APP下载

代谢改变对围术期心肌损伤影响的研究进展

2021-09-22余祺万勇左友波文笛

中国医药科学 2021年23期
关键词:胰岛素抵抗药物

余祺 万勇 左友波 文笛

[摘要]严重感染、创伤、大手术和麻醉后,患者往往会产生一系列的异常代谢,包括高代谢、高分解和营养物、激素异常代谢,这些变化进一步扰乱内稳态,影响细胞能量代谢和功能,成为围术期导致心肌损伤的重要原因。近年来,研究发现代谢改变与围术期心肌损伤(PMI)密切相关。本文将从围术期代谢改变及其对 PMI 的影响、改善围术期代谢变化的措施等方面进行综述,以期为 PMI 的深入研究和早期预防提供临床参考。

[关键词]围术期心肌损伤;代谢;胰岛素抵抗;药物;术前口服碳水化合物

[中图分类号] R619; R542.2  [文献标识码] A   [文章编号]2095-0616(2021)23-0057-04

Advances in study on the effect of metabolic alterations on perioperative myocardial injury

YU  Qi    WAN  Yong    ZUO  Youbo    WEN  Di

Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong 637000,China

[Abstract] Patients undergoing severe infection, trauma, major surgery and anesthesia often develop a series of abnormal metabolism, including hypermetabolism, high decomposition and abnormal metabolism of nutrients and hormones. These alterations further disturb homeostasis and affect cellular energy metabolism and function, which become important cause of perioperative myocardial injury (PMI). In recent years, studies have found that metabolic alterations are closely associated to PMI. This paper reviews the perioperative metabolic alterations and their effects on PMI, and measures to improve perioperative metabolic alterations, with the aim of providing clinical reference for the in-depth study and early prevention of PMI.

[Key words] Perioperative myocardial injury; Metabolism; Insulin resistance; Drugs; Preoperative oral carbohydrate

全世界每年有超过两亿例非心脏手术,其中约800万患者在非心脏手术后发生心肌损伤[1]。围术期心肌损伤(perioperative myocardial injury,PMI)以肌钙蛋白升高为特征,无缺血特征[2]。PMI 是一种重要的非心脏手术后的并发症,与30 d 死亡率密切相关[3-5]。与自发性心肌梗死相比,PMI 通常不表现出典型的心肌缺血症状,如胸痛、心绞痛或呼吸困难,因此在临床中常被漏诊。围术期的代谢改变会扰乱机体内环境稳态,影响细胞能量代谢和功能,成为 PMI 的重要原因之一。本文将从围术期代谢改变及其对 PMI 的影响、改善围术期代谢变化的措施等方面进行综述,以期为 PMI 的深入研究和早期预防提供临床参考。

1围术期代谢改变及其对PMI的影响

1.1能量代谢改变及其对PMI的影响

围术期患者往往存在高代谢,能量消耗增加。正常的能量供应对各个器官正常运转至关重要,尤其是大脑和心脏。大量证据表明,各种原因导致的耗能增加和产能减少与心脏损伤的发生密切相关,包括 PIMT/NCOA6IP 基因缺失引起的迟发性心肌病、糖尿病性心肌病和全心肌缺血引起的心脏损伤,其机制可能与心肌细胞能量生成引起的过度凋亡有關[6-8]。线粒体是重要的能量供应细胞器,与能量代谢有最直接的联系。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是一种高度保守的丝氨酸/苏氨酸蛋白激酶,是调节生物能量代谢的关键分子。激活 AMPK 能监测线粒体功能和细胞能量状态,能调节沉默信息调节因子1(silencing information regulator 1,SIRT1)的活性,以及增加细胞内 NAD+。激活的 AMPK 和 SIRT1调节过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor-γ coactivator-1α,PGC-1α)的活性,进一步上调其表达。AMPK/SIRT1/PGC-1α信号通路作为能量感知网络,在线粒体生物合成、能量代谢和氧化应激中发挥重要调控作用[9]。研究显示激活的 AMPK/SIRT1/PGC-1α信号通路能改善氧化应激损伤,改善能量代谢紊乱,并与心脏的保护作用有关[9-10]。

1.2葡萄糖代谢改变及其对PMI的影响

围术期血浆胰岛素水平增高,长期增高的胰岛素水平使激素质膜受体数量的适应性减少,需要更大剂量的胰岛素才能达到同样的生理效果,因此产生胰岛素抵抗(insulin resistance,IR)[11]。IR 的特征是葡萄糖摄取和氧化缺陷,糖原合成减少,以及在较小程度抑制脂质氧化的能力。大量研究提示 IR 是各种人群的心血管危险因素,包括普通人群和糖尿病患者[12]。IR 通过以下机制导致心肌损伤:①促进血脂异常,游离脂肪酸积累使活性氧产生增加,导致氧化应激,进而导致内皮功能障碍和动脉粥样硬化疾病[13];② IR 发生时,因胰岛素作用而维持的血管内稳态被扰乱,导致一氧化氮的产生和消耗失衡以及内皮功能障碍,而内皮功能障碍被认为是心源性死亡、心肌梗死独立于其他危险因素的预测因子[13-14];③促进钠重吸收以及使血管舒张受损导致高血压,而高血压也是心血管疾病的危险因素之一[13,15-16];④使 PI3K/Akt 信号代谢通路受損,导致内皮介导的血管扩张减少,血管重塑和动脉粥样硬化增加[17]。

1.3脂类代谢改变及其对PMI的影响

围术期患者儿茶酚胺分泌增多、炎症免疫介质及应激激素释放,导致体内脂类物质储备消耗,使血浆游离脂肪酸和三酰甘油明显增高。长链脂肪酸和葡萄糖是维持心脏收缩功能所需的主要能量底物。长期增加脂肪酸摄取会增加脂肪酸氧化和脂肪酸代谢产物的积累。增加脂肪酸氧化导致乙酰辅酶 A 和蛋白质乙酰化水平增加。细胞内惰性较低的脂类代谢产物如二酰基甘油和神经酰胺的浓度也有所增加。这些代谢物通过在不同的步骤[18]抑制胰岛素信号来诱导胰岛素抵抗。除了诱导胰岛素抵抗外,脂质积累还导致其他脂毒性作用,如脂质诱导凋亡[19]。证据表明,过度脂质积累与心肌收缩功能障碍相关[20]。因此过多的脂肪酸进入心肌细胞,可能通过以下两种方式对心脏功能产生负面影响:①增加脂肪酸氧化,诱导胰岛素抵抗,降低心肌效率;②促进心肌细胞内脂质过度积累。

1.4蛋白质代谢改变及其对PMI的影响

围术期患者骨骼肌分解,释放大量氨基酸,肝糖异生,支链氨基酸氧化供能,肝脏合成尿素增加导致负氮平衡,肝脏白蛋白合成减少导致低蛋白血症。低蛋白血症能使心肌水肿,从而导致左心室舒张功能障碍。机体处于炎症或损伤状态时,由于组织坏死及组织更新的增加,肝脏合成急性时相反应蛋白明显增加,包括 C 反应蛋白(C-reactive protein,CRP)、α1-抗胰蛋白酶、α1-酸性糖蛋白铜蓝蛋白等。研究显示 CRP 水平的升高是心血管不良事件的独立预测因子[21],也是冠状动脉或周围血管成形术后心血管并发症和不良预后的预测因子[21-22]。CRP 通过增加黏附分子(如人脐静脉内皮细胞中细胞间黏附分子-1和血管细胞黏附分子-1)表达、降低内皮型一氧化氮合酶使内皮功能障碍、触发单核巨噬细胞的促动脉粥样硬化功能等方式促进动脉粥样硬化[23]。通过低蛋白血症引起心肌水肿,导致左心室舒张功能障碍,CRP 合成增加,促进动脉粥样硬化等蛋白质代谢改变对心脏产生负面影响。

2改善围术期代谢的措施

2.1手术及麻醉技术

腹腔镜手术是目前普外科最重要的诊疗手段之一。腹腔镜手术通过更小的腹部创伤组织操作,造成更少的创伤,应激反应也随之减少[24]。研究显示直肠癌根治术中腹腔镜手术与开腹手术相比,对患者围术期蛋白代谢及 Th1、Th2类炎性因子的影响相对较小[25]。随着复合麻醉、联合麻醉及超声引导下神经阻滞的应用,麻醉后的应激反应及术后并发症也随之减少。研究显示,老年患者行全膝关节置换术,全身麻醉联合股神经坐骨神经阻滞与全身麻醉相比,更具有良好的术后镇痛效果,可以减少全身麻醉的剂量,降低术后恶心呕吐发生率,增加患者的满意度[26]。通过微创等技术,大大减轻了手术刺激反应。通过复合麻醉技术,进一步减轻围术期的应激反应。

2.2围术期药物的选择

研究表明挥发性麻醉药(如七氟醚、异氟醚)具有心脏保护作用。七氟醚通过使血管内皮生长因子受体-1的表达增加,参与对心脏的保护。异氟醚通过 miR-21依赖机制及降低心肌细胞中 miR-23的表达,从而增加对氧化应激的抵抗,参与对心肌缺血再灌注损伤的保护[27]。右美托咪定是一种高选择性的α2-受体激动剂,具有心脏保护作用。右美托咪定可能通过以下方式对心脏起保护作用:①触发 PI3K/Akt/mTOR 级联信号通路导致 GSK3β磷酸化和 mTOR 激活增加[28-29];②靶向 miRNA 减少凋亡,但尚未完全阐明 miRNA 在这一过程中是上调还是下调[30-33];③减少线粒体和线粒体中的氧化应激反应[34]。围术期对心脏具有保护作用的药物还有阿片类药物、β-肾上腺素受体阻滞剂、硝酸盐类药物、正性肌力药物等。

2.3术前口服碳水化合物

术前口服碳水化合物(preoperative oral carbohydrate, POC)是指临床上拟实施择期手术的患者在术前口服适量含碳水化合物的清饮料,让患者由禁食状态转变为进食状态,是快速康复外科的重要组成部分。越来越多的研究证实 POC 可以改善术后胰岛素抵抗,提高术后胰岛素敏感性,通过抑制糖异生、促进肝糖原合成,提供能量,减轻蛋白质和脂肪分解,从而改善围术期代谢改变[35]。但是,有关术前口服碳水化合物对 PMI 的影响还未见研究。

3总结

综上所述,围术期能量代谢、营养物质(如葡萄糖、脂类、蛋白质)代谢改变与 PMI 密切相关,可以通过手术及麻醉技术的提高、选择保护心肌的药物及术前口服碳水化合物等方式对围术期的代谢变化进行改善。因此,应认识并改善围术期代谢变化以及尽早预防、识别 PMI,改善患者预后。

[参考文献]

[1] SLOAN EN,MORLEY EE,DEVEREAUX PJ.Prevention, epidemiology, and prognosis of perioperative myocardial injury[J].The Journal of Cardiovascular Medicine,2016,19(4):103-109.

[2]LEE H,PARULKAR S,SWEITZER BJ.Blood pressure management and perioperative myocardial injury[J].International Anesthesiology Clinics,2021,59(1):36-44.

[3] WELTERS I.Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery[J].Jama the Journal of the American Medical Association,2012,307(21):2295-2304.

[4] DEVEREAUX PJ,BICCARD BM,SIGAMANI A,et al. Association of Postoperative High-Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients Undergoing Noncardiac Surgery[J]. JAMA,2017,317(16):1642-1651.

[5] Ekeloef S,Alamili M,Devereaux PJ,et al.Troponin elevations after non-cardiac, non-vascular surgery are predictive of major adverse cardiac events and mortality: A systematic review and meta-analysis[J].Br J Anaesth,2016,117(5):559-568.

[6] MAJD S,POWER J,CHATAWAY TK,et al.A comparison of LKB1/AMPK/mTOR metabolic axis response to global ischaemia in brain, heart, liver and kidney in a rat model of cardiac arrest[J].BMC Cell Biol,2018,19(1):7.

[7] XU W, WANG Y, GUO Y, et al.Fibroblast growth factor19 improves cardiac function and mitochondrial energy homoeostasis in the diabetic heart[J].BiochemBiophys Res Commun,2018,505(1):242-248.

[8] JIA Y,LIU N,VISWAKARMA N,et al.PIMT/ NCOA6IP Deletion in the Mouse Heart Causes Delayed Cardiomyopathy Attributable to Perturbation in Energy Metabolism[J].Int J Mol Sci,2018,19(5):7.

[9] TIAN L,CAO W,YUE R,et al.Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/ reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway[J].J Pharmacol Sci,2019,139(4):352-360.

[10]YU L,GONG B,DUAN W,et al.Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: Role of AMPK-PGC-1alpha-SIRT3 signaling[J].Sci Rep,2017,7(1):41337.

[11]WOLOSOWICZ M, LUKASZUK B,CHABOWSKI A.The Causes of Insulin Resistance in Type 1 Diabetes Mellitus: Is There a Place for Quaternary Prevention?[J].Int J Environ Res Public Health,2020,17(22):8651.

[12]Adeva-Andany MM,Martínez-Rodríguez J,González- Lucán M,et al.Insulin resistance is a cardiovascular risk factor in humans[J].Diabetes MetabSyndr,2019,13(2):1449-1455.

[13] KOSMAS CE,SILVERIO D,TSOMIDOU C,et al.The Impact of Insulin Resistance and Chronic Kidney Disease on Inflammation and Cardiovascular Disease[J].Clin Med Insights Endocrinol Diabetes,2018,11(1):1-6.

[14] Janus A,Szahidewicz-Krupska E,Mazur G,et al. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders[J].Mediators of Inflammation,2016(2016):3631948.

[15] GILES TD,SANDER GE,NOSSAMAN BD,et al. Impaired vasodilation in the pathogenesis of hypertension: Focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins[J].Journal of Clinical Hypertension,2012,14(4):198-205.

[16]LANDSBERG L,ARONNE LJ,LAWRENCE MB,et al. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment—A position paper of the The Obesity Society and the American Society of Hypertension[J].Obesity,2013,15(1):14-33.

[17] VALESKA O,SOUMYALEKSHMI N,OMAR E,et al. Association between insulin resistance and the development of cardiovascular disease[J].Cardiovascular Diabetology,2018,17(1):122.

[18]LIU Y,NEUMANN D,GLATZ J,et al.Molecular mechanism of lipid-induced cardiac insulin resistance and contractile dysfunction[J].Prostaglandins Leukotrienes and Essential Fatty Acids,2018,136(1):131-141.

[19] LuikenJJFP,Nabben M,Neumann D,etal.Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance[J].BiochimBiophys Acta Mol Basis Dis,2020,1866(7):165775.

[20] KIM TT,DYCK J.The role of CD36 in the regulation of myocardial lipid metabolism[J].BiochimBiophys Acta,2016,1861(10):1450-1460.

[21]SCHULZ S, L?DIKE H,LIERATH M, et al.C-reactive protein levels and genetic variants of CRP as prognostic markers for combined cardiovascular endpoint (cardiovascular death, death from stroke, myocardial infarction, and stroke/TIA)[J].Cytokine,2016,88(1):71-76.

[22]STONE PA,SCHLARB H,CAMPBELL JE,et al.C- reactive protein and brain natriuretic peptide as predictors of adverse events after lower extremity endovascular revascularization[J].Journal of Vascular Surgery,2014,60(3):652-660.

[23]MONTECUCCO F,MACH F.New evidences for C-reactive protein (CRP) deposits in the arterial intima as a cardiovascular risk factor[J].Clinical Interventions in Aging,2008,3(2):341.

[24]YIANNAKOPOULOU EC,NIKITEAS N,PERREA D,et al. Effect of laparoscopic surgery on oxidative stress response: Systematic review[J].Surgical Laparoscopy Endoscopy & Percutaneous Techniques,2013,23(2):101-108.

[25]韩树坤,吕顺.腹腔镜结直肠癌根治术患者围术期蛋白代谢及 Th1,Th2类炎性因子的变化观察[J].中国医学创新,2020,17(6):5-8.

[26]GAO XG, ZHANG M, YUE XA, et al.Application of nerve block in total knee arthroplasty under general anesthesia[J].Zhongguogushang,2020,33(4):363-367.

[27]BARTEKOVAM, JELEMENSKYM,DHALLANS.Emerging role of non-coding RNAs and extracellular vesicles in cardioprotection by remote ischemic conditioning of the heart[J].Reviews in Cardiovascular Medicine,2019,20(2):59-71.

[28]ZHANG,JIANG,D-H,et al.Effectsofdexmedetomidine on myocardial ischemia-reperfusion injury through PI3K-Akt-mTOR signaling pathway[J].European Review for Medical and Pharmacological Sciences,2019,23(15):6736-6743.

[29]CHENG X,HU J ,WANG Y,et al.Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway[J].Journal of Diabetes Research,2018,2018(1):1-10.

[30]YANG X, CHEN H, CHEN Y, et al.Circulating miRNA Expression Profiling and Target Prediction in Patients Receiving Dexmedetomidine[J].Cellular Physiology and Biochemistry,2018,50(2):552-568.

[31]YUSUKE,YOSHIKAWA,NAOYUKI,et al.Identification of Candidate Genes and Pathways in Dexmedetomidine- Induced Cardioprotection in the Rat Heart by Bioinformatics Analysis[J].International Journal of Molecular Sciences,2019,20(7):1614.

[32]JUAN,YU,WEI,et al.Involvement of miR-665 in protection effect of dexmedetomidine against Oxidative Stress Injury in myocardial cells via CB2 and CK1[J].Biomedecine&Pharmacotherapie,2019,115(2019):108894.

[33]LINGYAN,WANG,SHUMIAO,et al.The administration of dexmedetomidine changes microRNA expression profiling of rat hearts - ScienceDirect[J].Biomedicine & Pharmacotherapy,2019,120(1):109463.

[34]LIU X, LI T,CAO L, et al.Dexmedetomidine attenuates H2O2-induced neonatal rat cardiomyocytes apoptosis through mitochondria- and ER-medicated oxidative stress pathways[J].Molecular Medicine Reports,2018,17(5):7258-7264.

[35]余暢,闵苏,吕碧霄.术前口服碳水化合物溶液研究进展[J].国际麻醉学与复苏杂志,2020,41(11):1100-1103.

(收稿日期:2021-06-08)

猜你喜欢

胰岛素抵抗药物
非肥胖多囊卵巢综合征患者的代谢评估
血清脂联素、胰岛素抵抗与代谢综合征的相关性研究
妊娠期糖尿病与肿瘤坏死因子—α启动子基因多态性相关性的研究
胰岛素抵抗与非胰岛素抵抗多囊卵巢综合征的临床治疗分析
说说“胰岛素抵抗”那些事
mTOR在运动干预高脂膳食大鼠胰岛素抵抗形成中的作用及机制研究
怎样选用降血脂药物等二则
警惕药物的致癌性
同时并用几种药物需注意:药物之间有相互作用
中西药物