APP下载

具有流线型凸包的风力发电机气动特性

2021-10-08刘印桢刘美英

科学技术与工程 2021年26期
关键词:风轮风力机流线

赵 萌, 刘 振, 刘印桢, 刘美英

(内蒙古工业大学能源与动力工程学院, 呼和浩特 010051)

风力机叶片作为发电机组的重要部件,风力发电机运行时,叶片所产生的阻力主要分为压差阻力和摩擦阻力。当风速较小时,压差阻力占据总阻力的主要部分,而非光滑面可以通过牺牲一部分的摩擦阻力来大大降低压差阻力,从而达到减阻降噪效果[1-3]。目前中外诸多学者在非光滑面减阻特性方面进行了相关研究:姚伟伟等[4]设计具有凹凸变化的仿生表面优化风力机叶片;为改善风力机的气动特性,张立栋等[5]在对称翼型表面布置V形脊状表面结构,袁一平等[6]在翼型表面布置沟槽结构,结果均证明与光滑翼型表面相比具有一定的减阻效果,且升力增益明显;Chan等[7]运用数值模拟方法将叶片形状与适应度函数进行耦合求解,改进后的风力机平均功率系数有了很大提升;Seide等[8]应用生物学方法设计风力机叶片结构,并应用数值模拟方法分析气动性能。

目前对风力机叶片的减阻增效主要集中在沟槽、脊状表面以及叶片结构等方面,而凸包结构具有很好适用性与便利性,将凸包应用于各类表面,均具有良好的减阻效果[9-10],但在此方面的探讨甚少。根据凸包减阻原理并设计流线型凸包结构,应用于叶片表面,利用数值模拟方法分析其气动性能,并与常规光滑叶片做对比,探讨其减阻效果。

1 数值模拟方法

1.1 流线型凸包结构及风轮模型

采用在光滑型风轮附加凸包的方法建立模型,凸包采用流线型凸包。根据凸包减阻效应可得,凸包结构可大幅降低压差阻力,从而达到减阻效果。流线型凸包可改变流线凸包的参数,从而对流场起到最大引流效果,控制翼型尾流涡脱落方向,达到稳定流场的效果。因此采用流线型凸包结构,凸包为对称性,其弦长为15 mm,高为2 mm,其结构如图1所示。为对比分析,建立流线凸包型以及光滑型风轮,额定工况为:额定功率为300 W,额定风速为10 m/s,额定转速为750 r/min,风轮直径为1.4 m。

图1 凸包结构Fig.1 Convex hull structure

叶片近流场流线分布近似于风轮同心圆,以其流线分布为基准排布凸包位置。叶片表面速度分布是沿叶片展向增大,叶尖风速达到最大,由此根据叶片表面速度分布的不均匀性,将流线型凸包排列密度分为三个层次:低密度、中密度、高密度,其凸包间隔分别为30、20、10 mm,如图2所示。为了利用流线型凸包改善叶片近流场,凸包的弦长与流线切线呈30°角安装,使流经叶片尾缘处的流线向叶尖方向偏转,从而增强风力机对风能的利用率。

图2 凸包排列图Fig.2 Convex hull arrangement

1.2 分离涡(DES)方法

由于流线凸包模型较小,数量较多,将会导致叶片附近有大量的附着涡及涡脱现象的产生。数值模拟采用分离涡(DES)模拟方法,其主要方法是将大涡模拟方法与雷诺时均方法相结合[11]。既可以捕捉到叶片附近许多细小附着涡,又节省大量计算资源。数值模拟选取经典湍流模型:SSTk-ω模型。SSTk-ω模型的输运方程的表达式[12]如下:

(1)

(2)

1.3 网格划分和边界条件的确定

风力机叶片是旋转机械,数值模拟采用滑移网格来解决计算域与旋转域的网格适应性问题。模拟的物理模型为风轮,此计算域采用圆柱形计算域,计算域直径为6D(D为风轮直径),其他尺寸如图3所示。经验证,此计算域尺寸大小可消除风力机对绕流场的影响。

图3 计算域示意图Fig.3 Computational domain diagram

采用六面体网格,边界层分为6层,以确保边界与主流区的网格平滑衔接。在重点研究区域(风力机附近流场)进行网格加密,网格总数为600 万。建立凸包型以及光滑型风力机进行对比研究分析,其数值模拟的边界条件为:速度入口,压力出口,相对压力为0 Pa,风轮表面无滑移。其不同来流风速分别选取6、8、10、12、14 m/s。

1.4 数值模拟方法验证

为了验证数值模拟的准确性,运用理论分析和数值模拟方法计算不同叶尖速比下风力机的扭矩系数,与文献[13]结果进行了对比。由图4可知,数值模拟结果和文献[13]中的扭矩系数结果最大误差在6%,说明数值模拟方法的适用性和准确性。

图4 扭矩随叶尖速比变化曲线Fig.4 Power curve as a function of wind speed

1.5 凸包减阻理论

凸包非光滑表面结构融合了脊肋与凹坑非光滑表面结构的各自特点,具有更强大的适应性。脊肋非光滑结构适用于分离点后方湍流强度较大区域,可有效改善湍流区域的流动状态,大大降低流动时的压差阻力;但是其结构对于摩擦阻力的减阻率远低于压差阻力。凹坑非光面结构更适用于分离点以前及分离点附近的低湍流区域,其结构中的低速气流漩涡有效地降低摩擦阻力,对其压差阻力的影响有限。凸包结构在流动分离区域有类似脊肋结构减阻效果,大大降低压差阻力;而凸包结构之间拥有类似凹坑结构,大大加强此结构对摩擦阻力的影响。

2 绕流场特性

2.1 叶片压力分布与近流场分布

图5为流线凸包型与光滑型叶轮的压力分布。由图5可以看出,叶轮处于旋转状态,较大压力处为叶片前缘,其区域范围是沿叶梢到叶根的2/3。

图5 叶轮压力分布图Fig.5 Impeller pressure

流线凸包型风轮与光滑型风轮的高压区域基本一致,不同的是风轮压力面上负压区域的分布,流线凸包型风轮上负压区域覆盖范围明显大于光滑型风轮,两者的负压区域都集中在叶梢处。由此可得,由于凸包的存在,使流动分离区域增加,压力面压力梯度变化更加明显,同时也表明凸包型叶片沿叶片展向的速度梯度变大。

图6为8、14 m/s时压力面的极限流线分布。无限接近叶片表面的位置存在的流线为极限流线。极限流线可以用来分析叶片表面的流动状态。凸包型结构明显改变了叶片流场分布。当风速较小时,凸包叶片流场分布更为紊乱,边界层被破坏,叶片表面出现大范围的流动分离;当风速较大时,分离区域大大减小,流线分布呈现规律状。比较光滑型与流线凸包型叶片的极限流线,可以看出流线经过凸包后,整体向叶尖方向偏转,从而使沿叶片沿展向的速度梯度变大。

图6 叶片极限流线分布图Fig.6 Velocity distribution around the flow field

2.2 叶轮前后速度场分布规律

由于流线凸包结构的存在,改善了风轮叶片处流场结构,对纵向绕流场的影响更为明显,故分析风轮前后速度场的差异来探究流线凸包对叶片流场的改善效果。图7、图8分别为14、12 m/s时风轮前后速度场分布图。

图7 14 m/s时风轮处前后速度场对比图Fig.7 Comparison of flow fields before and after the wind wheel at 14 m/s

由于风力机对与流场的压缩效应,将会使风轮前流场风速降低。对比流线凸包型与光滑型风轮发现,流线凸包型风轮对流场的压缩效应更为明显。对比风轮后方流场的速度分布可以得出,流线凸包型风轮对风能的利用率更好。由于流线型凸包对叶片流场的改善,导致尾缘流线向叶尖方向偏转,从而使叶尖处风速加大。如图7所示,流线凸包型风力机的最高流速已超过18 m/s,低风速区域明显较大;相比之下光滑型的高流速区域分布范围较大,最高流速低于凸包型风轮。以上分析可得,流线凸包型风力机增强了叶轮对风能的利用。

3 气动载荷分析

对光滑型以及流线凸包型风轮绕流场做对比分析,发现风轮附加凸包后,会对风力机绕流场产生剧烈影响。因此进一步研究分析光滑型与凸包型风力机的气动载荷变化规律。

3.1 阻力系数分析

图9为两种风力机的阻力系数时域变化曲线,图10为平均阻力系数随风速变化曲线。阻力系数取值时已消除初始条件对结果的影响,采用稳定后3~5 s阻力系数来分析优化后的风轮减阻效果。

图9 阻力系数时域变化曲线Fig.9 Time-domain variation curve of drag coefficient

图10 平均阻力系数随风速变化Fig.10 Average drag coefficient

根据图9和图10可知,不同风速下光滑型与流线凸包型风轮的阻力系数相差较大。当风速较低时,流线凸包型风轮的阻力系数远大于光滑型风轮。随着风速的提升,流线凸包型的阻力系数大大减小。当风速大于8 m/s时其阻力系数小于光滑型风力机。随着风速的增加减阻效果也越来越明显;凸包型风轮有较好的减阻效果,但也增大了阻力系数的波动。

阻力系数波动与阻力系数平均值如表1所示。当风速为6、8、10、12、14 m/s时,两种风轮的阻力系数呈单调下降趋势,其中流线凸包型风轮的下降趋势更加明显。对比表1和图10中两种风轮的平均阻力系数,明显可以看出,当风速大于8 m/s后,流线凸包型风轮有明显的减阻效果,8 m/s时的减阻率为11%,风速增大后减阻率依次为17.13%、19.49%、19.53%,由此可见,14 m/s以后的减阻效果趋势平缓,此凸包型风轮的最大减阻率为20%左右。

表1 不同风速下阻力系数特性Table 1 Darg coefficient characteristics with different wind speeds

流线凸包型风轮减阻效果明显的同时也增大了阻力系数波动,如表1所示。当风速为6、8 m/s时,两种风轮阻力系数波动量相差较小。当风速增大时,光滑型风轮阻力系数的波动量呈下降趋势,其波动量随风速分别为:0.54%、0.56%、0.19%、0.29%、0.2%;而流线凸包型叶轮阻力系数的波动量随着风速增加呈现上升趋势,其分别为:0.5%、0.57%、0.61%、1.51%、1.33%;由此可见,随着风速增加,流线凸包型风力发电机具有很好的减阻效果,但也增大了阻力系数的波动。

3.2 功率变化

图11为两种风轮不同风速下平均功率的分布规律,流线凸包型风轮的输出功率远大于光滑叶片的输出功率。根据表2中的功率平均值可以得出,当风速为6、8 m/s时,光滑型与凸包型的平均功率分别为:126.846、338.272、202.685、432.620 W,其功率的增长率分别为166%、113%。由图11看出,在此速度下流线凸包型风轮功率增加最大。当风速增加时流线凸包型与光滑型叶轮的输出功率变化趋势基本相似,风轮功率增长率随风速增加逐渐下降,如表2所示。由表2可知,10、12、14 m/s时,流线凸包型风轮输出功率的增长率为65%、44%、36%。

图11 平均功率变化曲线Fig.11 Average power curve

表2 两种叶片在不同风速下的功率特性Table 2 Power characteristics with different wind speeds

表2为两种风轮在不同风速下的功率特性。流线凸包型风轮不但输出功率远大于光滑型风轮,其功率波动比光滑型风轮更为稳定。流线凸包型风轮的功率波动较为稳定,除了6 m/s工况时波动较大,其余工况波动量均为1%左右,其原因主要是6 m/s时流线凸包型风轮减阻效果并不明显,其运行不稳定性增加。

4 结论

(1)对比分析流线凸包型与光滑型风轮的表面压力分布,流线凸包型风轮压力面的负压区域大于光滑型风轮的负压区域,叶片上的流动分离点提前,使风轮分离区域增加;流线型凸包结构可以改善叶片流场,使尾缘流线向叶尖方向偏转,从而增强了叶轮对风能的利用。

(2)当风速大于8 m/s时,流线凸包型风力机有较明显的减速效果。随着风速的增加,减阻效果越明显,当风速大于14 m/s时,减阻率变化趋势平缓;流线凸包型风力机的阻力系数波动区间明显较大。

(3)流线凸包型风轮的输出功率远大于光滑风轮,当风速为6、8 m/s时,其功率的增长率分别为166%、113%,在该速度下流线凸包型风轮功率增加最大;风速为10、12、14 m/s时流线凸包型风轮输出功率的增长率为65%、44%、36%。

(4)流线型凸包结构可以极大改善叶片近流场特性,增强风力机对风能的利用率,同时流线凸包结构在较高流速下有较好的减阻效果,大大提高了风力机功率的输出。

猜你喜欢

风轮风力机流线
基于本征正交分解的水平轴风力机非定常尾迹特性分析
信息熵控制的流场动态间距流线放置算法
基于风轮气动特性的风力机变桨优化控制策略研究
风电机组自适应控制策略研究
漂浮式风力机非定常气动特性分析
几何映射
具有尾缘襟翼的风力机动力学建模与恒功率控制
不同风轮直径的1.5兆瓦机组市场概况
不同风轮直径的2兆瓦机组市场情况概述
基于特征分布的三维流线相似性研究