红壳色文蛤选育群体遗传多样性的微卫星分析
2021-09-13田镇,陈爱华,曹奕,吴杨平,张雨,陈素华,张志东,李秋洁
田镇,陈爱华,曹奕,吴杨平,张雨,陈素华,张志东,李秋洁
摘要:【目的】了解群体选育过程中红壳色文蛤(Meretrix meretrix)选育群体的遗传多样性变化及世代遗传分化情况,为文蛤育种计划的可持续性提供理论依据。【方法】以江苏黄文蛤原种(SY)、江苏红文蛤原种(SR)及5个红壳色文蛤选育群体(SRF1~SR5F5)为研究对象,利用15对微卫星引物对各文蛤群体基因组DNA进行PCR扩增,然后通过Gel-Pro32 4.0、PopGen 32和MEGA 6.0等在线软件分析7个文蛤群体的遗传多样性。【结果】从7个文蛤群体中共检测出766个等位基因,每个微卫星位点在每个群体中检测出3~18个等位基因,且等位基因数(Na)随选育世代增加呈下降趋势。15个微卫星位点的平均多态信息含量(PIC)在0.575~0.630,均属于高度多态性位点。7个文蛤群体的平均观测杂合度(Ho)为0.442~0.502,平均期望杂合度(He)为0.629~0.680,群体中63.81%的微卫星位点偏离Hardy-Weinberg平衡,表明各微卫星位点存在一定程度的杂合子缺失;群体内近交系数(Fis)范围为-0.0157~0.7409,平均为0.2777,表明文蛤群体内存在一定程度的近交水平;群体间遗传分化系数(Fst)平均为0.0455,即文蛤群体变异中仅有4.55%是由不同群体间的基因差异所产生,而95.45%的变异来源于群体内部;各群体的基因流(Nm)为0.9002~18.9478,平均为8.8065,说明7个文蛤群体间的遗传分化较低。UPMGA聚类分析发现7个文蛤群体聚类呈两大支,江苏红文蛤原种及其选育群体聚为一支,而江苏黄文蛤原种(SY)独自聚为一支。【结论】经过5代人工选育的红壳色文蛤选育群体虽然较基础群体其遗传多样性指数略有下降,但并未导致各选育群体的遗传结构发生改变,仍具有较高的遗传多样性。在连续的选择育种计划中,应增加亲本养殖环境多样化,避免因人工繁育的亲本和养殖群体规模较小引起遗传漂移或近交衰退而致使某些等位基因缺失,导致后代的遗传结构发生改变。
关键词: 文蛤;红壳色;群体选育;微卫星;遗传多样性;遗传漂移
中图分类號: S968.317 文献标志码: A 文章编号:2095-1191(2021)09-2582-08
Microsatellite analysis on genetic diversity of breeding populations of red shell color Meretrix meretrix
TIAN Zhen1,2, CHEN Ai-hua1*, CAO Yi1, WU Yang-ping1, ZHANG Yu1,
CHEN Su-hua1, ZHANG Zhi-dong1,2, LI Qiu-jie1,2
(1Jiangsu Institute of Marine Fisheries, Nantong, Jiangsu 226007, China;2Shanghai Ocean University/National Experimental Teaching Demonstration Center of Aquatic Science, Shanghai 201306, China)
Abstract:【Objective】In order to understand the genetic diversity and generational genetic differentiation of breeding populations of red shell color Meretrix meretrix during population selection, and to provide theoretical basis for long-term sustainability of breeding programs. 【Method】In this study, fifteen pairs of microsatellite markers were used to analyze seven populations of M. meretrix, including Jiangsu wild population with yellow shell(SY), wild population with red shell (SR) and five generations selected consecutively though red shell and shell length(SRF1-SR5F5). Fifteen pairs of microsatellite primers were used for PCR amplification of genomic DNA of sevenpopulations. The genetic diversity of se-ven populations was analyzed by online softwares such as Gel-Pro32 4.0, PopGen 32 and MEGA 6.0. 【Result】The results showed that a total of 766 alleles were detected in seven populations,and 3 to 18 alleles were detected at each microsatellite locus in each population. The number of alleles (Na) decreased with the increase of breeding generations. The mean polymorphic information content (PIC) of the 15 microsatellite loci ranged from 0.575 to 0.630, so they were highly polymorphic loci. The average observed heterozygosity(Ho) and expected heterozygosity(He) were 0.442-0.502 and 0.629-0.680, respectively. 63.81% of microsatellite loci deviated from Hardy-Weinberg equilibrium, indicating a certain degree of heterozygous deletion at each microsatellite locus. The number of inbreeding lines(Fis) ranged from -0.0157 to 0.7409, with an average of 0.2777, indicating that there was a certain level of inbreeding in the population. The average coefficient of genetic differentiation(Fst) between populations was 0.0455, that was, 4.55% of the population variation was caused by gene differences between different populations, and 95.45% of the population variation was from within populations. The gene flow (Nm) of each population ranged from 0.9002 to 18.9478, with an average of 8.8065, indica-ting low genetic differentiation among the seven populations. UPMGA cluster analysis showed that the seven clam populations clustered into two branches, the SR and its breeding population clustered into one branch, and SY clustered into one branch. 【Conclusion】After five generations of artificial selective breeding, the genetic diversity index of the selected po-pulation decreased slightly compared with SR and SY, but the genetic structure of the selected population did not change andthey still had a high genetic diversity. In the continuous selective breeding program, the breeding environment of parents should be diversified to avoid the genetic drift or inbreeding decline caused by the small size of artificially bred parents and breeding population, which leads to the deletion of some alleles in breeding population and the change of genetic structure of offspring.
Key words: Meretrix meretrix; red shell color; population selection; microsatellite; genetic diversity; genetic drift
Foundation item: Fishery Science and Technology Key Project of Jiangsu(D2018-1);General Project of Natural Science Foundation of Jiangsu(BK20181201);Subei Project of Jiangsu Department of Science and Technology(SZYC 2018064); Jiangsu Aquatic Breeds Conservation and Parent Updating Project(2020-SJ-006)
0 引言
【研究意义】文蛤(Meretrix meretrix)因肉质鲜美、分布范围广及资源量大等优势,已发展成为我国滩涂传统养殖的主要贝类之一,也是朝鲜和日本等国家最常见的经济贝类(王超,2011;孔令锋等,2017)。文蛤野生群体存在壳色花纹复杂、生长速度低及抗逆性不强等缺陷,在今后很长一段时间内仍需通过人工选育途径以打破期苗种限制。群体选育是目前广泛应用于水产养殖品种遗传改良的一种有效方法,但群体选育过程中产生的遗传漂变(Keller and Waller,2002)和非随机交配(曾吉,2018)等因素均有可能影响选育种群遗传多样性丧失,从而导致生长及抗逆等优良性状基因的缺失,增加近亲交配衰退的风险(Wang et al.,2001;Evans et al.,2004)。在长期的群体选育过程中,选育群体遗传多样性降低已受到广泛关注,包括鱼类(Wang et al.,2011)、甲壳类动物(Zhang et al.,2014)和软体动物等(Chen et al.,2017)。因此,如何最大限度地避免遗传多样性在选育后代中丧失,是水产育种工作者需要解决的首要问题。【前人研究进展】在遗传育种工作中,保证选育种群足够的遗传变异水平不仅能增强其适应新环境及抵御疾病暴发的能力,还直接影响持续育种计划的遗传收益(Gamfeldt and Kallstrom,2007)。现阶段,有关长牡蛎(Crassostrea gigas)、菲律宾蛤仔(Ruditapes philippinarum)及泥蚶(Tegiccarca granosa)等选育群体遗传结构的研究已有较多报道(王庆志等,2012;Xing et al.,2014;田野等,2015),但针对红壳色文蛤选育群体世代中遗传多样性变化的研究并不多见。李太武等(2008)对5个文蛤地理群体不同壳色的研究发现,不同地理群体的壳色存在明显差异;朱东丽等(2012)利用SSR分子标记对4个壳色花纹文蛤品系进行遗传分析,结果发现4个品系间存在明显的遗传差异;郑培(2013)利用ISSR和SSR分子标记对3个文蛤选育世代的遗传多样性进行分析,发现选育群体遗传多样性仍保持在一个较高的水平;代平(2014)研究表明,繁育群体的有效群体大小直接会影响文蛤群体近交程度及亲代对子代的贡献率等;张雨等(2015)进行红壳色文蛤选育时发现,文蛤子代中的红壳色个体比例不断提高,且红壳色文蛤F2代的壳长均显著大于F1代,生长性能得到不断提高,壳色也得到提纯,即红壳色文蛤的选育取得一定进展;吴杨平等(2017)在进行文蛤选育过程中发现红壳色文蛤较其他壳色文蛤具有显著的生长优势。【本研究切入点】开展选育群体遗传多样性检测分析是实施遗传改良计划过程的必要环节(赵广泰等,2010;彭敏等,2020)。江苏海洋水产研究所经过5代的群体选育获得一个文蛤新品系,在生长速度和壳色性状上存在明显的遗传变异,但在群体选育过程中是否随着选育世代增加各选育世代遗传多样性水平呈显著变化,以及是否限制持续遗传获得的潜力和选择力均有待进一步验证。【拟解决的关键问题】通过基因组微卫星分子标记评估群体选育过程中红壳色文蛤选育群体的遗传多样性变化及世代遗传分化情况,以期为文蛤育种计划的可持续性提供理论依据。
1 材料与方法
1. 1 试验动物
试验动物为取自江苏省海洋水产研究所吕四文蛤良种场保种的江苏文蛤原种及经选育的不同世代江苏红壳色文蛤群体。选育群体是以江苏南部沿海自然野生的红壳色文蛤5000粒为育种基础群体,以红壳色+生长为目标性状,通过闭锁群体选育方式,经过10年选育获得子五代选育系(表1),各选育世代的亲本数均大于5000粒,每代的选择强度约0.1%。利用不锈钢编织网分割出7个不同区域放置文蛤幼苗进行同世代养殖对比,区域划分为江苏黄文蛤原种(SY)、江苏红文蛤原种(SR)、红壳色文蛤选育群体子一代(SRF1)、红壳色文蛤选育群体子二代(SR2F2)、红壳色文蛤选育群体子三代(SR3F3)、红壳色文蛤选育群体子四代(SR4F4)及红壳色文蛤选育群体子五代(SR5F5);样品获取途径均为实地采样。每个群体随机选取30个健康个体,除去附着物,吐沙完畢后以灭菌刀片将文蛤软体部与壳体分离开,滤纸拭干软体部与壳体,取其闭壳肌置于95%酒精中,-20 ℃保存备用。
1. 2 试验方法
1. 2. 1 基因组DNA提取 将文蛤闭壳肌从95%酒精中取出,滤纸吸干,剪碎,依次加入475 μL STE缓冲液、10 μL蛋白酶K(20 mg/mL)及25 μL 10% SDS(十二烷基硫磺钠),混匀,55 ℃水浴消化2 h。参照DNA提取说明[生工生物工程(上海)股份有限公司]提取基因组DNA,经1.0%琼脂糖凝胶电泳检测后, -20 ℃保存备用。
1. 2. 2 微卫星引物筛选及来源 依据文蛤转录组开发微卫星位点,通过Primer 5.0设计25对微卫星引物,并委托生工生物工程(上海)股份有限公司合成。从中筛选出15对微卫星引物用于7个文蛤群体的遗传结构分析。微卫星引物的详细信息见表2。
1. 2. 3 PCR扩增 PCR反应体系25.0 μL:10×PCR Buffer 2.5 μL,2.5 mmol/L dNTP 2.0 μL,10 μmol/L上、下游引物各0.5 μL,Taq DNA聚合酶(2.5 U/μL) 0.5 μL,DNA模板1.0 μL,ddH2O补足至25.0 μL。扩增程序: 94 ℃预变性3 min;94 ℃ 30 s,退火30 s,72 ℃ 45 s,进行30个循环;最后72 ℃延伸5 min。PCR扩增产物采用ABI3730进行毛细管电泳,确定每个个体的等位基因。
1. 2. 4 数据分析 使用Gel-Pro32 4.0读取微卫星目标条带,利用PopGen 32分析等位基因数(Na)、有效等位基因数(Ne)、观测杂合度(Ho)、期望杂合度(He)、基因流(Nm)、群体间遗传分化系数(Fst)及Neis遗传相似系数等,每个微卫星位点均利用哈迪—温伯格平衡法则(Hardy-Weinberg equilibrium,HWE)进行卡方检验,并采用MEGA 6.0以UPGMA法构建系统发育进化树。参照Botstein等(1980)的方法计算多态信息含量(PIC),计算公式如下:
PIC=1-[i=1nPi2]-[i=1n-1j=i+1n2Pi2Pj2]
式中,Pi和Pj是某个位点第i、j个等位基因的基因频率,n为该位点上的等位基因数。
2 结果与分析
2. 1 7个文蛤群体的微卫星遗传多样性
由表3可知,5个红壳色文蛤选育群体的Na、Ho、He和PIC整体上随着世代的增加而呈一定下降趋势。本研究中,15个微卫星位点的平均PIC在0.575~0.630,均属于高度多态性位点,但每对引物的变异程度不同,从7个文蛤群体中共检测出766个等位基因。SY、SR、SRF1、SR2F2、SR3F3、SR4F4和SR5F5群体的Na依次降低,分别检测出115、131、119、107、104、97和93个等位基因,群体间无显著差异(P=0.394>0.05)。Na以SR群体的最高,SR5F5群体的最低,平均每位点有51.07个等位基因。每个微卫星位点在每个群体中检测出2~18个等位基因,其中以位点M2和M4表现为高度多态性。7个文蛤群体的平均He亦无显著差异(P=0.645);与He相比,7个文蛤群体的平均Ho相对较低,处于0.442~0.502,表明各微卫星位点存在一定程度的杂合子缺失。此外,有63.81%的微卫星位点偏离Hardy-Weinberg平衡,进一步验证存在杂合子缺失和纯合子过剩现象。
2. 2 7个文蛤群体间的遗传变异及基因交流情况
由表4可知,7个文蛤群体中仅位点M7的群体内近交系数(Fis)呈负值(-0.0157),其他14个微卫星位点的Fis均为正值;Fis的范围为-0.0157~0.7409,平均為0.2777,说明文蛤群体内存在一定程度的近交水平。15个微卫星位点的总群体近交系数(Fit)范围为0.0066~0.7491,平均为0.3103。此外,7个文蛤群体的平均Fst为0.0455,各群体的Nm为0.9002~18.9478,平均Nm为8.8065,表现出较高的基因交流,即7个文蛤群体间的遗传分化较低。
2. 3 7个文蛤群体间的遗传关系及聚类分析结果
由表5可知,7个文蛤群体间的Neis遗传相似系数在0.8233~0.9726,遗传距离在0.0198~0.1667,说明7个文蛤群体间存在一定的遗传变异。其中,SR4F4群体与SR5F5群体的亲缘关系最近,二者间的Neis遗传相似系数最大(0.9726),遗传距离最小(0.0198);SY群体与SRF1群体的亲缘关系最远,二者间的遗传距离最大(0.1667),Neis遗传相似性系数最小(0.8233),说明这2个群体间的遗传变异程度相对较高。依据7个文蛤群体间的遗传距离进行UPGMA聚类分析,从构建的聚类系统进化树(图1)可看出,7个文蛤群体聚类呈两大支,江苏红文蛤原种(SR)及其选育群体(SRF1~SR5F5)聚为一支,而江苏黄文蛤原种(SY)独自聚为一支。在聚类系统进化树中,SR4F4群体和SR5F5群体先聚为一支,再与SR3F3群体聚为一支;SRF1群体和SR2F2群体聚为一支;这2个分支聚为一支后再与SR群体聚为一大支。
3 讨论
3. 1 文蛤群体的遗传多样性
在连续的选择育种计划中,遗传变异和近亲衰退是选育工作关注的重点内容。He是衡量群体总体遗传多样性的重要参数之一,能反映群体的遗传一致性程度(Wang et al.,2016)。在本研究中,7个文蛤群体的Ho平均值明显低于He平均值,存在明显的杂合子缺失现象;但在不同选育世代间,Ho与He的差异不显著,说明江苏红文蛤经过5代选育后,其选育群体的遗传多样性并无明显变化。这与Yu和Guo(2004)对美洲牡蛎(Crassostrea virginica)、薛蕊(2015)对许氏平鮋(Sebastes schlegelii)的研究结论相似,均未观察到生长选育与杂合度缺失间是否存在一定关联。然而,与SY(江苏黄文蛤原种)和SR(江苏红文蛤原种)基础群体相比,选育群体的Na随选育世代增加而呈降低趋势,与菲律宾蛤仔和罗氏沼虾(Macrobrachium rosenbergii)等水生生物养殖群体等位基因丢失的研究结论(聂鸿涛等,2016;董丁建和戴习林,2020)一致。等位基因丢失通常较杂合度降低更明显,表明封闭群体中连续群体选择可能会增加稀有等位基因发生遗传漂移的概率,即等位基因丢失与否可能是衡量连续世代选育品系遗传变异的一个理想指标(邢德等,2017)。本课题组的前期研究也发现,文蛤的Na随着选育世代增加而呈一定下降趋势(郑培,2013),表明连续选择育种对选育群体的遗传变异有一定未知影响,选育世代若连续选育可能会出现较高的随机遗传漂移风险。
3. 2 7个文蛤群体的遗传分化
通过人工选育对一些特定性状进行定向选择,一定程度上会导致近交衰退的现象,从而造成遗传多样性降低(王统苗等,2019)。本研究结果显示,7个文蛤群体间的平均Fst为0.0455,说明文蛤群体变异中仅有4.55%是由不同群体间的基因差异所产生,而95.45%的变异来源于群体内部,即文蛤群体的遗传变异绝大部份来源于各群体内个体间的遗传差异,选育原种群体与选育世代之间及各选育世代之间存在较低的遗传变异,在海湾扇贝(Argopecten irradians concentricus)和太平洋牡蛎选育系F5代的微卫星分析中(陈静等,2012;Xu et al.,2019)也获得类似结论。Fst为0.0455还提示随着连续多代选择的进行和幼虫期的高死亡率,而导致选育群体可能出现潜在的基因交换障碍,在南美白对虾(Litopenaeus vannamei)和鲤鱼(Cyprinus carpio L.)的一些选育品系中(Andriantahina et al.,2013;李鹏飞等,2015)也有类似现象。Nm是指基因从一个种群到另一个种群的转移程度,本研究中7个文蛤群体间的Nm为0.9002~18.9478,平均为8.8065(Nm>4.000),表明各种群间的基因交流更充分,其遗传分化尚处于较低水平。
3. 3 基因型分布偏离Hardy-Weinberg平衡
本研究结果表明,7个文蛤群体的微卫星位点中有63.81%偏离Hardy-Weinberg平衡,尤其以位点M4、M7、M11和M13的偏离较多。实际上,偏离Hardy-Weinberg平衡的现象在海洋生物中普遍存在,究其原因有选择作用、群体混合及非随机交配等(王军等,2018;崔文涛等,2020)。基础群体和选育群体均出现明显的Hardy-Weinberg平衡偏离现象说明存在一些无效等位基因,在牡蛎等贝类的微卫星位点上也有类似现象(Zhang et al.,2018)。此外,部分Hardy-Weinberg平衡偏离位点出现杂合子缺失现象,7个文蛤群体的Fis范围为-0.0157~0.7409,平均为0.2777,说明群体间存在一定的种群自交现象,导致近亲繁殖,增加选育群体中某些位点等位基因的纯合子频率,相对减少杂合子频率,从而出现因杂合子缺失或纯合子过量引起遗传信息丢失,一定程度上影响群体遗传多样性水平(Xu and Li,2009)。红壳色文蛤选育群体中多数微卫生位点偏离Hardy-Weinberg平衡,与Singh等(2015)对鲤选育群体的研究结果相似,故推测这种现象是由于闭锁选育过程中非随机交配和定向选择所造成,在人工定向选择过程中,部分个体所携带的遗传物质被淘汰,导致种群原有的部分等位基因缺失,引起杂合子缺失而造成偏离Hardy-Weinberg平衡现象。因此,在今后的群体选育种工作中要注意群体性别比例平衡及保证有效亲本数量,尽可能避免出现杂合子缺失现象。
4 结论
经过5代人工选育的红壳色文蛤选育群体虽然较基础群体其遗传多样性指数略有下降,但并未导致各选育群體的遗传结构发生改变,仍具有较高的遗传多样性。在连续的选择育种过程中,应增加亲本养殖环境多样化,避免因人工繁育的亲本和养殖群体规模较小引起遗传漂移或近交衰退而致使某些等位基因缺失,导致后代的遗传结构发生改变。
参考文献:
陈静,刘志刚,邬思荣,宋雪芹. 2012. 海湾扇贝南部亚种(Argopecten irradians concentricus)选育系 F5的生长及SSR分析[J]. 海洋与湖沼, 43(4):784-788. [Chen J,Liu Z G,Wu S R,Song X Q. 2012. Growth and microsatellite analysis of F5 selected line of Argopecten irradians concentricus[J]. Oceanologia et Limnologia Sinica,43(4):784-788.] doi:10.11693/hyhz201204015015.
崔文涛,郑国栋,苏晓磊,李宝玉,陈杰,邹曙明. 2020. 鲂鲌杂交及回交F2群体的微卫星遗传结构及其生长性能分析[J]. 中国水产科学,27(6):613-623. [Cui W T,Zheng G D,Su X L,Li B Y,Chen J,Zou S M. 2020. Analysis of microsatellite markers and growth performance of hybrid F2 and two backcross F2 populations of Megalobrama amblycephala ♀ and Culter alburnus ♂[J]. Journal of Fishery Sciences of China,27(6):613-623.] doi:10.3724/SP.J.1118.2020.19290.
代平. 2014. 文蛤(Meretrix meretrix)选育群体的遗传测定及生长相关SNP鉴定[D]. 北京:中国科学院大学. [Dai P. 2014. Genetic test of breeing populations and identification of growth-associated SNPs in the clam Meretrix mere-trix[D]. Beijng:University of Chinese Academy of Scien-ces.]
董丁建,戴习林. 2020. 罗氏沼虾不同群体世代遗传多样性的SSR分析[J]. 南方农业学报,51(2):421-428. [Dong D J,Dai X L. 2020. SSR analysis on genetic diversity in different populations and generations of Macrobrachium rosenbergii[J]. Journal of Southern Agriculture,51(2):421-428.] doi:10.3969/j.issn.2095-1191.2020.02.023.
孔令锋,王晓璇,松隈明彦,李琪. 2017. 中国沿海文蛤属分类研究进展[J]. 中国海洋大学学报(自然科学版),47(9):30-35. [Kong L F,Wang X X,Matsukuma A,Li Q. 2017. A review of taxonomy of genus Meretrix along the coast of China[J]. Periodical of Ocean University of China,47(9):30-35.] doi:10.16441/j.cnki.hdxb.20170023.
李鹏飞,徐开达,周宏霞. 2015. 浙江近海三疣梭子蟹养殖与野生群体的基因组微卫星分析[J]. 浙江海洋学院学报(自然科学版),34(6):538-542. [Li P F,Xu K D,Zhou H X. 2015. Genetic diversity of Portunus trituberculatus among the cultured and wild populationsinthe offing of Zhejiang using microsatellite markers[J]. Journal of Zhejiang Ocean University(Natural Science),34(6):538-542.] doi:10.3969/j.issn.1008-830X.2015.06.007.
李太武,张安国,苏秀榕. 2008. 文蛤花纹的形态及形成观察[J]. 动物学杂志,43(6):83-87. [Li T W,Zhang A G,Su X R. 2008. Morphology and formation of stripes in Meretrix meretrix[J]. Chinese Journal of Zoology,43(6):83-87.] doi:10.3969/j.issn.0250-3263.2008.06.012.
聂鸿涛,李佳,霍忠明,郭炜,闫喜武. 2016. 菲律宾蛤仔人工选育群体与野生群体的遗传多样性分析[J]. 中国水产科学,23(3):538-546. [Nie H T,Li J,Huo Z M,Guo W,Yan X W. 2016. Analysis of genetic variability in selec-ted lines and a wild population of Ruditapes philippinarum using microsatellite markers[J]. Journal of Fishery Sciences of China,23(3):538-546.] doi:10.3724/SP.J. 1118.2016.15307.
彭敏,陈慧芳,李强勇,杨春玲,曾地刚,刘青云,赵永贞,陈晓汉,林勇,陈秀荔. 2020. 凡纳滨对虾连续3个世代选育群体的遗传多样性分析[J]. 南方农业学报,51(6):1442-1450. [Peng M,Chen H F,Li Q Y,Yang C L,Zeng D G,Liu Q Y,Zhao Y Z,Chen X H,Lin Y,Chen X L. 2020. Genetic diversity of three consecutive generations of Litopenaeus vannamei[J]. Journal of Southern Agriculture,51(6):1442-1450.] doi:10.3969/j.issn.2095-1191.2020.06.026.
田野,邵艳卿,肖国强,縢爽爽,柴雪良,张炯明,方军. 2015. 泥蚶人工选育群體的微卫星分析[J]. 海洋科学,39(4):1-7. [Tian Y,Shao Y Q,Xiao G Q,Teng S S,Chai X L,Zhang J M,Fang J. 2015. Analysis of genetic variability in selective breeding populations of Tegiccarca granosa by microsatellites[J]. Marine Science,39(4):1-7.] doi:10.11759/hykx20140624001.
王超. 2011. 文蛤(Meretrix meretrix)选择群体生长、抗性差异的初步解析[D]. 北京:中国科学院研究生院. [Wang C. 2011. Preliminary analysis of growth and resistance differences among selected Meretrix meretrix populations[D]. Beijing:Institute of Oceanology,Chinese Academy of Science.]
王军,王清印,孔杰,孟宪红,曹家旺,王明珠,冯亚萍,吕丁. 2018. 中国明对虾人工选育群体与野生群体遗传多样性的SSR分析[J]. 渔业科学进展,39(2):104-111. [Wang J,Wang Q Y,Kong J,Meng X H,Cao J W,Wang M Z,Feng Y P,Lü D. 2018. SSR analysis on genetic diversity in breeding and wild populations of Fenneropenaeus chinensis[J]. Progress in Fishery Sciences,39(2):104-111.] doi:10.19663/j.issn2095-9869.20170227001.
王庆志,李琪,孔令锋. 2012. 长牡蛎3代人工选育群体的微卫星分析[J]. 水产学报,36(10):1529-1536. [Wang Q Z,Li Q,Kong L F. 2012. Genetic variability assessed by microsatellites in mass selection lines of Pacific oyster(Crassostrea gigas)[J]. Journal of Fisheries of China,36(10):1529-1536.] doi:10.3724/SP.J.1231.2012.28157.
王统苗,张莘,陈博雯,常国斌,白皓,江勇,张扬,王志秀,陈国宏. 2019. 我国六个地方鸭品种的群体遗传结构及遗传分化[J]. 甘肃农业大学学报,54(6):24-29. [Wang T M,Zhang X,Chen B W,Chang G B,Bai H,Jiang Y,Zhang Y,Wang Z X,Chen G H. 2019. Population gene-tic structure and genetic differentiation of six local duck breeds in China[J]. Journal of Gansu Agricultural University,54(6):24-29.] doi:10.13432/j.cnki.jgsau.2019.06.004.
吴杨平,陈爱华,张雨,曹奕,姚国兴,蔡永祥,王超. 2017. 文蛤红壳色选育系F3的生长规律及模型[J]. 海洋渔业,39(4):411-418. [Wu Y P,Chen A H,Zhang Y,Cao Y,Yao G X,Cai Y X,Wang C. 2017. On the growth law and model of the selected line (F3) of red shell colored Meretrix meretrix[J]. Marine Fisheries,39(4):411-418.] doi:10.3969/j.issn.1004-2490.2017.04.006.
邢德,李琪,张景晓. 2017. 利用微卫星荧光多重PCR技术分析壳白长牡蛎3代人工选育群体的遗传多样性[J]. 水产学报,41(12):1838-1846. [Xing D,Li Q,Zhang J X. 2017. Analysis of genetic diversity in mass selection lines of white-shell Pacific oyster (Crassostrea gigas) using mic-rosatellite fluorescent multiplex PCR technique[J]. Journal of Fisheries of China,41(12):1838-1846.] doi:10.11964/ jfc.20161110611.
薛蕊. 2015. 许氏平鲉(Sebastes schlegelii)EST-SSR标记开发及快速生长选育系遗传结构分析[D]. 上海:上海海洋大学. [Xue R. 2015. Development of EST-SSR markers and genetics assessment of fast-growing breeding lines for the black rockfish,Sebastes schlegelii[D]. Shanghai:Shanghai Ocean University.]
曾吉. 2018. 非随机交配对种群基因頻率的影响[J]. 生物学教学,43(1):68. [Zeng J. 2018. Effect of non-random ma-ting on gene frequency in population[J]. Biology Tea-ching,43(1):68.] doi:10.3969/j.issn.1004-7549.2018.01. 038.
张雨,陈爱华,姚国兴,吴杨平,曹奕. 2015. 两世代红壳色文蛤早期表型性状差异分析[J]. 海洋渔业,37(4):325-330. [Zhang Y,Chen A H,Yao G X,Wu Y P,Cao Y. 2015. Comparison of characters on the early growth of offspring from Meretrix meretrix with two generation[J]. Marine Fisheries,37(4):325-330.] doi:10.3969/j.issn. 1004-2490.2015.04.005.
赵广泰,刘贤德,王志勇,蔡明夷,姚翠鸾. 2010. 大黄鱼连续4代选育群体遗传多样性与遗传结构的微卫星分析[J]. 水产学报,34(4):500-507. [Zhao G T,Liu X D,Wang Z Y,Cai M Y,Yao C L. 2010. Genetic structure and genetic diversity analysis of four consecutive breeding ge-nerations of large yellow croaker (Pseudosciaena crocea) using microsatellite markers[J]. Journal of Fisheries of China,34(4):500-507.] doi:10.3724/SP.J.1231.2010. 06624.
鄭培. 2013. 文蛤三个选育世代的多样性研究[D]. 上海:上海海洋大学. [Zheng P. 2013. Genetic diversity analysis of three generations of selective breeding of Meretrix meretrix[D]. Shanghai:Shanghai Ocean University.]
朱东丽,董迎辉,林志华,姚韩韩. 2012. 利用微卫星标记对文蛤4个壳色花纹品系的遗传分析[J]. 水产学报,36(2):202-209. [Zhu D L,Dong Y H,Lin Z H,Yao H H. 2012. Genetic analysis among four strains of different shell colors and decorative patterns of Meretrix meretrix using microsatellite markers[J]. Journal of Fisheries of China,36(2):202-209.] doi:10.3724/SP.J.1231.2012.27603.
Andriantahina F,Liu X L,Huang H. 2013. Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications[J]. PLoS One,8(9):e75206. doi:10.1371/journal.pone.0075206.
Botstein D,White R L,Skolnick M,Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,32(3):314-331.
Chen N,Luo X,Lu C K,Ke C H,You W W. 2017. Effects of artificial selection practices on loss of genetic diversity in the Pacific abalone,Haliotis discus hannai[J]. Aquaculture Research,48(9):4923-4933. doi:10.1111/are.13311.
Evans F,Matson S,Brake J,Langdon C. 2004. The effects of inbreeding on performance traits of adult Pacific oysters (Crassostrea gigas)[J]. Aquaculture,230(1-4):89-98. doi:10.1016/j.aquaculture.2003.09.023.
Gamfeldt L,Kallstrom B. 2007. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations[J]. Oikos,116(4):700-705.
Keller L F,Waller D M. 2002. Inbreeding effects in wild po-pulations[J]. Trends in Ecology and Evolution,17(5):230-241. doi:10.1016/S0169-5347(02)02489-8.
Singh E,Sharma O P,Jain H K,Sharma A,Ojha M. L,Saini V P. 2015. Microsatellite based genetic diversity and differentiation of common carp,Cyprinus carpio in Rajasthan(India)[J]. National Academy Science Letters,38(3):193-196. doi:10.1007/s40009-014-0340-6.
Wang L,Meng Z N,Liu X C,Liu X C,Zhang Y,Lin H R. 2011. Genetic diversity and differentiation of the orange-spotted grouper (Epinephelus coioides) between and wi-thin cultured stocks and wild populations inferred from microsatellite DNA analysis[J]. International Journal of Molecular Science,12(7):4378-4394. doi:10.3390/ijms 12074378.
Wang S Z,Hard J J,Utter F. 2001. Salmonid inbreeding:A review[J]. Reviews in Fish Biology and Fisheries,11(4):301-319. doi:10.1023/A:1021330500365.
Wang X B,Li Q,Yu H,Kong L F. 2016. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster(Crassostrea gigas) in China[J]. Journal of Ocean University of China,15(4):1039-1045. doi:10. 1007/s11802-016-3056-z.
Xing K,Gao M L,Li H J. 2014. Genetic differentiation between natural and hatchery populations of Manila clam (Ruditapes philippinarum) based on microsatellite mar-kers[J]. Geneticsand Molecular Research,13(1):237-245. doi:10.4238/2014.January.17.7.
Xu K F,Li Q. 2009. Inheritance pattern of microsatellite loci and their use for kinship analysis in the Japanese scallop Patinopecten yessoensis[J]. Journal of Ocean University of China,8(2):184-190. doi:10.1007/s11802-009-0184-8.
Xu L,Li Q,Xu C X,Yu H,Kong L F. 2019. Genetic diver-sity and effective population size in successive mass selected generations of black shell strain Pacific oyster (Crassostrea gigas) based on microsatellites and mtDNA data[J]. Aquaculture,500:338-346. doi:10.1016/j.aquaculture.2018.10.007.
Yu Z N,Guo X M. 2004. Genetic analysis of selected strains of eastern oyster(Crassostrea virginica) using AFLP and microsatellite markers[J]. Marine Biotechnology,6(6):575-586. doi:10.1007/s10126-004-3600-5.
Zhang J X,Li Q,Wang Q Z,Cong R H,Ge J L,Kong L F. 2018. The impact of successive mass selection on population genetic structure in the Pacific oyster(Crassostrea gigas) revealed by microsatellite markers[J]. Aquaculture International,26:113-125. doi:10.1007/s10499-017-0196-0.
Zhang K,Wang W J,Li W Y,Zhang Q Q,Kong J. 2014. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite mar-kers[J]. Journal of Ocean University of China,13:647-656. doi:10.1007/s11802-014-2208-2.
(責任编辑 兰宗宝)