APP下载

利用导数讨论函数的单调性

2021-07-11许莉

中学教学参考·理科版 2021年5期
关键词:单调性导数函数

许莉

[摘 要]导数是研究函数性质的一个重要工具,利用求导研究含参函数的单调性是高考的热点,也是学生感到棘手的一个问题.文章结合实例,分类讨论研究导数与函数的单调性之间的关系.

[关键词]导数;函数;单调性

[中图分类号]    G633.6        [文献标识码]    A        [文章编号]    1674-6058(2021)14-0030-02

一、利用导数求函数的单调区间

小结:利用导数判断函数单调性的一般步骤:第一步,求函数的定义域;第二步,求导数[f ′(x)],其中求导后若有分母就考虑通分,若能因式分解就要因式分解,不能因式分解再考虑求根公式或者其他化简;第三步,在函数[f(x)]的定义域内解不等式[f ′(x)>0]和[f ′(x)<0];第四步,写出函数[f(x)]的单调区间.

二、利用导数讨论含参数函数的单调性

小结:求导后导函数为含参的二次函数,但是不能判断导函数是否有零点,则需要根据判别式的正负从而得到“存在零点”和“不存在零点”的分类标准,当判别式大于零时,还要判断是否可以比较两零点的大小,以及零点与定义域的关系,做到分类有序、不重不漏[[2]].

通过以上例题发现,利用导数研究函数的单调性是一个有效的工具.利用导数求含参函数单调性的分类标准为:(1)求导后若导函数为含参数的一次函数,可以根据含参数的一次函数进行分类讨论.(2)求导后若导函数为含参数的二次函数,若求导后不能判断开口方向的,分类的标准是先讨论二次函数的开口方向,再讨论是否存在零点;若求导后导函数可以直接因式分解得到零点,则分类标准是直接对零点进行分类讨论;若求导后导函数确定了开口方向,但是不能判断是否有零点,则分类标准是直接对判别式进行分类讨论[[3]].而在分类时要做到不重不漏.

[   參   考   文   献   ]

[1]  祝敏芝.利用导数研究函数的单调性问题[J].中学数学教学参考,2020(Z1):130-133.

[2]  王历权,范美卿,金雷.利用导数研究函数的单调性问题[J].中学数学教学参考,2019(7):36-39.

[3]  陈达辉.利用导数研究函数单调性的几种类型[J].数学学习与研究,2019(8):97.

(责任编辑 陈 昕)

猜你喜欢

单调性导数函数
二次函数
解导数题的几种构造妙招
二次函数
函数备考精讲
关于导数解法
导数在圆锥曲线中的应用
高中函数单调性教学探析
函数与导数