007(2): 9-11.

[81] 山仑. 旱地农业中有限水高效利用的研究[J]. 水土保持研究, 1996, 3(1): 8-13, 21.

SHAN Lun. The study on high efficient utilization of limited water in dry land[J]. Research of Soil and Water Conservation, 1996, 3(1):8-13, 21.

[82] 吕晓敏, 王玉辉, 周广胜, 等. 温度与降水协同作用对短花针茅生物量及其分配的影响[J]. 生态学报, 2015, 35(3): 752-760.

LYU Xiaomin, WANG Yuhui, ZHOU Guangsheng, et al. Effects of temperature and precipitation on Stipa bregiformis biomass and its allocation. Acta Ecologica Sinica, 2015, 35(3): 752-760.

[83] DENG J M, WANG G X, MORRIS E C, et al. Plant mass-density relationship along a moisture gradient in north-west China[J]. Journal of Ecology, 2006, 94(5): 953-958.

[84] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50.

[85] WU Z T, DIJKSTRA P, KOCH G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation[J]. Global Change Biology, 2011, 17(2): 927-942.

[86] 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理[J]. 生态学报, 2003, 23(5): 972-978.

CHEN Quansheng, LI Linghao, HAN Xingguo, et al. Effects of water content on soil respiration and the mechanisms[J]. Acta Ecologica Sinica, 2003, 23(5): 972-978.

[87] 蔡祖聪, ARIVNR Mosier. 土壤水分状况对CH4氧化, N2O和CO2排放的影响[J]. 土壤, 1999(6): 289-294, 298.

CAI Zucong, ARIVNR Mosier. Effects of soil moisture on CH4oxidation, N2O and CO2[J]. Soils, 1999(6): 289-294, 298.

[88] KANG Guoding, CAI Zucong. Estimate of CH4emissions from yearroundflooded rice field during rice growing season in china[J]. Pedosphere. 2005, 15(1): 66.

[89] 杨毅, 黄玫, 刘洪升, 等. 土壤呼吸的温度敏感性和适应性研究进展[J]. 自然资源学报, 2011, 26(10): 1 811-1 820.

YANG Yi, HUANG Mei, LIU Hongsheng, et al.The interrelation between temperature sensitivity and adaptability of soil respiration[J]. Journal of Natural Resources, 2011, 26(10): 1 811-1 820.

[90] WANG X, LIU L L, PIAO S L, et al. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10): 3 229-3 237.

[91] HARTLEY I P, HEINEMEYER A, INESON P. Effects of three years of soil warming and shading on the rate of soil respiration: Substrate availability and not thermal acclimation mediates observed response[J]. Global Change Biology, 2007, 13(8): 1 761-1 770.

[92] LIU Y, DANG Z Q, TIAN F P, et al. Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China)[J]. Land Degradation & Development, 2017, 28(1): 189-198.

[93] 郭丁, 郭文斐, 赵建, 等. 黄土高原草地和农田系统碳动态对降雨、温度和CO2浓度变化响应的模拟[J]. 草业学报, 2018, 27(2): 1-14.

GUO Ding, GUO Wenfei, ZHAO Jian, et al. Modeled effects of precipitation, temperature, and CO2changes on carbon dynamics in grassland and cropland on the Loess Plateau[J]. Acta Prataculturae Sinica, 2018, 27(2): 1-14.

[94] JABLONSKI L M, WANG X Z, CURTIS P S. Plant reproduction under elevated CO2conditions: A meta-analysis of reports on 79 crop and wild species[J]. New Phytologist, 2002, 156(1): 9-26.

[95] SILVOLA J, AHLHOLM U. Photosynthesis in willows (Salix× dasyclados) grown at different CO2concentrations and fertilization levels[J]. Oecologia, 1992, 91(2): 208-213.

[96] 陈楠楠. 温度和CO2升高对稻麦产量及生物量影响的整合分析研究[D]. 南京: 南京农业大学, 2012.

CHEN Nannan. Impacts of elevated atmospheric CO2and increased temperature on growth and yield of rice and wheat: A meta-analysis[D]. Nanjing: Nanjing Agricultural University, 2012.

[97] LOLADZE I. Hidden shift of the ionome of plants exposed to elevated CO2depletes minerals at the base of human nutrition[J]. Elife, 2014, 3: e02245.

[98] ROBINSON E A, RYAN G D, NEWMAN J A. A meta-analytical review of the effects of elevated CO2on plant-arthropod interactions highlights the importance of interacting environmental and biological variables[J]. New Phytologist, 2012, 194(2): 321-336.

[99] BATES P D, STYMNE S, OHLROGGE J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology, 2013, 16(3): 358-364.

[100] MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2threatens human nutrition[J]. Nature, 2014, 510(7503): 139-142.

[101] BASSIRIRAD H, GUTSCHICK V P, LUSSENHOP J. Root system adjustments: Regulation of plant nutrient uptake and growth responses to elevated CO2[J]. Oecologia, 2001, 126(3): 305-320.

[102] BERNACCHI C J, CALFAPIETRA C, DAVEY P A, et al. Photosynthesis and stomatal conductance responses of poplars to free-air CO2enrichment (PopFACE) during the first growth cycle and immediately following coppice[J]. New Phytologist, 2003, 159(3): 609-621.

[103] DAVEY P A, OLCER H, ZAKHLENIUK O, et al. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide [J]. Plant, Cell & Environment, 2006, 29(7): 1 235-1 244.

[104] SMITH R E, SCHREIBER H A. Point processes of seasonal thunderstorm rainfall: 2. Rainfall depth probabilities[J]. Water Resources Research, 1974, 10(3): 418-423.

[105] NOY-MEIR I. Desert ecosystems: Environment and producers[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 25-51.

[106] REYNOLDS J F, KEMP P R, OGLE K, et al. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses[J]. Oecologia, 2004, 141(2): 194-210.

[107] IPCC, “Climate Change 2007: The Physical Science Basis,” WGI Fourth Assessment Report, Intergovernmental Panel on Climate Change (IPCC), Geneva, 2007.

[108] 陈隆勋, 邵永宁, 张清芬, 等. 近四十年我国气候变化的初步分析[J]. 应用气象学报, 1991, 2(2): 164-174.

CHEN Longxun, SHAO Yongning, ZHANG Qingfen, et al. Preliminary analysis of climatic change during the last 39 years in China[J]. Quarterly Journal of Applied Meteorology, 1991, 2(2): 164-174.

[109] 翟盘茂, 任福民, 张强. 中国降水极值变化趋势检测[J]. 气象学报, 1999, 57(2):208-216.

ZHAI Panmao, REN Fumin, ZHANG Qiang. Detection of trends in China's precipitation extremes[J]. Acta Meteorologica Sinica, 1999, 57(2): 208-216.

[110] ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7): 1 096-1 108.

[111] 崔海羚. 增温和酸雨对大豆—冬小麦轮作农田N2O排放的影响[D]. 南京: 南京信息工程大学, 2013.

CUI Hailing. Effect of simulated experimental warming and acid rain on N2O emission from soybean-winter wheat rotation system[D]. Nanjing: Nanjing University of Information Science & Technology, 2013.

[112] JALOTA S K, SOOD A, CHAHAL G B S, et al. Crop water productivity of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation[J]. Agricultural Water Management, 2006, 84(1/2): 137-146.

[113] 姬兴杰, 朱业玉, 刘晓迎, 等. 气候变化对北方冬麦区冬小麦生育期的影响[J]. 中国农业气象, 2011, 32(4): 576-581.

JI Xingjie, ZHU Yeyu, LIU Xiaoying, et al. Impacts of climate change on the winter wheat growth stages in North China[J]. Chinese Journal of Agrometeorology, 2011, 32(4): 576-581.

[114] 张明捷, 王运行, 赵桂芳, 等. 濮阳冬小麦生育期气候变化及其对小麦产量的影响[J]. 中国农业气象, 2009, 30(2): 223-229.

ZHANG Mingjie, WANG Yunhang, ZHAO Guifang, et al. Climate change during winter wheat growing period and its impacts on winter wheat yield in puy ang of henen Province[J]. Chinese Journal of Agrometeorology, 2009, 30(2): 223-229.

[115] 陈书涛, 王让会, 许遐祯, 等. 气温及降水变化对江苏省典型农业区冬小麦、水稻生育期的影响[J]. 中国农业气象, 2011, 32(2): 235-239.

CHEN Shutao, WANG Ranghui, XU Xiazhen, et al. Impacts of variations in air temperature and precipitation on the growth stages of winter wheat and rice in typical agricultural zones of Jiangsu Province[J]. Chinese Journal of Agrometeorology, 2011, 32(2): 235-239.

[116] 徐新创, 张学珍, 戴尔阜, 等. 1961—2010年中国降水强度变化趋势及其对降水量影响分析[J]. 地理研究, 2014, 33(7): 1 335-1 347.

XU Xinchuang, ZHANG Xuezhen, DAI Erfu, et al. Research of trend variability of precipitation intensity and their contribution to precipitation in China from 1961 to 2010[J]. Geographical Research, 2014, 33(7): 1 335-1 347.

[117] ALLAN R P, SODEN B J. Atmospheric warming and the amplification of precipitation extremes[J]. Science, 2008, 321(5895): 1 481-1 484.

Changes in Water and Carbon in Farmland Ecosystems Due to the Combined Impact of Temperature Rise and Drought: A Review

LI Qian1, GAO Yang2, WANG Hongbo1, WANG Xingpeng1*, YANG Yingpan1

(1. College of Water Resource and Architecture Engineering,Tarim University,Alar 843300,China;2. Farmland Irrigation Research Institute,Chinese Academy of Agricultural Sciences,Xinxiang 453002,China)

Climate change would increase the frequency of extreme weather events threatening sustainable agricultural production as a warmed atmosphere has significant effects on functions of soil-crop systems. Although moderate drought is known to improve plant water use efficiency (), how warming combined with drought affects terrestrial ecosystems remains largely unknown. Evolutionally, different plants have developed different strategies to facilitate water acquisition, and their physiological and morphological traits respond to drought in different ways. In this paper, we reviewed the combined effects of warming and drought on water and carbon dynamics in cropped lands in three aspects: ①global climate change and its underlying drivers; ②effects of warming, drought and other climate change factors on water/carbon dynamics; ③unknown/known problems and future research directions. Global warming induced by the increased population, carbon emissions from fossil fuel and increase in drought frequency will all pose a significant impact on water and carbon in farmland. Warming will change the amount of biomass thereby affecting crop growth and water use efficiency, in addition to the accelerated soil organic carbon (SOC) loss. In the above-ground, drought will reduce photosynthetic rate and transpiration, while in the below-ground, it will reduce microbial activity and slow down SOC decomposition, thereby inhibiting soil CO2emissions. Climate change is likely to change the precipitation pattern, which in turn will alter soil respiration. Apparently, there is a lack of studies on water and carbon cycles under combined influence of drought and increasing temperature. This should be strengthened as water and carbon cycles in soil-crop systems are likely to be affected by multiple biotic and abiotic factors including soil water, temperature, carbon and nutrient concentration, in order to provide a mechanistic understanding of their combined effects on functions of farmland ecosystems as well as their feedback interaction with global warming.

global warming; drought; biomass; water and carbon cycle; farmland ecosystem

S181

A

10.13522/j.cnki.ggps.2021285

1672 - 3317(2021)12 - 0110 - 09

李倩, 高阳, 王洪博, 等. 温度升高和干旱对农田生态系统水碳交换动态影响的研究进展[J]. 灌溉排水学报, 2021, 40(12): 110-118.

LI Qian, GAO Yang, WANG Hongbo, et al. Changes in Water and Carbon in Farmland Ecosystems Due to the Combined Impact of Temperature Rise and Drought: A Review[J]. Journal of Irrigation and Drainage, 2021, 40(12): 110-118.

2021-07-07

国家自然科学基金项目(51879267);财政部、农业农村部:现代农业产业技术体系建设专项(CARS-03);塔里木大学校长基金项目(TDZKSS202146);兵团财政科技计划项目(2021AA003)

李倩(1996-),女。硕士研究生,主要从事灌溉排水理论与节水灌溉技术研究。E-mail:910021332@qq.com

王兴鹏(1978-),男。教授,博士,硕士生导师,主要从事作物高效用水技术研究。E-mail: 13999068354@163.com

责任编辑:赵宇龙

猜你喜欢

生物量农田降水
基于高分遥感影像的路域植被生物量计算
基于星载ICESat-2/ATLAS数据的森林地上生物量估测
云南松不同径级组各部位生物量对比研究
达尔顿老伯的农田
达尔顿老伯的农田
山西省2020年建成高标准农田16.89万公顷(253.34万亩)
四川盆地极端降水演变特征及拟合
成都地区云水资源分布特征及其与降水的关系
建筑施工中基坑降水施工工艺分析
不同NPK组合对芳樟油料林生物量的影响及聚类分析