APP下载

三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质

2021-05-26刘当玲王诗敏高智慧徐露富夏书标

储能科学与技术 2021年3期
关键词:钠离子室温无机

刘当玲,王诗敏,高智慧,徐露富,夏书标,郭 洪

(1云南大学材料与能源学院,云南 昆明650091;2曲靖师范学院化学与环境科学学院,云南 曲靖655011)

钠和锂化学性质相似、成本低,钠离子电池也越来越受研究者关注。目前,商业化钠离子电池大多使用有机电解液,存在易泄漏、易燃等潜在安全问题,使用固态电解质替代有机电解液可提高钠离子电池安全性[1-2]。其中,聚氧化乙烯(PEO)因出色的热稳定性和力学性能,被研究者广泛关注[3-4],但室温下较低的离子电导率会影响电池性能[5-6]。因此开发室温高离子电导率、良好力学性能的PEO 基固态电解质,对全固态钠离子电池的发展具有重要的理论指导意义[7-11]。

通过有机共聚/共混/交联等方式可有效提高PEO离子电导率。Moreno等[12]通过在PEO基中添加钠盐,将双三氟甲基磺酰亚胺钠(NaTFSI)作为无机溶质溶入PEO 基中时,离子电导率显著提高。无机钠盐的引入,可有效降低聚合物的熔融温度(Tm)及玻璃化转变温度(Tg)[13],同时增加聚合物室温时无定形区域。与单独的无机固体电解质(ISE)或有机固体电解质(OSE)相比,有机-无机复合体系提高OSE 离子电导率的同时保留了其与电极接触时良好的界面兼容性。因此,合适无机钠盐的引入有利于制备综合性能良好的PEO 基电解质。Na3Zr2Si2PO12(NZSPO)是一类高室温离子电导率的快离子导体型(NASCION)ISE[14],将NZSPO与PEO结合,构筑刚柔并济的柔性有机-无机复合固态电解质可有效提高PEO 基电解质的离子电导率并改善界面效应[15-17]。

鉴于此,本试验以PEO 为基体,将无机导电型颗粒NZSPO与PEO制备溶液,以静电纺丝的方法构筑三维钠微结构-有机/无机复合的NZSPO/PAN-[PEO-NaTFST]复合固体电解质。无机颗粒的引入抑制了PEO 室温下结晶,提高了PEO 基体的离子电导率,同时增加PEO 的电化学窗口。通过交流阻抗、循环伏安(CV)等方法,探索NZSPO 与PEO 的最优质量比;组装钠离子电池,研究NZSPO对PEO基电解质电化学性能的影响。

1 实 验

1.1 三维纤维网络NZSPO/PAN的制备

通过溶胶-凝胶结合高温固相反应,合成尺寸均一的纳米快离子导体型无机颗粒Na3Zr2Si2PO12。称取1 g PAN溶于N,N-二甲基甲酰胺(DMF)中配制质量分数为10%的溶液。完全溶解后,加入(NZSPO∶PAN质量比为1∶1、2∶1、3∶1)无机导电颗粒,于60 ℃剧烈搅拌10 h 以获得静电纺丝前驱液。通过控制静电纺丝工艺参数(高压电15 kV,喷头流速1 mL/h,喷头与接收器距离15 cm,接收器转速600 r/min)纺出纤维尺寸均一的NZSPO/PAN复合纳米纤维膜。随后,将所制备的复合纤维膜于真空干燥箱内80 ℃真空干燥24 h。

1.2 复合固体电解质NZSPO/PAN-[PEO-NaTFST]的制备

使用溶液浇注法制备复合固体电解质。在使用前,将双三氟甲基磺酰亚胺钠(NaTFSI)和PEO 在80 ℃下真空干燥24 h,并置于手套箱内称量。将PEO溶于无水乙腈中配制质量分数为12%的溶液,加入NaTFSI(摩尔比[PEO]∶[NaTFSI]=15∶1),室温下,手套箱内密封搅拌24 h。随后,将其浇注到NZSPO/PAN 复合纳米纤维膜上,使其自然流平,置于手套箱内自然干燥24 h后真空干燥箱60 ℃干燥24 h以获得3D纤维网状增强型双连续复合固体电解质材料NZSPO/PAN-[PEO-NaTFST]。

1.3 复合固体电解质NZSPO/PAN-[PEO-NaTFST]的表征测试

利用扫描电子显微镜(SEM),型号S-3400N、厂家日本日立(HITACHI)公司;X 射线衍射(XRD),型号D/max-2300、厂家日本Rigaku公司;热重分析(TGA)、差示扫描量热分析(DSC),型号梅特勒TGA/DSC/1600LF 至尊型、厂家瑞士METTLER TOLEDO 公司;等多种测试方法进行物相及微观结构表征。以Na3V2(PO4)3作为正极活性材料,活性物质质量(2.0±0.3) mg,复合固体电解质NZSPO/PAN-[PEO-NaTFST]为隔膜、钠片为参比电极组装全固态钠离子电池(2025式纽扣电池)。在薄膜拉伸强度试验仪(DLS-07 PC)上测试材料室温下抗拉强度,新威电池检测设备和LAND电池检测设备上进行恒流充放电测试,测试电压范围为0.001~4 V。两边以不锈钢作为对称电极,通过电化学工作站,在频率1000 kHz~1 Hz 测试其交流阻抗。

2 结果与讨论

2.1 复合固体电解质的物相及形貌表征

通过溶胶-凝胶法结合高温固相反应,合成尺寸均一的纳米快离子导体型无机颗粒NZSPO,将NZSPO与PEO制备复合纤维膜,结果如下:图1(a)为Na3Zr2Si2PO12的XRD 图谱,与标准PDF 卡片(JPCDS#33-1313)对比可知,所制备的Na3Zr2Si2PO12具有C2/c 空间群的纯相菱面体NASICON 结构[15]。图1(b)为Na3Zr2Si2PO12的SEM 图,SEM 图中可清楚看到无机颗粒分布均匀,平均粒径约为20 nm。图2 为不同质量比NZSPO-PAN 复合纤维SEM 图,由复合纤维的SEM 图像可知,所制备的纤维表面光滑,纤维直径约为300 nm,随着Na3Zr2Si2PO12与PAN质量比的增加,纤维直径减小。图2(e)、(f)表明当Na3Zr2Si2PO12与PAN 的质量比为2∶1 时,Na3Zr2Si2PO12颗粒可均匀分散在PAN 纤维内;图2(g)、(h)为当Na3Zr2Si2PO12∶PAN比例为3∶1时,可观察到明显的无机颗粒团聚现象。图3(a)、(b)分别为NZSPO/PAN 复合纤维膜和溶液浇注后2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜的光学图片。与纯NZSPO/PAN 复合纤维膜相比,PEO 填充后的纤维膜较为透明,可看出PEO 均匀地渗透进纤维之间;且样品在弯曲、扭曲时没有任何褶皱和裂缝,显示出优异的柔韧性。

图1 (a)Na3Zr2Si2PO12的XRD图谱;(b)Na3Zr2Si2PO12的SEM图Fig.1 (a)XRD pattern of Na3Zr2Si2PO12;(b)SEM image of Na3Zr2Si2PO12

图2 (a,b)纯纺PAN的SEM图;(c,d)Na3Zr2Si2PO12∶PAN质量比为1∶1的SEM图;(e,f)Na3Zr2Si2PO12∶PAN质量比为2∶1SEM图;(g,h)Na3Zr2Si2PO12∶PAN质量比为3∶1的SEM图Fig.2 (a,b)SEM image of pure spinning PAN;(c,d)SEM image of Na3Zr2Si2PO12∶PAN(1∶1);(e,f)SEM image of Na3Zr2Si2PO12∶PAN(2:1);(g,h)SEM image of Na3Zr2Si2PO12∶PAN(3∶1)

图4(a)为复合固体电解质膜的TG 曲线。可看出,复合固体电解质在150 ℃以下没有质量损失,即该温度范围内复合固体电解质膜稳定[18]。PEO15-NaTFSI 和2NZSPO/PAN-[PEO15-NaTFSI]的DSC 曲线如图4(b)所示,黑色曲线在62.8 ℃出现明显的吸热峰,该峰为PEO15-NaTFSI 电解质的熔融温度(Tm),红色曲线为2NZSPO/PAN-[PEO15-NaTFSI],吸热峰向低温(58.2 ℃)移动且强度大为减弱,说明加入NZSPO 后,复合固体电解质Tm降低,同时降低PEO 聚合物的玻璃化转变温度(Tg)。以上结果均表明PEO 聚合物非晶相比例增加,即NZSPO-PAN 复合纤维可在低温下抑制PEO 聚合物的结晶同时加速离子传输动力学过程[13]。图4(c)为室温下纯PEO 和2NZSPO/PAN-[PEO15-NaTFSI]的拉伸曲线。可看出,灌入NZSPO 后,复合纤维膜的抗拉强度得到提升。TGA 曲线和拉伸曲线均证实了复合纤维膜的物理性质得到改善。

图3 (a)NZSPO/PAN复合纤维膜的光学图片;(b)2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜的光学图片Fig.3 (a)optical picture of NZSPO/PAN composite fiber membrane;(b)optical picture of 2NZSPO/PAN-[PEO15-NaTFSI]composite solid electrolyte membrane

图4 (a)2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜的TG曲线;(b)PEO15-NaTFSI和2NZSPO/PAN-[PEO15-NaTFSI]的DSC曲线;(c)2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜和纯PEO拉伸曲线Fig.4 (a)TG curves of 2NZSPO/PAN-[PEO15-NaTFSI]composite solid electrolyte membrane;(b)DSC curves of PEO15-NaTFSI and 2NZSPO/PAN-[PEO15-NaTFSI];(c)tensile curves of 2NZSPO/PAN-[PEO15-NaTFSI]composite solid electrolyte membrane and pure PEO

2.2 复合固体电解质电化学性能

图5 (a)PEO15-NaTFSI,(b)xNZSPO/PAN-[PEO15-NaTFSI](x=1,2,3)复合固体电解质的交流阻抗谱图;(c)不同比例复合固体电解质的Arrhenius图Fig.5 (a)AC impedance spectrum of PEO15-NaTFSI,(b)xNZSPO/PAN-[PEO15-NaTFSI](x=1,2,3)composite solid electrolyte;(c)Arrhenius plot of composite solid electrolyte with different proportions

复合固体电解质的离子电导率依赖聚合物非晶链段的运动,对室温下复合固体电解质的电化学性能进行表征。图5(a)、(b)所示分别为室温下PEO15-NaTFSI、xNZSPO/PAN-[PEO15-NaTFSI](x=1,2,3)复合固体电解质的交流阻抗谱图。室温下,该阻抗谱线高频区呈现出一个不规则的半圆,圆弧与实轴的右交点即为复合固体电解质的体电阻(Rb)[19]。低频区直线可解释为典型阻塞型电极的电容行为,主要是电解质于电极表面抵抗离子导电时产生的阻碍[20]。复合固体电解质的离子电导率(σ)通过σ=d/RbA计算,式中d、A 和Rb分别为试样厚度、面积和试样的体电阻[21]。当NZSPO∶PAN 质量比为2∶1(2NZSPO/PAN-[PEO15-NaTFSI])时,复合固体电解质室温离子电导率达到3.38×10−5S/cm,明显高于PEO-NaTFSI。图5(c)和表1 结果表明,通过引入不同质量比的NZSPO,复合固体电解质离子电导率、离子迁移数得到提升。这是由于无机导电颗粒的引入可以促进相邻聚合物链之间的相互作用并减少节段重新取向,提高聚合物链段的运动[22-23]。DSC 曲线证实了由于无机颗粒的引入,聚合物非晶相比例增加,玻璃化转变温度降低。复合固体电解质的离子电导率提高可归因于纳米填料NZSPO中Na+的贡献。NZSPO 中的Na+可被没有钠盐的PAN基质吸收,增加NZSPO表面钠空位,从而显著提高复合固体电解质的离子电导率[21]。当NZSPO∶PAN质量比为3∶1时,复合固体电解质的离子电导率降低,SEM 可观测到无机纳米颗粒的团聚,说明随着无机颗粒比例的增加,聚合物节段重新定向,晶界阻抗增加[24]。

表1 复合固体电解质离子迁移数Table 1 Ion migration number of composite solid electrolyte

图6(a)为2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质的LSV 曲线。在4.4 V 前,没有观察到峰值或明显的氧化电流,这表明复合电解质在此电位下是稳定的。使用2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质代替传统钠离子电池的液体电解质和隔膜,组装NVP/2NZSPO/PAN-[PEO15-NaTFSI]/Na 全固态钠离子电池,测试复合固体电解质材料的电化学性能,在2.5~3.8 V的电压范围内测试其循环稳定性。图6(b)显示了在0.1 C下NVP/SPE/Na和NVP/CPE/Na 电池的首次充放电曲线。NVP/CPE/Na 电池的可逆容量为109.7 mA·h/g,初始库仑效率为94%,而使用PEO15-NaTFSI 作为固体电解质的电池可逆容量为97.2 mA·h/g,初始库仑效率为89.4%。NVP/CPE/Na 电池极化程度(0.06 V)小于NVP/SPE/Na(0.13 V)电池。

图7(a)、(c)分别显示了NVP/CPE/Na电池在室温、0.1 C 恒电流密度下的循环性能及0.1~0.5 C的倍率性能;图7(a)0.1 C 下NVP/CPE/Na 循环曲线显示,首次充放电容量达109.7 mA·h/g,在0.1 C下200次循环后容量为84.5 mA·h/g,容量保持77%,库仑效率接近100%,表现出优异的循环稳定性。图7(c)倍率性能图显示电池在0.5 C 的高电流密度下也具有出色的倍率性能,当电流密度回到0.2 C 时,可逆容量几乎可以恢复,库仑效率随循环次数稳定增加,并保持在99%。图7(b)、(d)分别显示了NVP/SPE/Na 电池在室温条件下,在0.1 C 恒电流密度下的循环性能及其在0.1~0.5 C的倍率性能。图8(b)所示NVP/SPE/Na在115个循环内容量发生明显衰减,0.5 C 的高电流密度时无法获得容量,当电流密度回到0.2 C 时,容量发生衰减。NVP/CPE/Na全固态电池出色的电化学性能可归因于复合固体电解质的高离子电导率以及复合固体电解质与电极材料的柔性接触界面[25-26]。

图6 (a)60 ℃下,通过线性扫描伏安法以0.1 mV/s的扫描速率测定2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质的电化学稳定窗口;(b)NVP/SPE/Na和NVP/CPE/Na电池在0.1 C、80 ℃下的首次充电/放电曲线Fig.6 (a)electrochemical stability window of 2NZSPO/PAN-[PEO15-NaTFSI]composite solid electrolyte was measured by linear scanning voltammetry at a scan rate of 0.1 mV/s at 60 ℃;(b)first charge/discharge curves of NVP/SPE/Na and NVP/CPE/Na batteries at 0.1 C and 80 ℃

图7 (a)NVP/CPE/Na电池在0.1 C恒电流密度下的循环性能;(b)NVP/SPE/Na电池在0.1 C恒电流密度下的循环性能;(c)NVP/CPE/Na电池在0.1、0.2、0.5 C下的倍率性能;(d)NVP/SPE/Na电池在0.1、0.2、0.5 C下的倍率性能Fig.7 (a)the rate performance of NVP/CPE/Na batteries at 0.1 C;(b)rate performance of NVP/SPE/Na batteries at 0.1 C;(c)cyclic performance of NVP/CPE/Na a batteries at a constant current density of 0.1 C;(d)cyclic performance of NVP/SPE/Na batteries at a constant current density of 0.1 C

3 结 论

通过溶胶-凝胶法、静电纺丝法及溶液浇注法制备了三维纤维网络增强的PEO 基复合固体电解质。复合纤维网络的引入减少了PEO 聚合物的节段重组,复合固体电解质中无定形区域增加,离子电导率得到改善。PEO 对三维网络的填充在保持优异的界面兼容性的同时提高了离子电导率。与纯的PEO-NaTFSI固体电解质相比,复合固体电解质的化学稳定窗口得到改善,组装全固态钠离子电池时表现出优异的循环稳定性和倍率性能。

猜你喜欢

钠离子室温无机
小牛计划2023年推出首款配备钠离子电池的电动两轮车
储能界新星
室温过高加剧低血压?不准确
无机材料在建筑节能工程中的应用
室温采集装置及供热二级管网智能化改造
药品保存细解读
我国无机非金属材料的发展方向探索
高考的“宠儿”——无机化工流程题
吃咸了喝点水就行吗?
基于Mn掺杂ZnS量子点的室温磷光传感应用的研究进展