APP下载

粤东仙水沥Sn-W矿床地质特征及成岩成矿年代学研究*

2021-04-26姚薇钱龙兵杨瀚文甘黎明冯博鑫

岩石学报 2021年3期
关键词:锡石锡矿辉钼矿

姚薇 钱龙兵 杨瀚文 甘黎明 冯博鑫

1.中国地质调查局西安矿产资源调查中心,西安 7101002.广东省有色金属地质局九三一队,汕头 515041

我国东南沿海成矿带横跨粤闽浙沿海三省,位于欧亚板块东南缘(图1),属于环太平洋成矿带,区内以覆盖大面积中生代火山岩为“特色”,是我国重要的锡、铜、金、钨等多金属成矿带(徐晓春和岳书仓,1996;Zhouetal.,2006;Maoetal.,2013;Liuetal.,2018c)。以往前人研究表明,区内成矿作用主要以白垩纪中期的斑岩-浅成低温热液Cu-Au-Mo成矿系统为主(Maoetal.,2013),例如紫金山高硫型浅成低温热液Cu-Au矿和萝卜岭斑岩Cu-Mo矿床。然而最新研究显示,东南沿海地区除了发育白垩纪中期成矿作用外,还发育中晚侏罗世斑岩Cu-Au/Cu-Mo和早白垩世Sn-W成矿作用(Lietal.,2016a;王小雨等,2016;Liuetal.,2017,2018a,b,c,2021)。最近,Maoetal.(2021)提出东南沿海大陆边缘中晚侏罗世斑岩Cu-Au/Cu-Mo和南岭腹地的W-Sn成矿系统形成于太平洋板块初始低角度俯冲环境,与南美安第斯铜矿和玻利维亚锡矿带可类比。

图1 东南沿海地区主要矿产分布图(据Liu et al.,2018c修改)Fig.1 Map showing the distribution of major mineral deposits in the southeastern coast,China (after Liu et al.,2018c)

关于东南沿海矿床时空分布,早白垩世Sn-W成矿仅发育在粤东沿海地区,闽浙两省鲜有报道(Liuetal.,2018c)。而白垩纪中期斑岩-浅成低温热液Cu-Au-Mo成矿作用主要发生在闽浙两省地区(Jiaetal.,2018),该期成矿事件在粤西沿海地区亦有报道(Zhengetal.,2015),然而在粤东沿海地区未见报道。考虑到东南沿海地区在晚中生代处于相同构造背景下,则处于粤西和闽浙沿海之间的粤东沿海地区对于该期成矿应具有相同的潜力。另外,由于粤东沿海地区部分锡矿产于莲花山动力变质带内,因此也有观点认为区内锡矿与动力变质热液有关,而非岩浆热液成因(汪礼明等,2018)。因此,本文选择位于莲花山动力变质带内的仙水沥锡钨矿床为研究对象,系统地开展了成岩成矿年代学研究,在厘定矿床成因的基础上,结合两期成矿年龄和前人研究成果,推测矿区内发育两期成矿事件,为区内找矿勘查提供了新的理论依据和线索。

1 地质概况

粤东地区位于东南沿海西南段,区内出露的沉积地层为上三叠统至中侏罗统滨浅海相和海陆交互相沉积建造,岩性主要为石英砂岩、粉砂岩和泥质粉砂岩。区内火山岩为晚侏罗统-早白垩统陆相火山岩,岩性为流纹岩、流纹质凝灰熔岩、英安岩等(图2)。区内发育构造主要为北东向莲花山断裂带,该断裂带自北西向南东分别由丰顺-海丰、普宁-潮州、惠来-饶平三条断裂组成。区内出露大面积中生代花岗岩及其相关矿床,主要分布在北东向深大断裂与北西或近东西向次级断裂交汇部位(徐晓春和岳书仓,1996;刘鹏等,2015),花岗岩主要形成于中晚侏罗世(170~155Ma)和早白垩世(145~130Ma)两个时间段,也有少量分布在早白垩世中期(120~100Ma)(Jiaetal.,2018;Liuetal.,2018c)。

图2 粤东地区主要矿产地质图(据Liu et al.,2017)Fig.2 Geological map of the eastern Guangdong Province,showing the distribution of mineral deposits (after Liu et al.,2017)

仙水沥Sn-W矿位于陆丰县,已探明锡资源储量为1500吨,锡品位0.38%,目前进一步找矿勘查工作仍在进行中(广东省有色金属地质局九三一队,2019(1)广东省有色金属地质局九三一队.2019.广东省陆河县仙水沥外围锡多金属矿预查报告.)。矿区内出露地层为晚侏罗统砂页岩(图3),发育岩浆岩为黑云母花岗斑岩(图4a、图5a)和少量煌斑岩脉(图4b、图5b)。矿区内发生强烈的动力变质作用,砂页岩呈明显片理化构造,其中可见大量石榴子石(图4c、图5c)、白云母和黑云母。矿区发育近东西向断裂,矿体展布与该断裂方向一致,走向为230°~250°,产于石榴云母石英片岩中。

图3 仙水沥矿区地质图(据广东省有色金属地质局九三一队,2019修改)Fig.3 Geological map of the Xianshuili deposit

图4 仙水沥矿区岩石、矿石手标本照片(a)黑云母花岗斑岩;(b)煌斑岩;(c)石榴云母石英片岩;(d)石榴云母石英片岩型矿石;(e、f)蚀变岩型矿石;(g、h)石英脉型矿石;(i)辉钼矿矿石Fig.4 Photographs of rocks and ores from the Xianshuili deposit(a) biotite granite porphyry;(b) lamprophyre;(c) garnet-mica schist;(d) garnet-mica-schist ore;(e,f) altered-rock ores;(g,h) quartz-vein ore;(i) molybdenite ore

图5 仙水沥矿区岩石、矿石显微照片(a)花岗斑岩;(b)煌斑岩;(c)石榴云母石英片岩;(d-f)石榴云母片岩型矿石;(g-i)蚀变岩型矿石;(j-l)石英脉型矿石.Qtz-石英;Pl-斜长石;Kfs-钾长石;Hbl-普通角闪石;Ep-绿帘石;Ap-磷灰石;Chl-绿泥石;Grt-石榴子石;Wol-黑钨矿;Cst-锡石;Cc-黄铜矿;Sp-闪锌矿;Apy-毒砂;Top-黄玉Fig.5 Microphotographs of rocks and ores from the Xianshuili deposit(a) microphotograph (under cross-polarized light) of the biotite granite;(b) microphotograph (under plane-polarized light) of the lamprophyre;(c) microphotograph (under cross-polarized light) of garnet-mica schist;(d-f) microphotographs (under plane-polarized and -reflected light) of the garnet-mica-schist ore;(g-i) microphotographs (under cross and plane-polarized light) of the altered-rock ore;(j-l) microphotographs (under cross-polarized,plane-polarized and -reflected light) of the quartz-vein ore.Qtz-quartz;Pl-plagioclase;Kfs-k-feldspar;Hbl-hornblende;Ep-epidote;Ap-apatite;Chl-chlorite;Grt-garnet;Wol-wolframite;Cst-cassiterite;Cc-chalcopyrite;Apy-arsenopyrite;Sp-sphalerite;Top-topaz

按照主要矿石产状可以划分三种矿石类型,分别为石榴云母石英片岩型(Ⅰ)(图4d)、蚀变岩型(Ⅱ)(图4e,f)和石英脉型(Ⅲ)(图4g,h)。第一种矿石(图5d-f)产于石榴云母石英片岩,主要矿石矿物为锡石、黑钨矿、闪锌矿、黄铜矿、毒砂和少量黄铁矿,其中毒砂呈半自形晶粒状,粒径约0.2~2.0mm。脉石矿物为石英、白云母、石榴子石、黑云母、黄玉、萤石,石榴子石呈浅褐色及浅绿色,呈半自形-自形粒状,粒径约0.2~2.0mm;萤石呈他形粒状或粒状集合体,分布于石英粒间,粒径约0.5~1.0mm;白云母呈无色、浅绿色、浅褐色,呈鳞片状、片状,定向排列,粒径约0.05~1mm。其中,黑钨矿交代石榴子石(图5d),石榴子石交代锡石(图5e),闪锌矿和黄铜矿交代锡石、黑钨矿、石榴子石、毒砂(图5f)。蚀变岩型矿石(图5g-i)产于黑云母花岗斑岩与砂岩层接触带,发育强烈的云英岩化、绿泥石化和绿帘石化。矿石矿物为锡石、闪锌矿和黄铜矿,其中锡石呈他形晶-半自形晶粒状,粒径约0.5~8.0mm;闪锌矿呈褐黄色,呈他形晶粒状,少数充填微裂隙呈细脉状,粒径约0.1~1.0mm;黄铜矿呈他形晶粒状,与闪锌矿共生,粒径约0.02~5.0mm,少数呈小乳滴状固溶体分离物分布于闪锌矿中。脉石矿物为石英、绢云母、绿泥石、绿帘石、方解石、黄玉和石榴子石,其中黄玉呈他形粒状、柱状,分布于石英粒间,粒径约0.02~0.8mm;石榴子石呈他形粒状,零星分布,粒径约0.2~0.5mm;绿泥石呈鳞片状或蠕虫状,蠕绿泥石与闪锌矿、黄铜矿共生。石英脉型矿石(图5j-l)主要产于石榴云母石英片岩中,主要矿石矿物为锡石、黑钨矿、黄铜矿、闪锌矿及少量赤铁矿,其中黑钨矿呈半自形晶板状,被黄铜矿交代,粒径约0.2~1.0mm。脉石矿物为石英、绢云母和石榴子石。根据野外和镜下观察,可划分为三个成矿阶段,分别为锡石-黑钨矿-白云母阶段、锡石-毒砂-石榴子石阶段、黄铜矿-闪锌矿-绿泥石阶段(图6)。矿区围岩蚀变强烈,主要蚀变类型包括硅化、白云母化、石榴子石化、黄玉化、萤石化、绢云母化、绿泥石化、绿帘石化和碳酸盐化。

图6 仙水沥矿区成矿阶段和矿物生成序列Fig.6 Ore-forming stages and paragenetic sequence of minerals from the Xianshuili deposit

2 样品及测试方法

黑云母花岗斑岩(1804XSL01、1804XSL09)蚀变较强,斑晶成份为钾长石、斜长石、石英,基质主要由石英、斜长石、钾长石、黑云母、绢云母、绿泥石组成(图4a、图5a)。锡石测试样品(1804XSL03)为蚀变岩型矿石,产于锡石-黑钨矿-白云母阶段,锡石、黑钨矿、黄玉和白云母共生,锡石呈半自形粒状,黑钨矿呈半自形长板状(图4e)。辉钼矿测试样品(1804XSL05)取自产于石榴云母石英片岩中辉钼矿矿石(图4i),矿石矿物仅为辉钼矿,呈他形粒状集合体独立产于片岩的片理中。采样位置见图3所示。

2.1 锆石U-Pb定年

锆石的单矿物分选、制靶和阴极发光(CL)拍照工作是在廊坊市拓轩岩矿检测服务有限公司进行的。锆石LA-ICP-MS U-Pb同位素定年测试在西北大学大陆动力学国家重点实验室完成的。采用了GeoLas200M型193nm ArF准分子激光剥蚀系统、Agilent 7500a型等离子质谱仪(ICP-MS)以及ComPex102 Excimer激光器联用系统。激光剥蚀过程的载气为He,激光束斑直径为30μm,频率为6Hz,每个样品点的时间分析数据包括大约为20~30s的背景信号和50s的样品信号,详细的仪器参数见Yuanetal.(2004)。分析处理中使用GJ-1作为外标进行同位素校正,Plesovice作为监控标样来观察仪器状态和测试的重现性。每分析8个样品点测试1个SRM610、2个GJ-1、1个Plesovice标样。数据的离线处理和空白数据的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算使用ICPMSDateCal 10.1软件处理完成(Liuetal.,2010)。

2.2 锡石U-Pb定年

锡石单矿物挑选和阴极发光图像拍摄均在廊坊拓轩岩矿检测服务有限公司完成,对锡石颗粒进行反射光和透射光拍照,避开包裹体和裂纹,选择锡石颗粒的合适区域进行测试。锡石阴极发光图像拍摄所用仪器型号为TESCAN MIRA3场发射电镜。锡石LA-ICP-MS U-Pb定年在南京大学内生金属矿床成矿机制研究国家重点实验室进行。LA-CP-MS系统由ASI RESOlution LR 193nm ArF准分子激光剥蚀系统与Thermo Fisher ICAP QC电感耦合等离子体质谱仪组成。激光剥蚀的能量密度为4.1J/cm2,束斑为43μm,频率为6Hz。NIST SRM 614玻璃作为校正微量元素和207Pb/206Pb比值的外部标样,Cligga Head锡石作为校正238U/206Pb的外部标样。Cligga Head锡石采于英国康沃尔锡成矿省,具有一定含量的普通Pb,其ID-TIMS U-Pb年龄为285.14±0.25Ma(2σ,Tapster and Bright,2020)。锡石U-Pb定年的监控样为Yankee,采于澳洲东部新英格兰省与Mole花岗岩有关的Yankee脉型锡矿,其ID-TIMS U-Pb年龄为246.48±0.51Ma(2σ,Carretal.,2020)。每分析12个样品点测试2次NIST SRM 614,每分析6个样品点测试2次Cligga Head(CLGH) 锡石标样。每个样品点分析包括20s的背景信号采集和40s的样品信号采集。同位素测试采用时间分辨模式。204Pb扫描时间为8ms,206Pb和208Pb为15ms,238U和232Th的扫描时间为20ms,207Pb为20ms。锡石U-Pb同位素和微量元素的数据利用ICPMSDataCal 10.1软件处理(Liuetal.,2010)。待测样品的207Pb/206Pb比值利用NIST SRM614校正,206Pb/238U比值利用CLGH锡石校正,具体校正方法参考Chewetal.(2014)和Robertsetal.(2017)。同位素比值误差为1σ。锡石Tera-Wasserburg U-Pb谐和图和206Pb/238U加权平均年龄谱图利用Isoplot 4.5绘制(Ludwig,2003)。详细分析方法见Lietal.(2016b)和Zhangetal.(2017)。

2.3 辉钼矿Re-Os定年

辉钼矿Re-Os定年在中国地质科学院国家地质实验测试中心完成,样品分解采用Carius tube熔样法。同位素测定在电感耦合等离子体质谱仪TJA X-series ICP-MS测定同位素比值。对于Re-Os含量很低的样品采用美国热电公司(Thermo Fisher Scientific)生产的高分辨电感耦合等离子体质谱仪HR-ICP-MS Element 2进行测量。对于Re:选择质量数185、187,用185监测Re。对于Os:选择质量数为186、187、188、189、190、192,用190监测Os。具体实验流程参照Duetal.(2004)、李超等(2012)。

3 测试结果

2件黑云母花岗斑岩样品所挑锆石结晶较好,为透明自形柱状,呈浅黄色,锆石粒径为65~200μm,长宽比为1:1~5:1。在阴极发光(CL)图像中,具有典型的岩浆震荡韵律环带,显示为岩浆结晶的锆石(图7a,b)。样品1804XSL01所测试的18颗锆石Th、U含量分别为112×10-6~876×10-6和293×10-6~1936×10-6(表1),Th/U比值介于0.3~0.4之间,也指示为岩浆成因锆石(Belousovaetal.,2002;Zhangetal.,2020)。在206Pb/238U-207Pb/235U谐和年龄图上,18个测点分布于谐和线附近,获得206Pb/238U加权平均年龄为146.4±1.5Ma(2σ,MSWD=3.8)(图7c)。样品1804XSL09所测试25颗锆石Th、U含量分别为56×10-6~397×10-6和134×10-6~971×10-6(表1),Th/U比值介于0.3~0.7之间,也指示为岩浆成因锆石(Belousovaetal.,2002;Zhangetal.,2020)。在206Pb/238U-207Pb/235U谐和年龄图上,25个测点分布于谐和线附近,获得206Pb/238U加权平均年龄为146.0±1.4Ma(2σ,MSWD=3.2)(图7d)。锆石U-Pb测年结果见表1。

图7 仙水沥矿区黑云母花岗斑岩锆石CL图像和U-Pb年龄协和图解Fig.7 CL images and U-Pb age concordia diagram for biotite granite porphyry from the Xianshuili deposit

表1 仙水沥矿区黑云母花岗斑岩锆石U-Pb定年结果Table 1 LA-ICP-MS zircon U-Pb dating data of biotite granite porphyry from the Xianshuili deposit

锡石颗粒呈浅褐色、半透明,主要为半自形,在锡石CL图像上,部分颗粒发育明暗平行环带(图8a)。一共测试34个点,206Pb/238U比值介于0.0217~0.0601,207Pb/235U比值范围为0.2216~4.005。207Pb/206Pb比值变化范围为0.0756~0.5874。在Tera-Wasserburg图解上,下交点年龄为147.7±2.7Ma(图8b),代表仙水沥锡矿形成年龄。锡石U-Pb测年结果见表2。

图8 仙水沥锡石CL图像和U-Pb Tera-Wasserburg年龄图Fig.8 CL images and Tera-Wasserburg U-Pb age diagram of cassiterite in the Xianshuili deposit

表2 仙水沥矿区LA-ICP-MS锡石(样品1804XSL03) U-Pb定年结果Table 2 LA-ICP-MS cassiterite (Sample 1804XSL03) U-Pb data of the Xianshuili deposit

样品辉钼矿中Re含量为498.7×10-6,187Re含量为313.4×10-6,187Os含量为0.6193×10-6,样品具有很低的普通Os含量(0.0066×10-6),获得模式年龄为118.5±3.2Ma。辉钼矿Re-Os定年结果见表3。

表3 仙水沥矿区辉钼矿Re-Os定年结果Table 3 Molybdenite Re-Os data of the Xianshuili deposit

4 讨论

4.1 成岩成矿年龄探讨

锡石作为锡矿床的最重要的矿石矿物,具有较高的封闭温度和U含量,以及较低的普通Pb含量,因此,对锡石开展LA-ICP-MS U-Pb年龄测定,可直接获得锡矿成矿年龄,目前该方法已非常成熟并应用到很多研究实例中(Yuanetal.,2008,2011;Zhangetal.,2017;Liuetal.,2018a)。本次工作获得锡石U-Pb年龄为147.7±2.7Ma,代表了仙水沥锡钨矿形成时代,并获得矿区2个黑云母花岗斑岩锆石U-Pb年龄分别为146.4±1.5Ma和146.0±1.4Ma,与锡石年龄在误差范围内一致。最新研究表明,东南沿海地区发育一期早白垩世(145~130Ma)锡多金属成矿事件,例如粤东西岭锡矿、飞鹅山钨锡矿、莲花山钨矿、金坑锡铜矿、三角窝锡矿、淘锡湖锡矿、桃子窝锡矿,以及江西会昌岩背锡矿(Qiuetal.,2017a;Yanetal.,2017,2018;Liuetal.,2017,2018a,b,c,2020,2021)。本次工作获得仙水沥锡矿成矿时代与这期早白垩世锡成矿时代基本一致,代表仙水沥锡矿属于该期锡矿成矿事件。值得关注的是,Qiuetal.(2017b)报道了区内大道山锡矿成岩成矿时代分别为153.2±1.2Ma和152.6±1.8Ma,略晚于上述成矿事件,与南岭钨锡成矿形成时代一致。此外,本次工作还获得产于石榴云母石英片岩中辉钼矿Re-Os模式年龄为118.5±3.2Ma,暗示矿区内可能发育晚期钼矿化事件。而该期钼矿成矿事件在闽浙沿海已有报道,张克尧等(2009)报道了福建赤路斑岩Mo矿的辉钼矿Re-Os年龄为105±1.5Ma~106±1.6Ma,紫金山矿田内的萝卜岭斑岩Cu-Mo床也形成于104.6±1.6Ma。另外,在浙江沿海地区,Wangetal.(2017)报道了浙江沿海三支树斑岩Mo矿辉钼矿Re-Os等时线年龄为111±6.4Ma,王永彬等(2013)报道了鲁峰Mo矿辉钼矿Re-Os年龄为108Ma,石平川Mo矿辉钼矿Re-Os年龄为104.7Ma,均形成于白垩纪中期。此外,该期成矿事件在粤西沿海地区亦有报道,Zhengetal.(2015)报道了粤西石菉矽卡岩Cu-Mo矿辉钼矿Re-Os年龄为104.1±1.3Ma。综上所述,以上数据表明东南沿海粤闽浙地区均发育白垩纪中期(120~100Ma)斑岩Cu-Mo矿成矿作用。

4.2 矿床成因

早在20世纪80~90年代,前人对粤东沿海地区锡多金属矿床就开展了大量地球化学和年代学工作(陈惜华等,1986;戚建中和黄宾,1988)。然而,由于区内出露大面积火山岩以及少量次火山岩,因此关于锡矿床成因存在斑岩型和火山岩型锡矿两种观点。例如,戚建中和黄宾(1988)对粤东西岭锡矿开展了成岩成矿年龄测定和矿床成因研究,获得流纹质凝灰熔岩K-Ar等时线年龄为100.5±2.45Ma,与锡矿化密切共生的绢云母K-Ar等时线年龄为98.4±2.9Ma,并以此提出西岭锡矿是一个与火山活动密切相关的火山热液脉状锡矿。陈惜华等(1986)获得西岭矿区流纹斑岩全岩Rb-Sr等时线年龄为150±5Ma,并提出西岭锡矿为斑岩型。但是,由于全岩K-Ar和Rb-Sr同位素方法具有较低的封闭温度,从而造成获得年龄存在较大误差(Chiaradiaetal.,2013)。最近,Liuetal.(2018a,2020)对于西岭锡矿开展了系统年代学和矿床地球化学工作,获得2个锡石U-Pb年龄为146.4±1.0Ma和147.5±1.1Ma,与硫化物密切共生白云母Ar-Ar年龄为140.2±1.4Ma,矿区火山-次火山岩年龄为161.5~169.5Ma。此外,与世界典型火山岩有关锡矿开展火山岩地球化学特征和成矿流体温度对比研究,发现两方面均存在显著差异,综合上述证据,最终提出西岭锡矿是一个与花岗岩有关的热液脉状矿床,而成矿岩体可能隐伏于深部。最近,区内锡多金属矿床开展了大量高精度年代学和地球化学研究(Qiuetal.,2017a,b;Yanetal.,2017,2018;Liuetal.,2017,2018a,b,c,2020),结果均表明区内锡多金属矿床与高分异花岗岩和花岗斑岩有关,成矿类型主要包括锡石硫化物型或斑岩型两种(Liuetal.,2017,2018a,b,c,2020)。然而,区内多个锡矿产于莲花山动力变质带,因此,最近也有报道提出粤东地区的锡矿为动力变质热液成因(汪礼明等,2018),如金坑锡铜矿床,认为在区域多期动力变质作用下,形成了变质热液并萃取了地层中的锡和铜,含矿热液沿着动力变质作用形成的片理构造运移,并在有利部位沉淀成矿。但是,对于动力变质热液的温度、盐度以及迁移金属元素锡和铜的机制,鲜有报道。更为重要的是,金坑矿区发育高分异还原性花岗岩,花岗岩地球化学特征显示其为锡矿成矿有利岩体(Qiuetal.,2017a)。

仙水沥锡钨矿床也位于莲花山动力变质带中,赋矿围岩主要为石榴云母片岩,矿化沿着片理构造发育,矿体与构造变质带主方向平行展布,矿化在空间上与片理构造密切共生,与金坑锡铜矿床具有相似的矿化特征。莲花山动力变质带发育大量石榴云母片岩,以往研究认为石榴子石由变质作用形成,在金坑和仙水沥矿区均发育了与锡石密切共生的石榴子石,因此,这种现象被认为是成矿为动力变质热液成因的最主要证据(汪礼明等,2018)。本次工作发现,仙水沥矿区发育两种石榴子石,一种产于石榴云母石英片岩中(图4c、图5c),石榴子石自形程度较好,但被黑钨矿、闪锌矿、黄铜矿等矿物交代或穿切(图5d);另外一种石榴子石产于矿石中,为他形、半自形-自形粒状,交代了早阶段形成的锡石(图5e),抑或与锡石和黑钨矿密切共生,表明矿区成矿热液亦形成了热液石榴子石。从全球锡矿成因类型来看,除了少量锡矿与喷流沉积作用有关外,绝大多数矿床成因均与高分异还原性花岗岩有关(Lehmann,1990;Hu and Zhou,2012;Huetal.,2012a,b;袁顺达等,2012;Yuanetal.,2015,2018,2019;Maoetal.,2019;蒋少涌等,2020)。另一方面,黑云母花岗斑岩体内发育了蚀变岩型矿石,并发育典型的岩浆热液体系的蚀变类型,如云英岩化、绿泥石化和绿帘石化(Lehmann,1990)。考虑到锡石U-Pb年龄与黑云母花岗斑岩锆石U-Pb年龄在误差范围内一致,笔者认为仙水沥锡钨矿床成矿与区内发育的黑云母花岗斑岩密切相关。但是,由于区内变质作用的时限尚未查明,至于变质流体是否参与成矿,目前还不能得出定论。

4.3 区域成矿系列与成矿地质背景

前人研究表明,东南沿海大陆边缘成矿作用可划分为三期(Liuetal.,2018c):①中晚侏罗世(170~150Ma)斑岩Cu-Au/Cu-Mo成矿作用,如粤东沿海新寮岽和鸿沟山斑岩Cu矿、福建古田斑岩Cu-Mo矿床;②早白垩世(145~135Ma)Sn-W/Sn-Pb-Zn-Ag成矿作用,如粤东沿海早白垩世Sn(W)成矿带,少量分布于闽西沿海地区(福建中甲锡矿);③白垩世中晚期(110~90Ma)斑岩-浅成低温热液Cu-Au-Mo和斑岩Cu-Mo成矿系列,例如福建紫金山矿田,浙江沿海的三枝树鲁峰等斑岩Mo矿。

对于第一期成矿事件,Lietal.(2016a)认为古太平洋板块在170Ma左右开始向欧亚大陆开始俯冲,与成矿有关的花岗闪长岩是由俯冲交代后的富集岩石圈地幔发生部分熔融形成的。王小雨等(2016)认为新寮岽斑岩铜矿与成矿有关的石英闪长岩锆石U-Pb年龄为160.1Ma,且具有高钾钙碱性弧型岩浆岩特征,以及较高的水含量和氧逸度,认为成矿岩体形成于俯冲板片和交代的地幔楔发生部分熔融。最近,Maoetal.(2021)提出东南沿海发育这期中晚侏罗世斑岩Cu-Mo矿床和南岭腹地Sn-W矿与南美安第斯斑岩铜矿带和玻利维亚锡矿带可类比,斑岩Cu-Mo矿形成于板片低角度俯冲环境,俯冲板片交代岩石圈地幔发生部分熔融形成了富水高氧逸度的成矿岩体,而陆内Sn-W矿形成于弧后伸展背景,伸展背景造成软流圈地幔沿着板片窗上涌,造成地壳物质发生大规模重熔,形成了与Sn-W矿有关的高分异还原性花岗岩。

对于第二期早白垩世锡多金属成矿事件,Liuetal.(2017,2018c)发现与飞鹅山钨锡有关花岗岩具有A型花岗岩特征,且锆石Hf同位素显示,成岩物质具有较多地幔或新生地壳组份参与。Qiuetal.(2017a)通过系统年代学和地球化学工作,提出金坑Sn-Cu矿成矿与高分异I型花岗岩有关,与成矿有关岩体锆石Hf同位素表明成岩物质以地壳物质为主,但有地幔组份参与,形成于古太平洋板块俯冲后撤伸展背景。Yanetal.(2018)通过研究发现,三角窝锡矿与高分异A型花岗岩有关,全岩Sr-Nd和锆石Hf同位素均表明成岩物质来源于中元古代地壳重熔,并有地幔物质参与。综上,与粤东地区锡多金属矿与成矿有关花岗质岩石为高分异I或A型花岗岩(Liuetal.,2018c),具有较高的εHf(t)和较低的锆石O同位素值(6.0‰~6.9‰)(Jiaetal.,2020),结合前人研究成果,该期成矿事件形成于古太平洋俯冲板块后撤造成的岩石圈伸展背景。

对于第三期成矿作用,Zhongetal.(2014)对萝卜岭斑岩Cu-Mo开展研究后认为,萝卜岭形成于大陆弧与弧后伸展转化过渡部位,成矿与古太平洋板块俯冲有关。Zhengetal.(2015)对粤西石菉Cu-Mo矽卡岩矿床开展系统研究,提出与成矿有关花岗闪长岩为I型,具有较高的氧逸度,形成于强烈的岩石圈伸展背景,成岩物质与侏罗纪俯冲滞留板片有关。Maoetal.(2013)提出华南白垩纪成矿形成于岩石圈大面积伸展背景,而其动力学机制是由于从135Ma开始,古太平洋板块俯冲方向由斜向俯冲调整为平行大陆边缘的走滑俯冲。另外,最新研究显示,与白垩纪中期成矿有关岩石具有更高的锆石εHf(t)和更低锆石O同位素值(4.9‰~6.6‰)(Jiaetal.,2020),表明该期成矿有关岩石具有更多地幔物质参与,与整个中国东部白垩纪成矿一致,均形成于大规模岩石圈伸展背景。最近,Jiaetal.(2018)报道了粤东沿海地区新尾和三饶岩体形成于102~106Ma,通过地球化学与锆石Hf-O同位素对比研究发现,该岩体与萝卜岭斑岩Cu-Mo矿床成矿岩体具有相似地球化学特征和比较高水含量和氧逸度,因此指出粤东沿海地区亦具有寻找白垩纪中期的斑岩Cu-Mo矿找矿潜力。本次工作暗示了第三期成矿事件在粤东沿海地区确有发育,进一步为区内寻找白垩纪中期斑岩Cu-Mo矿提供了有利线索。

5 结论

仙水沥锡钨矿锡石U-Pb年龄为147.7±2.7Ma,矿区2件黑云母花岗斑岩锆石U-Pb年龄为146.4±1.5Ma和146.0±1.4Ma,成岩成矿年龄在误差范围内一致。结合矿化蚀变及矿物组合,认为仙水沥为与花岗岩有关的锡钨矿床。此外,石榴云母石英片岩中发育辉钼矿矿石,获得辉钼矿Re-Os模式年龄为118.5±3.2Ma,暗示矿区内可能发育晚期热液矿化事件。闽浙和粤西沿海地区发育大规模同期斑岩Cu-Mo成矿作用,考虑到东南沿海地区该时期处于相同动力学背景,结合前人对粤东地区白垩纪中期(115~100Ma)中酸性岩体成矿潜力的分析,推测区内具有寻找白垩纪中期斑岩Cu-Mo矿床的找矿潜力。结合前人研究成果,认为东南沿海地区早白垩世锡多金属矿和白垩纪中期斑岩Cu-Mo成矿事件均形成于岩石圈大面积伸展背景。

致谢感谢广东省有色金属地质局九三一队同仁在野外工作中提供的无私帮助;感谢南京大学章荣清副教授和胡欢副教授在锡石U-Pb定年中的帮助;感谢西北大学包志安博士在锆石U-Pb定年中的帮助;感谢国家地质测试中心李超副研究员在辉钼矿Re-Os定年中的帮助;最后,感谢两位匿名审稿人提出的宝贵意见。

猜你喜欢

锡石锡矿辉钼矿
安徽泾县湛岭斑岩型钼矿床中铼的赋存状态研究*
高铁含锡矿氯化及还原-硫化焙烧试验研究
新型高效辉钼矿抑制剂及其作用机理研究①
世界锡矿时空分布规律及成矿作用
湖南柴茅岭锡矿地质特征及找矿预测
广西环江县九逢锡矿床锡石碎裂特征及剪切作用分析
热处理辉钼矿光催化原位还原银离子的研究
草酸对锡石可浮性的影响及其作用机理研究
我国锡矿开发利用现状及可持续发展建议
柠檬酸对锡石浮选行为的影响及其作用机理分析