低-特低渗透储层微观孔喉结构特征及对水驱油特征的影响
——以鄂尔多斯盆地渭北油田长3油层组储层为例
2021-08-03周永强龙卫江贺子箫吴可可朱玉双
何 辉,周永强,龙卫江,黎 明,贺子箫,王 肃,吴可可,朱玉双
(1.西北大学大陆动力学国家重点实验室,陕西西安 710069;2.西北大学地质学系,陕西西安 710069;3.中国石化河南油田分公司勘探开发研究院,河南郑州 450003)
低-特低渗透油藏具有孔喉结构复杂、油气渗流通道细小、流体与岩石界面及两相流体界面的相互作用明显、渗流阻力大、影响因素众多等特点,导致其产量低且下降快、稳产难度大、开发效果差等问题十分突出,也是中外油藏开发的难点问题[1-3]。油藏开发过程中的渗流特征、开发效果与储层微观孔喉结构特征密切相关,通过前人的研究,微观孔喉结构已从定性分析发展到定量分析孔隙、喉道的变化特征,且利用参数定量分析微观孔喉结构参数与水驱渗流特征的关系,对于研究低-特低渗透储层微观孔喉结构特征及其对水驱油效率的影响意义重大,但未能定性与定量相结合分析孔喉特征对于水驱油渗流特征及水驱油效率的影响[4-9]。渭北油田为典型的低-特低渗透油田,目前在补充能量开发过程中存在储层微观孔喉结构与流体可动用性关系不清楚、渗流机理不明确等问题。
真实砂岩微观水驱油实验通过显微镜下观察流体在储层岩石孔隙空间中的运移状态,可以更直观地观察水驱油渗流特征,定性地研究不同微观孔喉结构类型下水驱油规律及水驱油效率的影响因素[6]。笔者利用该实验,结合铸体薄片、扫描电镜、高压压汞和物性分析等手段,从微观孔喉结构入手,利用定性和定量相结合的方法,探究鄂尔多斯盆地渭北油田延长组长3油层组储层微观孔喉结构特征、水驱油渗流特征及其影响因素,以期为研究区储层高效开发、提高采收率提供理论依据。
1 区域地质概况
渭北油田地处陕西省宜君县和旬邑县,区域构造上横跨伊陕斜坡和渭北隆起,区内构造表现为极平缓单斜,地层东高西低,倾角约为30°,断层不发育,无断块构造圈闭(图1)。主要含油层系为三叠系延长组长3 油层组,常见局部发育天然裂缝[10-13]。研究表明,渭北油田长3 油层组发育的沉积微相主要有三角洲前缘水下分流河道、分流间湾、河口坝等,这些组合构成三角洲前缘亚相,总体表现为向湖盆推进的三角洲沉积体系,以水下分流河道微相为主。
图1 渭北油田区域构造位置Fig.1 Structural location of the Weibei Oilfield
2 储层特征
2.1 岩石学特征
研究区长3 油层组储层为一套灰色、灰褐色细砂岩,粒径主要为0.07~0.24 mm,碎屑颗粒多呈次棱-次圆状,分选、磨圆中等,岩石类型为长石岩屑质石英砂岩、长石砂岩及岩屑长石砂岩,以长石岩屑质石英砂岩和长石砂岩为主(图2)。储层碎屑组分中,以石英含量最高,长石次之,岩屑和填隙物含量最少,其平均含量分别为48.39%,21.56%,14.69%和10.77%。长石以钾长石和斜长石为主,岩屑多为火成岩屑和变质岩屑,沉积岩屑少见;填隙物主要由泥质杂基(图3a)、碳酸盐胶结物及黏土矿物组成,其中泥质杂基平均含量为2.1%;碳酸盐胶结物主要为方解石(图3b)、铁方解石和白云石,平均含量分别为3.52%,1.07%和0.87%;黏土矿物主要为绿泥石、高岭石、伊/蒙混层以及少量的伊利石(图3c,3d),平均含量分别为1.14%,0.57%,0.71%和0.25%。此外,填隙物中还含有少量其他组分,如黄铁矿、菱铁矿等,总含量为0.55%。
图2 渭北油田长3油层组主要岩石类型Fig.2 Main rock types in the Chang3 reservoir of Weibei Oilfield
图3 渭北油田长3油层组储层主要填隙物类型Fig.3 Main interstitial material types of Chang 3 reservoir in Weibei Oilfield
2.2 物性特征
研究区长3 油层组储层802 块样品的物性测试统计结果表明(图4),长3油层组储层的孔隙度主体分布于6%~15%,平均为12.23%,孔隙度小于15%的储层占总储层的94.6%;渗透率主要集中分布于0.1~1.0 mD,平均为0.76 mD,小于1.0 mD 的储层占总储层的91.9%。整体表现为低孔、低-特低渗透储层特征。
图4 渭北油田长3油层组储层物性分布频率Fig.4 Frequency histogram of physical property distribution in Chang 3 reservoir of Weibei Oilfield
3 微观孔喉结构特征
3.1 孔喉类型
通过扫描电镜、铸体薄片等资料分析表明,研究区长3 油层组储层面孔率为0.58%~7.42%,平均为3.21%;储层孔隙类型主要为粒间孔(图5a)、粒间溶孔(图5b)和粒内溶孔(图5c),少见晶间孔(图5d)。其中,粒间溶孔含量最高,平均面孔率约为1.59%,占总孔隙的比例为49.64%;粒间孔次之,平均面孔率为0.73%,占总孔隙的比例为22.85%;粒内溶孔的平均面孔率为0.63%,占总孔隙的比例为19.73%,研究区粒内溶孔主要为长石溶孔,岩屑溶孔含量较少;晶间孔含量最少,平均面孔率为0.25%,占总孔隙的比例为7.79%。研究表明,渭北油田长3 油层组储层粒间溶孔较为发育,主要原因在于原始沉积颗粒较为细小,且沉积过程中的压实作用使粒间孔不断减小,在成岩过程中溶蚀作用较为普遍,长石以及充填于粒间孔隙中的部分物质发生溶蚀作用,形成不规则的港湾状粒间溶孔[14]。
研究区喉道类型主要有片状(图5e)和缩颈状(图5f)2 类。片状喉道主要是砂岩颗粒在成岩过程中受到压实、压溶作用等紧密的排列在一起,孔隙空间大幅减小,颗粒间呈线接触、凹凸接触,形成片状喉道。当颗粒排列较为紧密或胶结物环边式胶结时,喉道较为狭小,形成的喉道为缩颈状喉道。研究区2种类型喉道配位数较低,多为1~2,喉道连通性较差。
图5 渭北油田长3油层组储层孔喉类型Fig.5 Pore throat types of Chang 3 reservoir in Weibei Oilfield
3.2 孔喉结构特征
储层品质的优劣直接受到微观孔喉结构的影响,孔隙、喉道的微观结构特征对储集空间中的油气分布以及渗流特征有着决定作用,不同孔喉结构的渗流特征也有差异[15-16]。因此,对于研究区长3油层组储层孔喉结构特征的研究是渗流特征分析的关键。此次针对研究区目的层10块岩心样品,通过高压压汞资料对比分析毛管压力曲线形态以及孔喉半径分布特征,将渭北油田长3 油层组储层孔喉结构划分为Ⅰ,Ⅱ和Ⅲ类共3种类型。
Ⅰ类孔喉结构以低排驱压力、细喉道为主。样品物性相对较好,平均孔隙度为14.03%,平均渗透率为1.42 mD,占总样品数的40%。该类孔喉结构汞注入压力较低,毛管压力曲线呈陡斜式且偏向左下方,排驱压力相对较低,平均为0.49 MPa;主流孔喉半径为0.98~2.59 μm,平均为1.58 μm;分选系数为0.78~2.75,平均为1.51;最大进汞饱和度为80.51%~91.50%,平均为87.90%(表1,图6a)。孔喉半径分布范围较大,为0.004~2.05 μm,孔喉半径集中分布在0.51~2.05 μm(图6b),大孔喉含量高,同时存在部分小孔喉,孔喉大小杂乱分布,分选性差。Ⅰ类孔喉结构主要孔隙类型为粒间溶孔、残余粒间孔及长石溶孔,喉道以片状、缩颈状喉道为主(表1)。该类孔喉结构的渗流能力最好,主要分布于水下分流河道微相中部。
Ⅱ类孔喉结构以中等排驱压力、微细喉道为主。该类孔喉结构汞注入压力较Ⅰ类略高,毛管压力曲线具有较短的平台且处于Ⅰ类的右上方;Ⅱ类孔喉结构物性开始变差,平均孔隙度为11.41%,平均渗透率为0.56 mD,占总样品数的30%;排驱压力增高,平均为1.86 MPa;主流孔喉半径为0.33~0.40 μm,平均为0.37 μm;分选系数为0.09~1.86,平均为0.95;最大进汞饱和度为84.04%~93.76%,平均为89.17%(表1,图6a)。孔喉半径为0.004~0.79 μm,集中分布在0.20~0.79 μm(图6b),孔喉半径分布范围有所减小,分选性相对较好。Ⅱ类孔喉结构的孔隙类型以粒间溶孔、残余粒间孔为主,喉道以片状、缩颈状喉道为主(表1)。Ⅱ类孔喉结构渗流能力弱于Ⅰ类,主要分布于靠近水下分流河道微相边部位置。
Ⅲ类孔喉结构以高排驱压力、微喉道为主。该类样品物性最差,平均孔隙度为8.33%,平均渗透率为0.14 mD,占总样品数的30%。Ⅲ类孔喉结构汞注入压力最高,毛管压力曲线呈现缓斜式偏向右上方,排驱压力最高,平均为8.01 MPa;主流孔喉半径为0.03~0.05 μm,平均为0.04 μm;分选系数为0.010~0.014,平均为0.012;最大进汞饱和度为73.65%~82.35%,平均为79.37%(表1,图6a)。孔喉半径分布范围相对较小,为0.004~0.13 μm,集中分布在0.006~0.04 μm(图6b)。该类孔喉分布较为均匀,以小孔喉为主,分选性最好;孔隙类型以粒间溶孔、晶间孔为主,喉道主要为片状喉道(表1)。Ⅲ类孔喉结构的渗流能力最差,主要分布于水下分流河道微相边缘。
图6 渭北油田长3油层组储层不同类型孔喉结构毛管压力及孔喉半径分布曲线Fig.6 Curves of capillary pressure and radii of different pore throat structures in Chang 3 reservoir of Weibei Oilfield
表1 渭北油田长3油层组储层常规压汞孔喉结构参数统计Table1 Statistics of pore throat structure parameters under conventional mercury injection in Chang 3 reservoir of Weibei Oilfield
4 微观水驱油渗流特征
4.1 实验材料及步骤
本次研究主要利用渭北油田长3油层组砂岩样品,制作微观砂岩模型的长、宽、厚为3.5 cm×3.5 cm×0.08 cm,承压能力为0.2 MPa,耐温200 ℃。微观砂岩模型精细制作技术不仅保留了储层岩石本身的孔喉结构特征,还保留了岩石表面物理性质及部分填隙物,使研究结果可信度大大增加[17-19]。为最大程度模拟研究区水驱油过程,依据实际注入水性质及成分配制实验所用模拟水;据渭北油田长3油层组原油性质配制模拟油,黏度约为3.34 mPa·s。实验中为了便于观察流体的渗流特征,将模拟水中加入甲基蓝使其呈蓝色,模拟油中加入油溶红使其呈红色。
实验步骤主要为:①将砂岩模型抽真空后饱和地层水。②测量饱和水状态下模型的渗透率,共测3 次取平均值。③使用模拟油驱替地层水(即饱和油过程)后,统计原始含油饱和度。④模型水驱油实验,观察水驱油过程中的流体渗流特征及残余油分布特征,并计算驱油效率。⑤在实验过程中准确记录实验数据并采集图像,实验完成后进行图像分析和数据处理。
4.2 不同类型孔喉结构渗流特征
选取研究区10 块砂岩样品进行微观水驱油渗流实验,研究发现孔道内与孔隙网络中的水驱渗流特征有很大差异。孔道内水驱油方式主要有活塞式和非活塞式2 种类型;孔隙网络中的水驱油驱替方式有均匀状、网状-均匀状、网状以及指状-网状驱替等。研究区3种孔喉类型的水驱油渗流特征具有较大的差异。
4.2.1 孔道内渗流特征
活塞式驱替是注入水在孔道中均匀前进,能够最大程度地将原油驱替出孔隙,孔喉中形成的残余油较少或没有,驱油较为彻底。非活塞式驱替是注入水在孔道中前进速度不均匀,在孔道中央或边缘前进速度较快,在这种情况下,容易产生残余油,驱油不彻底。
孔道内的渗流特征受孔喉大小及储层润湿性的影响。研究区储层润湿性以弱亲水性为主,因此孔道内的驱替方式主要受孔喉结构影响。研究区Ⅰ类孔喉结构最好,孔道内水驱油方式以活塞式驱油为主(图7a,7b),非活塞式驱替较少,驱油较为彻底,驱油效率相对较高,平均驱油效率为51.4%(表2);Ⅱ类孔喉结构较Ⅰ类差,以活塞式驱油为主,驱油效率有所下降,平均驱油效率为39.8%(表2);Ⅲ类孔喉结构最差,孔道内水驱油方式以非活塞式驱油为主(图7c,7d),活塞式驱油少见,水驱油后孔喉中大量原油残余,驱油效率最低,平均驱油效率为34.3%(表2)。
表2 微观砂岩模型孔道内驱油方式统计Table2 Statistics of water displacement patterns in microscopic sandstone model
图7 渭北油田长3油层组孔道内水驱油类型Fig.7 Water displacement types in pores of Chang 3 reservoir in Weibei Oilfield
4.2.2 孔喉网络中渗流特征
Ⅰ类孔喉结构 该类孔喉结构包括5块实验样品,平均孔隙度为13.5%,平均液测渗透率为0.047 mD(表3);平均中值孔喉半径为0.21 μm,平均主流孔喉半径为1.58 μm(表1)。Ⅰ类孔喉结构渗流特征最好,储层物性最好,无水期驱替阶段驱替路径主要有均匀状和网状2 种类型,驱油效率为16.8%~42.1%,平均为27.3%;最终期驱替路径主要为均匀状以及网状-均匀状2 种类型,平均驱油效率为51.4%。实验中通过显微图像采集系统观察到,Ⅰ类孔喉结构中2 种不同驱替类型的渗流特征不同。均匀状驱替在驱替初期,地层水由模型入口端进入,形成多条渗流通道,每条渗流路径地层水向前推进的速度较为稳定,且各路径的模拟地层水渗流速度各有差异,但相差不大,整体呈现出一种均匀推进状态(图8a);无水期驱替阶段结束时,随着驱替时间、驱替压力以及地层水注水倍数的增加,始终呈均匀状向出口端驱替(图8b),水驱波及面积较均匀且最终波及面积大,且无水期驱替阶段以及最终期驱油效率均较高。网状驱替初期,注入水由入口端孔隙较大的通道进入,形成多条注水线以枝叉状无规则向前推进,水驱前缘呈水网状突进,突破后在后缘形成网状水驱通道(图8c),无水期驱替阶段之后升高驱替压力,网状水驱通道逐渐连接成片,渗流路径幅度逐渐增宽,最终形成均匀状驱替(图8d),网状-均匀状驱替的无水期、最终期驱油效率较均匀状驱替低。
Ⅱ类孔喉结构 该类孔喉结构包括3 块样品,平均孔隙度为10.7%,平均液测渗透率为0.024 mD(表3),平均中值半径为0.1 μm,主流孔喉半径为0.37 μm(表1)。样品孔喉结构及物性较Ⅰ类差,无水期驱替阶段主要为网状驱替,平均驱油效率为19.8%,最终期也以网状驱替为主,平均驱油效率为39.8%(表3)。无水期驱替阶段,注入水呈网状向前伸展(图8e),水驱油后期随着驱替进行,注入水逐渐突破小孔隙,沿原始路径不断向四周扩散,形成树枝状细路径,水驱网格逐渐变小、变密,水驱波及面积扩大(图8f)。驱油效率相较于均匀状以及网状-均匀状驱替低。
Ⅲ类孔喉结构 Ⅲ类孔喉结构的物性均为研究区最差的类型,包括2 块样品,平均孔隙度为7.3%,平均液测渗透率为0.014 mD(表3),平均中值半径为0.02 μm,主流孔喉半径为0.04 μm(表1)。该类孔喉结构在无水期驱替阶段,注入水最先进入毛管阻力较小的大喉道,逐渐渗流进入与大孔喉连通的孔隙中,沿着一条或多条通道呈指状向前突进(图8g);该阶段水驱油绕流现象较为突出,造成大面积原油残余孔隙空间,水驱油效率较低,平均驱油效率为18.5%(表3)。驱替后期随着不断加压以及增加注水倍数,指状通道加宽加粗,且相互连通,逐渐转变为网状驱替(图8h),最终期平均驱油效率为34.3%(表3)。
图8 渭北油田长3油层组孔隙网络中水驱油渗流特征Fig.8 Water displacement percolation characteristics in pore networks of Chang 3 reservoir in Weibei Oilfield
表3 渭北油田长3油层组砂岩模型微观水驱油实验结果统计Table3 Results of microscopic water displacement experiments on sandstone models for Chang 3 reservoir in Weibei Oilfield
5 水驱油效率影响因素
储层微观水驱油效率影响因素的研究有助于提高采收率以及调整油藏注水开发方案[20-23]。室内实验研究结果表明,储层物性、孔喉结构、驱替压力、注水倍数等因素均制约低-特低渗透储层水驱油效果,笔者针对这4 个因素分析其对水驱油效率的影响。
5.1 储层物性
通过真实砂岩微观水驱油实验研究发现,储层物性对于水驱油效率具有一定的影响。实验样品的驱油效率与储层物性均呈正相关关系(图9),无水期驱替阶段孔隙度和渗透率与驱油效率的相关性要好于最终期(图9),究其原因为低-特低渗透储层的物性差异相对较小,在无水期驱替阶段,注入水均沿着模型高孔渗带进行驱替,水驱绕流现象较为严重,除个别物性好的模型外,无水期驱替阶段的水驱油效率相差较小(表3),储层物性与无水期驱替阶段驱油效率之间的相关关系较弱。无水期驱替阶段之后,随着注入压力升高,物性相对较好的模型,注入水突破毛管阻力后会进入大部分孔喉中,促使渗流路径增多、加宽,水驱波及面积增大,驱油效率增幅较大,最终期驱油效率相对较高;物性较差的模型,因毛管阻力大,大部分孔喉注入水无法突破毛管阻力进入其中,水驱路径以及水驱波及面积变化较小,最终驱油效率较低,因此,相较于无水期驱替阶段,最终期驱油效率与储层物性的相关关系较好。储层物性越好的样品,渗流路径多且水驱波及面积广,驱油效率越好。
图9 渭北油田长3油层组储层物性与驱油效率关系Fig.9 Relationship between physical properties and water displacement efficiencies in Chang 3 reservoir of Weibei Oilfield
5.2 孔喉结构
砂岩储层的微观孔喉结构决定着流体在储层渗流通道中流动的难易程度,控制着渗流特征。同时,孔喉结构的差异也是造成水驱油效率不同的重要因素[24-25]。
通过样品水驱油效率与孔喉结构参数的相关性分析可知:研究区长3 油层组储层主流孔喉半径与驱油效率具有正相关关系,且最终期的相关系数高于无水期(图10a);主流孔喉半径为孔喉对渗透率累积贡献达95%之前的孔喉半径的加权平均值,主流孔喉半径对渗流能力起主要的控制作用[26-27],主流孔喉半径越大,对渗透率的贡献越大,样品的渗透率相对较高,最终驱油效率越高。排驱压力与驱油效率呈负相关关系,排驱压力与无水期驱替阶段驱油效率的相关性较差,与最终期驱油效率的相关性较好(图10b);排驱压力为其对应孔隙系统中最大连通孔隙所相应的毛管压力,可反映储层孔喉半径的大小;排驱压力越低,储层物性越好,对应的孔喉半径越大;对于大孔喉半径样品,水驱油渗流过程中的渗流路径较宽,水驱波及面积大,绕流现象较少,驱油效率相对较高。分选系数与驱油效率呈正相关性,驱油效率随着分选系数的增大而升高(图10c);大孔喉占比较高,储层物性相对较好时,分选系数较大(表1);分选系数较小时,其对应的样品物性差,孔喉细小,驱油效率低;反之,样品物性较好,大孔喉占比高,驱油效率高。
图10 渭北油田长3油层组孔喉结构参数与驱油效率关系Fig.10 Relationship between pore throat structure parameters and displacement efficiencies in Chang 3 reservoir of Weibei Oilfield
5.3 驱替压力
由真实砂岩微观渗流实验可知,研究区长3 油层组储层整体孔隙较小,喉道相对狭窄、连通性差,砂岩模型在同一压力条件下水驱至出口端不再出油时,模型中可见大量的残余油,此时增加注入压力,模型中的油水分布状态发生变化。部分孔喉中残余的厚油膜逐渐减薄,部分原油被驱替出孔隙;因绕流未波及到的孔隙,随着压力的增加再次被波及,孔隙中的原油被注入水替换,残余油含量减少;小孔隙中的残余油因驱替压力的升高而造成油水的重新分布,大部分被带到大孔隙中,最终被驱替排出[28-30]。
由模型驱替实验相关数据分析可知:随着驱替压力的增加,研究区长3 油层组的3 类孔喉结构样品的驱油效率随之增大(图11),但驱油效率增长率不断减小(图12),当压力增大到一定程度时,不再有原油被驱替出来,水油驱替达到平衡。分析这种变化的主要原因为,在驱替初期,驱替路径随着压力的增大变宽、变多,当主要的驱替路径形成后,继续增加压力,孔喉中因绕流形成的残余油以及厚油膜会再次被驱动,油膜厚度逐渐减薄,但只有少量的残余油可以驱替出来,因此驱替后期增加压力对于水驱油效率的增幅不明显。
图11 渭北油田长3油层组驱替压力与驱油效率关系Fig.11 Relationship between displacement pressures and displacement efficiencies in Chang 3 reservoir of Weibei Oilfield
图12 渭北油田长3油层组驱替压力与驱油效率增长率关系Fig.12 Relationship between displacement pressures and growth rates of water displacement efficiencies in Chang 3 reservoir of Weibei Oilfield
5.4 注水倍数
研究注水倍数对微观水驱油效率影响时,为了避免压力的干扰,选取在同一压力条件下(0.12 MPa),注水倍数分别为1,2 和3 PV 时进行实验,并统计相应的驱油效率。由实验结果可知,在增加注水倍数后,3 类孔喉结构注入水的波及面积进一步扩大,且水驱体积倍数越大,水驱油效率均有较大幅度提高,但当注水倍数达到2 PV 后,随着注水倍数的增大,驱油效率增幅较小(图13)。提高注水倍数对于水驱油效率的影响作用为,大量的注入水可使因绕流形成的残余油部分被驱替出来,残余在孔壁的油膜被水替换出来,油膜逐渐减薄,使得驱油效率升高[31-32];此外,研究区黏土矿物含量较高,过多的注入地层水,使储层中的黏土矿物被冲散,堵塞在孔喉细小处,造成储层敏感性伤害,反而会影响水驱油效率。因此在开发生产过程中,应合理控制注水倍数,防止储层伤害的发生而影响驱油效率。
图13 渭北油田长3油层组注水倍数与驱油效率关系Fig.13 Relationship between water injection multiples and water displacement efficiencies in Chang 3 reservoir of Weibei Oilfield
6 结论
渭北油田延长组长3 油层组储层主要发育灰色、灰褐色长石岩屑质石英砂岩和长石砂岩,平均孔隙度为12.23%,平均渗透率为0.76 mD,属于低孔、低-特低渗透储层;储层粒间孔、粒间溶孔及粒内溶孔发育,以片状、缩颈状喉道为主,且整体孔喉较为细小,孔喉连通性较差。根据毛管压力曲线、孔喉半径分布曲线特征及相应参数,将研究区长3油层组孔喉结构划分为Ⅰ,Ⅱ和Ⅲ共3种类型。这3类孔喉结构对应的渗流特征以及驱油效率差异明显。Ⅰ和Ⅱ类孔喉结构孔道内以活塞式驱油为主,Ⅲ类孔喉结构主要为非活塞式驱油;孔隙网络中Ⅰ类孔喉结构的驱替方式主要为均匀状、网状-均匀状,Ⅱ类孔喉结构为网状驱替,Ⅲ类孔喉结构主要为指状-网状;由Ⅰ—Ⅲ类孔喉结构,孔喉半径逐渐减小,孔喉间连通性依次变差,渗流能力减弱,驱油效率降低。影响水驱油效率的主要因素包括储层物性、孔喉结构、驱替压力以及注水倍数。储层物性与水驱油效率密切相关,物性越好,水驱油效率越高;孔喉结构不同水驱油效率不同,孔喉结构是影响驱油效率的重要因素;提高驱替压力以及注水倍数,可在一定范围内提高水驱油效率。