果蔬中农药残留检测分析研究进展
2021-05-06李俊霞马丽雅林河通
李俊霞 马丽雅 林河通
摘要:果蔬中残留农药对人类的健康造成威胁,因此检测果蔬中农药残留具有重要意义。本文综述了果蔬中农药残留检测分析方法的原理及应用,包括前处理方法和检测技术。总结了应用较广的前处理技术:液液萃取、固相萃取、QuEChERS、分析比较色谱法、色谱-质谱联用法、酶联免疫法及生物传感器等检测技术。另外,介绍了纳米材料在果蔬农药残留分析中的应用。
关键词:果蔬;农药残留;前处理;检测
水果和蔬菜中含有丰富的维生素、矿物质和膳食纤维,合理摄入果蔬不仅能夠减少中风和缺血性心脏病的风险,而且还可以降低肠胃的患癌率[1],是现代生活中不可或缺的部分。但是果蔬生长周期长,存在极大的病虫害隐患,而农药或复合农药的施用在确保果蔬产量和质量的过程中发挥着重要作用[2-4]。同时,农药种类和剂量的不合理施用,会造成果蔬中农药残留甚至超标现象,影响果蔬的出口贸易和人类健康[5-8]。近年来,食品安全问题已经成为全球热点,加强果蔬中农药残留检测具有重大意义。
由图1可知,果蔬中农药残留检测所涉及的主要步骤包括样品前处理(提取、净化及富集),检测(测定目标物)及数据分析(评估可靠性)[9]。农药残留种类多、样品基质复杂、干扰物多等是目前果蔬中农药残留检测面临的挑战[10-12],因此,须要选择合适的前处理和检测技术,以提高果蔬中农药残留检测的精确度和灵敏度[13]。本文综述了近年来国内外在果蔬中农药残留的前处理及检测技术,并分析比较优劣,以期为相关领域工作者提供借鉴。
1 农药残留前处理技术
目前多种前处理技术已经在果蔬中农药残留检测方面得以应用,样品前处理是农药残留检测过程中至关重要的步骤。针对基质的差异性和目标物的多样性,果蔬中农药残留前处理技术应具有差异性,应结合果蔬种类、数据分析要求、检测仪器等确定合适的前处理技术[14]。
1.1 液液萃取法
液液萃取(liquid-liquid extraction,简称LLE)也称溶剂萃取和分离,它主要根据化合物在特殊不混溶液体中的相对溶解度来分离化合物[15]。LLE要使用不同的单一或者混合提取溶剂,例如乙腈[16]、二氯甲烷/丙酮[17]及氯仿/二氯甲烷[18]等溶剂。该技术适应性强并且与大多数仪器兼容,过去10年来,LLE方法已作为常规技术在果蔬农药残留检测中广泛应用[19-20]。但LLE技术耗时,难以自动化,毒性溶剂如氯仿等消耗大,大量有毒的有机溶剂可能对人类和环境构成潜在威胁。同时,该技术对极性农药的提取效果较差[15]。
针对液液萃取的弊端,目前该技术已经衍生出大量的改进技术,如分散液-液微萃取(dispersive liquid-liquid micro-extraction,简称DLLME)、空气辅助液-液微萃取(air-assisted liquid-liquid microextraction,简称AALLME)、加糖液液萃取(sugaring-out liquid-liquid extraction,简称SULLE)、盐析辅助均相液液萃取(salting-out homogenous liquid-liquid extraction,简称SHLLE)等,这些技术在果蔬农药残留检测中的应用见表1。
1.2 固相萃取法
固相萃取(solid-phase extraction,简称SPE)是一种柱色谱分离过程,以固体吸附剂作为固定相,将样品中目标化合物选择性吸附,分离样品的基体和干扰物,然后再通过合适的洗脱液进行洗脱,达到分离和富集目标化合物的效果[25]。与LLE相比,SPE消耗有机溶剂更少,分析时间更短,方法回收率更高,同时还能更有效地去除干扰化合物,在样品预处理中起着越来越重要的作用[26]。但基于SPE技术是将分析物吸附到固体吸附剂上的特质,因此选择合适的吸附剂非常重要,SPE应用于农药残留的几种常见商业吸附剂的类型及适用范围见图2,另外氨基固相吸附剂(—NH2)、复合吸附剂等也常用于果蔬样品前处理[25,27-29]。
在固相萃取的原理上,SPE技术不断发展,主要包括以下6种SPE:固相萃取、固相分散萃取(dispersive solid-phase extraction,简称DSPE)、固相微萃取(solid-phase microextraction,简称SPME)、磁固相萃取(magnetic solid-phase extraction,简称MSPE)、基质固相分散萃取(matrix solid-phase dispersion,简称MSPD)、搅拌棒吸附萃取(stir bar sorptive extraction,简称SBSE),这6种主要SPE模式的原理及优缺点见表2。
近年来,大量的学者在果蔬农药残留检测过程中展开基于固相萃取技术的研究。Guan等利用基质固相分散萃取快速浓缩,然后结合液相色谱-串联质谱同时分离检测8种不同果蔬中的9种有机磷农药[30]。Zuin等比较了搅拌棒吸附萃取和膜辅助溶剂萃取(MASE)前处理技术在测定甘蔗汁中农药残留的效果,2种前处理技术结合GC-MS,检出限均可达到1 μg/L,但SBSE前处理具有更高的灵敏度和重复性[31]。Kin等在气相色谱仪(电子捕获检测器,ECD)检测前,选用固相微萃取法进行前处理,评估了草莓和黄瓜中有机磷和有机氯农药残留水平,具有较低的检出限(0.01~1.00 μg/L)[32]。
1.3 QuEChERS法
QuEChERS(quick,easy,cheap,effective,rugged,safe)技术分为提取和净化2个部分,第1个部分是用乙腈和盐的混合物通过分配进行萃取,第2个部分是通过包含1种或几种吸附剂的分散固相萃取(d-SPE)进行净化,去除潜在的干扰化合物,包括有机酸、色素、糖等,具体操作见图3[33]。该方法因省时、安全、操作简单、成本低、可去除多种杂质对分析物的干扰而在果蔬农药残留分析中得以广泛应用[34-36]。尽管原始的QuEChERS法在大多数果蔬基质中农药残留提取十分有效,但针对特殊基质或特殊农药,须对QuEChERS方法不断完善发展。近年来,大量的学者针对QuEChERS方法的提取和净化部分进行不同程度的改进,主要包括pH值、提取溶剂、净化的优化。
QuEChERS方法最初使用无缓冲液条件下进行,在应用过程中发现在高或低pH值下降解的敏感化合物的回收率差。为了克服局限性,欧洲标准委员会(CEN)[37]和美国分析化学家协会(AOAC)[38]制定了官方方法: 在提取过程中引入柠檬酸盐缓冲液(相对较低的缓冲能力)或乙酸盐缓冲液(较强的缓冲能力)。通过添加缓冲溶液,2种方法均出现pH值为5左右的萃取溶剂,有利于萃取pH值依赖性农药。Lehotay等在果蔬农药残留检测中添加醋酸钠形成缓冲萃取剂,测定了32种农药残留,回收率为 (95±10)%,包括百菌清等pH值敏感农药[39]。
目前大量的有机溶剂,如丙酮、乙腈、乙酸乙酯等,广泛用于果蔬中农药残留分析[40],而乙腈(醋酸或甲酸酸化的乙腈)是最常见的萃取溶剂[37,40],不仅在水果和蔬菜等含水量高的基质中提取农药回收率高[41-42],同时可以穿透样品基体的水相,添加盐后可以实现两相分离[43]。随着基质的复杂化以及农药的多样化,混合萃取溶剂在QuEChERS提取过程中不断发展。Sivaperumal等用乙腈、乙酸乙酯(体积比为25 ∶ 75)混合溶液萃取,经d-SPE净化后采用超高效液相色谱串联飞行质谱(UHPLC-Q-TOF/MS)技术对芒果中68种残留农药进行测定,3种浓度水平(10、50、100 μg/kg)的回收率都在70%~122%之间,检出限和定量限范围分别为 0.5~7.0 μg/kg、2~25 μg/kg[44]。
净化是QuEChERS法的关键步骤,可以极大程度地影响农药残留检测的定量限和检出限,其中最常见的净化剂为MgSO4、石墨化碳黑(GCB)、十八烷基硅烷(C18)等。根据这些传统净化剂的优缺点[45],可将果蔬分为3类,一般的果蔬、高色素的果蔬和高色素及脂肪的果蔬。在QuEChERS法中选择合适的吸附剂组合很大程度上取决于果蔬的类别。一般的果蔬采用N-丙基乙二胺(PSA)+MgSO4进行去除有机酸、部分糖[44,46],高色素的果蔬则一般以PSA、石墨化碳(GCB)+MgSO4的组合去除有机酸、部分糖以及色素[47-48],而对于高色素及脂肪的果蔬,会利用C18可以消除脂肪等非极性杂质的优势,在此基础上添加C18净化剂进行除杂[49]。
1.4 其他前处理技术
除以上几种比较常用的前处理技术外,凝胶渗透色谱法(gel permeation chromatography,简称GPC),超声波辅助萃取(ultrasound assisted extraction,简称UAE),浊点萃取法(cloud point extraction,简称CPE)等在果蔬农药残留前处理过程中也有所应用。Ramos等开发了超声辅助基质固相分散法,用于提取和净化水果中的15种有机磷农药和9种三嗪类农药,超声反应器在50%振幅下进行 1 min 的超声处理前处理效果最佳,基本没有基质效应[50]。周璐等建立了浊点萃取-正己烷反萃取气相色谱(FPD)联用法对苹果汁中5种有机磷农药的残留进行测定[51]。5种目标物在0.05~2.00 mg/L范围内线性相关系数范围为0.998 6~0.999 6,方法的检出限为0.13~1.50 μg/kg。
2 农药残留检测技术
在过去的几十年中,已经开发出许多检测技术来测定果蔬中的农药残留,其中色谱法和色谱质谱联用法是检测的主要手段。基于其灵敏度、分离和鉴定能力,气相色谱和液相色谱通常是农药残留检测的首选。但是色谱法对复杂样品的农药残留检测有一定的限制,针对这一局限性,色谱-质谱联用法(气相色谱-质谱联用技术、液相色谱-质谱联用技术)得到了广泛应用。近年来,为了满足快速、简单及选择性高的农药检测需求,酶联免疫分析技术、生物传感器等检测技术不断发展。表3总结了几种检测技术在果蔬农药残留中的应用。
2.1 色谱法
气相色谱法(gas chromatography,GC)适用于以气体和可挥发物质作为分析对象,是一种经典分析方法。其原理是将前处理后的样品注入气相色谱柱,升温汽化固相分离检测,通过物质的保留时间进行定性,峰高和标准曲线进行定量。通过GC进行农药残留分析通常与特定的检测器结合使用,例如电子捕获检测器(ECD)[52]、火焰光度检测器(FPD)[8,53]、氮磷检测器(NPD)[55]和火焰电离检测器(FID)[22-23]。然而,随着持久性和毒性较低的极性农药的使用增加,由于其热稳定性差和高沸点的特质,GC检测方法的弊端显现,使用有所減少[15]。
液相色谱法(liquid chromatography,简称LC)广泛应用于农药残留分析,绝大部分采用了光电二极管陈列检测器(PDA)、紫外检测器(UV)、二极管阵列检测器(DAD)[26]。高效液相色谱法(HPLC)是液相色谱法中最常用的方法,适用于相对分子量较大、极性较强、沸点较高及热稳定性较差的农药的分离检测,弥补了气相色谱不能分离热稳定性和挥发性差的农药的局限[67]。同时,HPLC因其快速、高效、准确性高等优势在果蔬农药残留检测中广泛应用(表3)。
2.2 色谱-质谱联用法
色谱-质谱联用技术是结合色谱法和质谱(MS)的新检测技术,常用在果蔬农药多残留分析领域。质谱的引入可以克服结构干扰,有效分离复杂样品中的农药,检测多残留农药及其代谢物,还可同时对其进行定量、定性分析,并提供来自精准分子质量和裂解模式的结构信息。质谱分析器种类很多,其中四级杆分析器(quadrupole,简称Q)、离子阱分析器(ion trap,简称IT)和飞行时间分析器(time of flight mass,简称TOF)最为常用。为了达到增加结构信息的目的,大多数情况下选用具有串联质谱功能的质量分析器,如Q-TOF、Q-Q-Q[15]。在色谱-质谱联用系统中,被分析的样品先在色谱系统中分离,然后从色谱柱中洗脱出来的馏分进行电离并进入质量分析器进行测定。农药覆盖范围广、样品制备简便、无需衍生化、灵敏度高、选择性强等优点[26,68-70]是色谱-质谱联用技术广泛应用于农药检测、鉴定和定量分析的重要原因。表3总结了色谱-质谱联用在果蔬农药残留检测的研究。
2.3 其他检测方法
近年来,酶联免疫分析技术及生物传感器法在果蔬农药残留检测中的应用频频被报道。酶联免疫法(ELISA)在免疫分析中使用最为广泛,是根据抗原与抗体相互作用原理来确定农药的含量[71]。该技术的缺点是抗体不稳定,会导致实验结果有偏差,且不能同时准确分析多种农药成分,只能作为辅助方法进行监测[15],但基于具有简易快捷的特点以及较高的灵敏度和选择性,应用在果蔬农药残留快速检测中具有很大的发展潜力。Navarro等使用双酶联免疫吸附法检测了柑橘汁中氯吡硫磷和倍硫磷的残留量,该方法测得氯吡硫磷的检出限为(0.20±0.04) μg/L,倍硫磷检出限为(0.50±006) μg/L,且二者的回收率均为95%~106%[62]。Sun等建立了一种多酶示踪剂形式的ElISA法测定蔬菜和果汁中西维因和速灭威含量,2种农药回收率均超过70%,检出限为0.15 μg/L(西维因)和1.2 μg/L(速灭威)[63]。
生物传感器通过生物功能物质与合适的转换元件充分结合,对特定类别的化合物、生物活性物质进行选择性分析。与传统检测技术相比,生物传感器检测法具有检样微量、成本低、灵敏度高、分析速度快等优点[72],其中压电生物传感器、光学生物传感器、电化学生物传感器等是果蔬农药残留检测的主要生物传感器类型[15]。Caetano等构建了基于抑制乙酰胆碱酯酶(AchE)活性的电化学生物传感器,用于测定番茄中西维因的残留量,该方法检出限为3.2 μg/L[64]。
3 纳米材料在果蔬农药残留检测的应用
随着纳米材料的不断发展,研究者们不断开发基于纳米材料的农药前处理技术和快速检测方法。纳米材料是一种三维空间中至少有一维在纳米尺度范围内(1~100 nm)的材料。近年来,碳纳米材料(碳纳米管、石墨烯)、半导体纳米材料(量子点)及纳米氧化物(二氧化钛、四氧化三铁)等在果蔬农药残留检测中成为不可或缺的一部分[73-74]。
纳米级别的材料具有块状材料所不具备的表面效应及强吸附能力[75]。为实现检出限低、分离和富集一体化的净化效果,纳米材料在固相微萃取、磁固相萃取、基质固相萃取和QuEChERS等果蔬农药残留前处理技术中应用广泛。Chatzimitakos等在基质固相萃取时使用磁性氧化石墨烯進行净化后,利用GC-MS分离检测了从蔬菜(白菜、韭菜、菊苣)提取的45种多类农药[73]。磁性氧化石墨烯具有亲水性和强吸附性,可以与高含水量蔬菜有效混合,在3种蔬菜中检出率均为89%~106%,定量限更是达到0.4~4.0 μg/kg。多壁碳纳米管(MWCNT)结合其大表面积和独特结构,具有强吸附性,是一种固相微萃取的可替代净化剂。Han等建立了QuEChERS-HPLC-MS/MS法测定韭菜、莴苣和花环菊花中70种农药残留,前处理分别采用MWCNT、GCB、PSA作为净化剂,结果表明,MWCNT的净化性能优于GCB和PSA,回收率较高,范围为74%~119%,同时70种农药的检出限(0.1~2.4 μg/kg)和定量限(0.3~7.9 μg/kg)都较低[76]。
金属半导晶体纳米材料量子点(quantum dot,简称QD)拥有独特的光学性质,量子点与目标分析物发生物理或化学反应,能够导致发光增强或猝灭,以此来测定目标物的浓度[77]。量子点表面易进行功能修饰的特点以及光学性质,促进了其在农药残留检测中的应用。Luan等以建立了CdTe量子点为信号传感器、乙酰胆碱酯酶(AchE)为识别分子的生物传感器,已经应用于苹果中有机磷农药的测定[78]。有机磷农药抑制了AchE活力,从而改变CdTe/AchE的荧光强度,可以衡量有机磷农药含量。在最佳条件下,对硫磷和对氧磷的线性范围为5~100 μg/L,检测限为10 μg/L。为实现特异性检测果蔬中农药残留,Huang等用O,O-二甲基-(2,2-二氯乙烯基)磷酸酯的分子印迹聚合物(MIPs)包覆混合量子点,选择性吸附测定敌敌畏,而量子点的加入大大提高了测定敌敌畏的灵敏度,检出限达到1.27 μg/L,并成功应用于白菜中敌敌畏的测定,回收率为87.4%~101.0%[79]。
4 总结与展望
随着人们食品安全意识的不断增强,果蔬的农药残留问题越来越受重视。果蔬基质的复杂性、农药的多样性,对果蔬农药残留分析技术的发展起了推动作用。近年来,样品前处理过程已进行了很大改进,这些改进技术具有提高灵敏度,减少样品量、有机试剂、分析时间、基质干扰的发展趋势。而检测技术也逐渐从色谱技术向色谱-质谱联用技术转移,同时,生物传感器法和免疫技术近年来在果蔬农药残留检测中不断开发应用。不同的前处理和检测技术都具有各自的适用范围和优缺点,在实际检测中,需要结合果蔬的种类、农药的种类和限度,选择适当的前处理和检测技术,来提高果蔬中农药残留检测的准确度。
最近几年,农药产业迅速发展,出现了不少新型农药,新型农药正朝着复合农药的方向发展,农药残留检测也逐渐向多种组分同时检测分析的趋势发展。农药残留检测需要生物技术与多种现代仪器分析技术相结合来提高检测的准确性和灵敏度。未来的农药残留分析将与新材料结合,朝着安全化、微型化和自动化分析的方向发展。研发高效快捷、高灵敏、高通量及自动化的新型农药残留检测技术并将其应用到实践,将是未来研究热门方向之一,将为我国农药残留检测打开一个多元化局面。
参考文献:
[1]World Health Organization. World health statistics 2016:monitoring health for the SDGs,sustainable development goals[M]. Geneva:WHO Press,2016.
[2]Chen F,Zeng L Q,Zhang Y Y,et al. Degradation behaviour of methamidophos and chlorpyrifos in apple juice treated with pulsed electric fields[J]. Food Chemistry,2009,112(4):956-961.
[3]Li R,Wei W,He L,et al. Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing[J]. Journal of Agricultural and Food Chemistry,2014,62(42):10215-10221.
[4]Azam S M R,Ma H,Xu B,et al. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables:a review[J]. Trends in Food Science & Technology,2020,97:417-432.
[5]何丽芳,王芳宇,邹征欧,等. 衡阳市蔬菜水果农药残留现状、原因与对策[J]. 衡阳师范学院学报,2012,33(3):82-85.
[6]易承学,徐 虹,蒲彦利,等. 2014年镇江市夏季蔬菜农药残留监测分析[J]. 职业与健康,2015,31(3):326-328.
[7]韦江峰,李 翔,胡支向,等. 柑橘中有机磷类农药使用调查初探[J]. 农业与技术,2015,35(5):36-37.
[8]Blankson G K,Osei-Fosu P,Adeendze E A,et al. Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra,Ghana[J]. Food Control,2016,68:174-180.
[9]Samsidar A,Siddiquee S,Shaarani S M. A review of extraction,analytical and advanced methods for determination of pesticides in environment and foodstuffs[J]. Trends in Food Science & Technology,2018,71:188-201.
[10]董亞蕾,刘文婧,曹 进,等. 国内食品中农药多残留检测技术的研究进展[J]. 分析试验室,2017,36(2):241-248.
[11]Golge O,Kabak B. Determination of 115 pesticide residues in oranges by high-performance liquid chromatography-triple-quadrupole mass spectrometry in combination with QuEChERS method[J]. Journal of Food Composition & Analysis,2015,41:86-97.
[12]Pang G F,Chang Q Y,Bai R B,et al. Simultaneous screening of 733 pesticide residues in fruits and vegetables by a GC/LC-Q-TOFMS combination technique[J]. Engineering,2019,6(4):375-489.
[13]王新雄,成秀娟,徐伟松,等. 农产品农药残留检测技术的研究进展[J]. 广西农业科学,2008,39(5):700-704.
[14]张人允,曲 莹,徐佳佳. 食品农药残留检测中样品前处理技术分析[J]. 食品安全导刊,2019(15):82-83.
[15]Narenderan S T,Meyyanathan S N,Babu B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment,extraction and detection techniques[J]. Food Research International,2020,133:109141.
[16]李 晔,袁 佗. 浓缩果汁中拟除虫菊酯类农药残留检测[J]. 中国卫生检验杂志,2008(9):1774-1775.
[17]Pose-Juan E,Cancho-Grande B,Rial-Otero R,et al. The dissipation rates of cyprodinil,fludioxonil,procymidone and vinclozoline during storage of grape juice[J]. Food Control,2006,17,1012-1017.
[18]Sannino A,Bolzoni L,Bandini M. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables[J]. Journal of Chromatography A,2004,1036(2):161-169.
[19]Wang P,Yang X,Wang J,et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography[J]. Food Chemistry,2012,134(3):1691-1698.
[20]Grimalt S,Sancho J V,Pozo O J,et al. Quantification,confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis[J]. Journal of Mass Spectrometry,2010,45(4):421-436.
[21]Ho Y M,Tsoi Y K,Leung K S. Highly sensitive and selective organophosphate screening in twelve commodities of fruits,vegetables and herbal medicines by dispersive liquid-liquid microextraction[J]. Analytica Chimica Acta,2013,77(5):58-66.
[22]Farajzadeh M A,Khoshmaram L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection:a fast and simple method for the assessment of triazole pesticides residues in surface water,cucumber,tomato and grape juices samples[J]. Food Chemistry,2013,141(3):1881-1887.
[23]Farajzadeh M A,Feriduni B,Afshar M M. Development of counter current salting-out homogenous liquid-liquid extraction for isolation and preconcentration of some pesticides from aqueous samples[J]. Analytica Chimica Acta,2015,88 (5):122-131.
[24]Timofeeva I,Shishov A,Kanashina D,et al. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices[J]. Talanta,2017,16 (7):761-767.
[25]王慶龄,裘钧陶,詹越城,等. 复合小柱结合HPLC-MS/MS法快速测定果蔬及茶叶和大米中34种农药残留[J]. 农产品加工,2019(6):56-60.
[26]Jin B H,Xie L Q,Guo Y F,et al. Multi-residue detection of pesticides in juice and fruit wine:a review of extraction and detection methods[J]. Food Research International,2012,46(1):399-409.
[27]Bakrc G T,Acay D B Y,Bakrc F,et al. Pesticide residues in fruits and vegetables from the Aegean region,Turkey[J]. Food chemistry,2014,160:379-392.
[28]Ravelo-Pérez L M,Hernández-Borges J,Rodríguez-Delgado M A. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple,grape,orange and pineapple fruit juices[J]. Journal of Chromatography A,2008,1211(1/2):33-42.
[29]Fan S,Zhao P,Yu C,et al. Simultaneous determination of 36 pesticide residues in spinach and cauliflower by LC-MS/MS using multi-walled carbon nanotubes-based dispersive solid-phase clean-up[J]. Food Additives & Contaminants,2014,31(1):73-82.
[30]Guan S X,Yu Z G,Yu H N,et al. Multi-Walled carbon nanotubes as matrix Solid-Phase dispersion extraction adsorbent for simultaneous analysis of residues of nine organophosphorus pesticides in fruit and vegetables by rapid resolution LC-MS-MS[J]. Chromatographia,2011,73(1):33-41.
[31]Zuin V G,Schellin M,Montero L,et al. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction as enrichment techniques for the determination of pesticide and benzo[a]pyrene residues in Brazilian sugarcane juice[J]. Journal of Chromatography A,2006,1114(2):180-187.
[32]Kin C M,Huat T G. Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber and strawberry after washing treatment[J]. Food Chemistry,2010,123(3):760-764.
[33]Anastassiades M,Lehotay S J,Stajnbaher D,et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce[J]. Journal of AOAC International,2003,86(2):412-431.
[34]Biziuk M,Stocka J. Multiresidue methods for determination of currently used pesticides in fruits and vegetables using QuEChERS technique[J]. International Journal of Environmental Science and Development,2015,6(1):18-22.
[35]Dankyi E,Carboo D,Gordon C,et al. Application of the QuEChERS procedure and LC-MS/MS for the assessment of neonicotinoid insecticide residues in cocoa beans and shells[J]. Journal of Food Composition and Analysis,2015,44:149-157.
[36]Prodhan M D H,Papadakis E N,Papadopoulou-Mourkidou E. Analysis of pesticide residues and their variability in cabbage using QuEChERS extraction in combination with LC-MS/MS[J]. Food Analytical Methods,2016,9(12):3470-3478.
[37]Alexandre P. European Committee for Standardization[C]. Amman:Franco Jordanian Forum on Water Sustainability,2014.
[38]Lehotay S J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate:collaborative study[J]. Journal of AOAC International,2007,90(2):485-520.
[39]Lehotay S J,Mastovská K,Lightfield A R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables[J]. Journal of AOAC International,2005,88(2):615-629.
[40]Kim L,Lee D,Cho H K,et al. Review of the QuEChERS method for the analysis of organic pollutants:persistent organic pollutants,polycyclic aromatic hydrocarbons,and pharmaceuticals[J]. Trends in Environmental Analytical Chemistry,2019,22:e00063.
[41]González-Curbelo M ,Socas-Rodríguez B,Herrera-Herrera A V,et al. Evolution and applications of the QuEChERS method[J]. TrAC Trends in Analytical Chemistry,2015,71:169-185.
[42]Grimalt S,Dehouck P. Review of analytical methods for the determination of pesticide residues in grapes[J]. Journal of Chromatography A,2016,1433:1-23.
[43]Schenck F J,Callery P,Gannett P M,et al. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods[J]. Journal of AOAC International,2002,85(5):1177-1180.
[44]Sivaperumal P,Salauddin A,Kumar A R,et al. Determination of pesticide residues in mango matrices by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Food Analytical Methods,2017,10(7):2346-2357.
[45]Alcntara D B,Fernandes T S M,Nascimento H O,et al. Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits:an overview from the last decade[J]. Food Chemistry,2019,298:124958.
[46]Suganthi A,Bhuvaneswari K,Ramya M. Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS[J]. Food Chemistry,2018,241:275-280.
[47]Chen K,Liu X,Wu X,et al. Simultaneous determination of afidopyropen and its metabolite in vegetables,fruit and soil using UHPLC-MS/MS[J]. Food Additives & Contaminants,2018,35(4):716-723.
[48]Malhat F,Boulangé J,Abdelraheem E,et al. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography-flame photometric detector:decline pattern and risk assessment[J]. Food Chemistry,2017,229:814-819.
[49]Lin X Y,Mou R X,Cao Z Y,et al. Analysis of pyrethroid pesticides in Chinese vegetables and fruits by GC-MS/MS[J]. Chemical Papers,2018,72(8):1953-1962.
[50]Ramos J J,Rial-Otero R,Ramos L,et al. Ultrasonic-assisted matrix solid-phase dispersion as an improved methodology for the determination of pesticides in fruits[J]. Journal of Chromatography A,2008,1212(1/2):145-149.
[51]周 璐,陳 敏,张 凯,等. 浊点萃取-正己烷反萃取气相色谱法测定苹果汁中5种有机磷农药残留[J]. 山东农业大学学报(自然科学版),2011,42(4):492-498.
[52]董 娟,罗小玲,谢 勇,等. 胡萝卜及胡萝卜汁中百菌清和拟除虫菊酯类农药的分析研究[J]. 现代食品科技,2009,25(1):108-110.
[53]Xiao Q,Hu B,Yu C H,et al. Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography-flame photometric detection[J]. Talanta,2006,69(4):848-855.
[54]Liu X,Mitrevski B,Li D,et al. Comprehensive two-dimensional gas chromatography with flame photometric detection applied to organophosphorus pesticides in food matrices[J]. Microchemical Journal,2013,111:25-31.
[55]Mahpishanian S,Sereshti H,Baghdadi M. Superparamagnetic core-shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit,vegetable and water samples[J]. Journal of Chromatography A,2015,140 (6):48-58.
[56]Wang X L,Tang Q H,Wang Q Q,et al. Study of a molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for simultaneous determination of trace trichlorfon and monocrotophos residues in vegetables[J]. Journal of the Science of Food and Agriculture,2014,94(7):1409-1415.
[57]Topuz S,zhan G,Alpertunga B. Simultaneous determination of various pesticides in fruit juices by HPLC-DAD[J]. Food Control,2005,16(1):87-92.
[58]Tian F J,Qiao C K,Luo J,et al. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS[J]. Food Chemistry,2020,333:127468.
[59]Cervera M I,Portolés T,Pitarch E,et al. Application of gas chromatography time-of-flight mass spectrometry for target and non-target analysis of pesticide residues in fruits and vegetables[J]. Journal of Chromatography A,2012,1244:168-177.
[60]張伟军. HPLC-MS/MS法同时测定蔬菜中38种农药残留[J]. 湖南农业科学,2018(6):91-95.
[61]Lima V G,Campos V P,Santana T C,et al. Determination of agrochemical multi-residues in grapes. Identification and confirmation by gas chromatography-mass spectrometry[J]. Analytical Methods,2017,9(40):5880-5889.
[62]Navarro P,Pérez A J,Gabaldón J A,et al. Detection of chemical residues in tangerine juices by a duplex immunoassay[J]. Talanta,2013,11(6):33-38.
[63]Sun J,Dong T,Zhang Y,et al. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products[J]. Analytica Chimica Acta,2010,666(1/2):76-82.
[64]Caetano J,Machado S A. Determination of carbaryl in tomato“in natura”using an amperometric biosensor based on the inhibition of acetylcholinesterase activity[J]. Sensors and Actuators B,2008,129(1):40-46.
[65]Tan X,Hu Q,Wu J,et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran[J]. Sensors and Actuators B,2015,220:216-221.
[66]Miao S S,Wu M S,Ma L Y,et al. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode[J]. Talanta,2016,158:142-151.
[67]Seebunrueng K,Santaladchaiyakit Y,Srijaranai S. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples[J]. Chemosphere,2014,103:51-58.
[68]Kujawski M W,Namie s'nik J. Levels of 13 multi-class pesticide residues in Polish honeys determined by LC-ESI-MS/MS[J]. Food Control,2011,22(6):914-919.
[69]Machado I,Gérez N,Pistón M,et al. Determination of pesticide residues in globe artichoke leaves and fruits by GC-MS and LC-MS/MS using the same QuEChERS procedure[J]. Food Chemistry,2017,227:227-236.
[70]赵 丽,农蕊瑜,师 真,等. 分散固相萃取-气相色谱-质谱联用测定茶叶中的28种农药残留[J]. 江苏农业科学,2020,48(12):208-215.
[71]Qian G L,Wang L M,Wu Y R,et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay(ELISA)for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chemistry,2009,117(2):364-370.
[72]Patel H,Rawtani D,Agrawal Y. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using acetylcholinesterase-a review[J]. Trends in food science & technology,2019,85:78-91.
[73]Chatzimitakos T G,Karali K K,Stalikas C D. Magnetic graphene oxide as a convenient nanosorbent to streamline matrix solid-phase dispersion towards the extraction of pesticides from vegetables and their determination by GC-MS[J]. Microchemical Journal,2019,151:104247.
[74]Dabbagh M S,Farajzadeh M A. Introduction of a new procedure for the synthesis of polysulfone magnetic nanoparticles and their application in magnetic solid phase extraction for the extraction of some pesticides from fruit and vegetable juices[J]. Microchemical Journal,2020,158:105238.
[75]Kaur R,Hasan A,Iqbal N,et al. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis:a review[J]. Journal of Separation Science,2014,37(14):1805-1825.
[76]Han Y,Zou N,Song L,et al. Simultaneous determination of 70 pesticide residues in leek,leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials[J]. Journal of Chromatography B,2015,1005:56-64.
[77]赵 芳,李为琴,段江莲,等. 量子点传感器在农药残留检测中的应用研究进展[J]. 食品研究与开发,2020,41(9):213-220.
[78]Luan E X,Zheng Z Z,Li X Y,et al. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides[J]. Analytica Chimica Acta,2016,916:77-83.
[79]Huang S Y,Tan L,Zhang L,et al. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr3 quantum dots for the fluorescence sensing of 2,2-dichlorovinyl dimethyl phosphate[J]. Sensors and Actuators B,2020,325:128751. 许洪高,周琪樂,鲁 绯,等. 螺旋藻养殖加工和安全性研究进展[J]. 江苏农业科学,2021,49(6):10-19.