APP下载

黑土区覆混耕作中玉米秸秆还田对土壤水分入渗性能的影响

2021-03-31齐江涛田辛亮李明森郑铁志范旭辉

农业工程学报 2021年1期
关键词:土壤水分耕作长度

齐江涛,田辛亮,刘 凯,李明森,郑铁志,李 光,范旭辉

黑土区覆混耕作中玉米秸秆还田对土壤水分入渗性能的影响

齐江涛1,2,田辛亮1,2,刘 凯1,2,李明森3,郑铁志4,李 光3,范旭辉3※

(1. 吉林大学工程仿生教育部重点试验室,长春 130022;2. 吉林大学生物与农业工程学院,长春 130022; 3. 吉林省农业机械研究院,长春 130022;4. 吉林省农业机械化管理中心,长春 130022)

覆盖混埋耕作主要通过联合整地机对秸秆进行切碎并均匀混入土壤,对降低风蚀水蚀、提高耕层土壤蓄水能力及构建优质种床具有重要作用。为探究覆混耕作中玉米秸秆对土壤水分入渗性能的影响,该研究利用Design Expert软件,根据Box-Behnken试验原理通过室内土柱模拟试验,以覆混耕作中秸秆混埋深度、秸秆混埋量、秸秆长度为影响因素,以渗水量为指标进行三因素三水平二次回归正交试验。通过建立响应面数学模型,分析了各因素对土壤水分入渗性能的影响,并对影响因素进行了综合优化。试验结果表明:对渗水量影响主次顺序为秸秆混埋深度、秸秆长度、秸秆混埋量;当秸秆混埋深度为20 cm、秸秆混埋量为80%、秸秆长度为9 cm时,渗水量达到最优值0.249 L。利用优化后的参数进行试验验证,土壤渗水量为0.247 L。研究结果可为覆混耕作中联合整地机的作业参数调整提供参考和土壤水分入渗性能研究提供参考。

农业工程;覆混耕作;黑土区;水分入渗;玉米秸秆

0 引 言

保护性耕作技术是以机械化为手段、以“覆盖免耕、保土保水”为精髓的一种绿色农业耕作技术,通过作物秸秆及残茬覆盖于地表,并采用免耕或少耕的方法进行播种,可有效降低土壤的风蚀水蚀,提高土壤的蓄水保墒能力[1-2]。覆盖混埋耕作(以下简称覆混耕作)作为保护性耕作技术体系中的一种秸秆处理与蓄水耕层构建方式[3],通常采用分段作业方式实现:第一年秋季玉米机收后,采用松耙联合整地机对全量秸秆覆盖的耕地直接进行作业,完成秸秆的深层混埋;第二年春季采用播前整地中耕机对种床层进行全幅整地作业,构建优质种床,提高玉米出苗率。

中国每年农作物秸秆产量超过9亿t[4]。东北黑土区作为中国重要的商品粮基地,由于诸多因素的影响,黑土区土壤退化严重[5-6]。因此,加强东北黑土区土壤保护,科学合理利用黑土显得尤为重要。作为秸秆处理的方式之一,秸秆还田可以提高土壤的蓄水能力,改善土壤结构,增强土壤新陈代谢和有机物活性,培肥地力、恢复和提升有机质含量[7-9]。目前,秸秆还田的方式有覆盖还田、高留茬还田、免耕与秸秆覆盖相结合、耙混还田、深埋还田等[10-12]。研究表明,秸秆覆盖可以抑制土壤水分蒸发,提高土壤的蓄水能力,增加土壤有机质含量,但种床温度相对较低[13-15];免耕能降低机械作业对土壤的扰动,提高土壤的蓄水能力[16-17];免耕与秸秆覆盖相结合的方式可以显著改善土壤的性能,提高土壤孔隙度[18-19]。国内外许多学者从不同的角度对土壤水分特性进行了研究。刘继龙等[20]利用秸秆覆盖与耕作方式对土壤水分特性进行了研究;余坤等[21]探究了秸秆还田对农田土壤水分与冬小麦耗水特征的影响;赵永敢等[22]发现秸秆隔层与地膜覆盖能有效抑制潜水蒸发;付强等[23]探究秸秆覆盖对季节性冻融期土壤水分特征的影响;王晓彤等[24]探究了黏土夹层位置对黄河泥沙充填复垦土壤水分入渗的影响,确定了接近普通农田土壤水分入渗特性的理想夹层位置;Mohammad等[25]利用尺度模拟探究了土壤水入渗变异性,阐述了利用最小渗透时间测量数据可以得到累积渗透曲线。通过国内外学者对土壤水分入渗性能的研究发现,不同的秸秆处理方式对土壤水分入渗性能影响差异较大。

综上,国内外学者的研究主要集中在秸秆还田及耕作方式对土壤水分入渗性能和蓄水能力的影响方面。因此,探究适宜的秸秆还田及耕作方式对于黑土区的土壤保护具有重要意义。本文通过室内土柱试验探究覆混耕作中秸秆混埋深度、秸秆混埋量、秸秆长度对土壤水分入渗的影响规律,寻求较优参数组合,以期为覆混耕作中联合整地机作业参数提供参考。

1 材料与方法

1.1 试验材料

试验用土于2019年秋季取自长春市农安县开安镇(44°10'N,120°10'E),该区年降雨量535 mm,土壤类型为黑钙土。取土深度为0~30 cm,试验用土经自然风干后磨碎,除去杂物后过2 mm网筛,土壤初始含水率采用烘干法进行测定为3.37%,0~20 cm深度土壤容重1.3 g/cm3,20~30 cm深度土壤容重1.4 g/cm3,土壤pH值为7.01。试验所用秸秆为2019年秋季风干玉米秸秆,含水率10.9%,分别收集4、7、10 cm长度的玉米秸秆。

1.2 试验方法

用有机玻璃柱装填土柱,有机玻璃柱由亚克力材料制造,外径20 cm,壁厚2 mm,玻璃柱底部开有若干内径为10 mm的圆孔,便于土壤水分渗出。装土前,为降低管壁效应对水分入渗的影响,用凡士林均匀涂满有机玻璃柱内壁。填装土壤前,在玻璃柱底部平铺一层与玻璃柱横截面积大小相同的尼龙布,防止土壤颗粒进入水分收集仪器中。土柱装填过程中,模拟当地土壤容重,土柱0~20 cm深度土壤容重1.3 g/cm3,20~30 cm深度土壤容重1.4 g/cm3,分别装填自然风干并过2 mm网筛的土壤。秸秆按照每组试验的混埋深度及混埋量均匀混埋至土柱中,每组土柱装填高度为30 cm[26],各处理均进行3次重复试验。土柱装填完成后采用一维垂直积水入渗法进行试验,为确保有部分水分渗出,依据土壤饱和含水率及前期试验结果,每个土柱总注水量为4 L。

注水开始后记录湿润锋下移位置及湿润锋运移时间。土柱底部有金属底座,底座内部有水分收集容器,对土柱渗出的水量进行收集,记录土柱出水时刻,并收集和记录每组试验整个渗水过程的累积渗水量,每组试验渗水量为3次重复试验的平均值,土壤水分入渗试验装置如图1所示。

1.3 数据统计分析

试验中所有数据均采用平均值,利用Excel 2016进行数据统计,Design Expert软件进行显著性分析,Origin 9.0软件进行绘图。

2 试验设计与分析

2.1 单因素试验

2.1.1 试验因素及评价指标

研究表明,秸秆混埋深度[27]、秸秆混埋量[28]、秸秆长度[29]是影响土壤水分入渗性能的主要因素。秸秆混埋深度是土壤水分下渗的主要影响因素,土壤蓄水能力随着秸秆混埋深度的增加而逐渐增大[27]。同时,较高的秸秆混埋量可以减少土壤中大孔隙结构所占比例且秸秆吸持部分水分,亦能提高土壤的保水性能[28];长秸秆加入土壤后对土壤水分入渗起到阻碍作用,减缓土壤中水分下渗,进而提高土壤的蓄水能力[29]。

因此,本文以秸秆混埋深度、秸秆混埋量、秸秆长度为试验因素,选择渗水量[30]为评价指标,探究黑土区覆混耕作中玉米秸秆对土壤水分入渗性能的影响。

2.1.2 试验设计

提高秸秆混埋深度,可以提高土壤孔隙度,从而增强耕层内土壤蓄水能力。但混埋深度增加,会导致机具功耗增大。因此,秸秆混埋深度应合理选取,不宜过高。为对比不同整地效果的秸秆混埋深度对土壤水分入渗效果的影响,本试验分别选取秸秆混埋深度10、15、20 cm进行试验[27]。

保护性耕作技术要求机具作业后地表覆盖约30%的秸秆[3],降低土壤风蚀水蚀,剩余70%左右秸秆用于还田或打捆移出农田。不同保护性耕作模式地表秸秆覆盖量存在少许差异,本试验以70%为中间值选取秸秆混埋量试验水平,进行混埋还田。试验时,以1m2作为取样区域,分别将1 m2区域内60%、70%、80%的秸秆混埋入土壤中,进行试验。

依据国家标准《保护性耕作机械秸秆粉碎还田机》GB/T 24675.6-2009,玉米秸秆粉碎长度不大于10 cm,同时考虑实际作业中秸秆切碎程度对土壤水分入渗效果的影响、且粉碎长度过短会增加机具能耗,因此本研究取秸秆长度指标为4、7、10 cm。

以渗水量为评价指标进行试验,每次试验时用水分收集容器收集渗出的水分并测量,然后记录渗水量,每组试验重复3次,取平均值。

2.1.3 试验结果与分析

结合试验结果,分别分析秸秆混埋深度、秸秆混埋量、秸秆长度3个因素与渗水量之间的关系。在秸秆混埋量与秸秆长度一定的情况下,分别选取秸秆混埋深度10、15、20 cm进行试验,随着秸秆混埋深度的增大,渗水量逐渐降低,如图2a所示。分析其原因在于,土壤混入秸秆后可以增加土壤毛管孔隙的数量,从而提高了土壤混埋后的持水能力。当秸秆混埋深度与秸秆长度一定时,秸秆混埋量分别选取60%、70%、80% 3个水平进行试验,随着秸秆混埋量的增加,渗水量越来越小,如图2b所示。产生该结果的原因在于,秸秆可以吸收水分,从而增加土壤与秸秆混合物的持水能力。当秸秆混埋深度与秸秆混埋量一定时,增大秸秆长度可以降低渗水量,如图2c所示。分析其原因在于,土壤中混入的长秸秆吸收一部分水分,同时混入的长秸秆加大了土壤孔隙度、增强土壤持水能力,从而降低了渗水量。

综合分析上述试验结果,增加秸秆混埋深度、秸秆混埋量、秸秆长度3个因素的水平值,可以降低试验渗水量、提高混埋秸秆后土壤的持水能力。在实际生产过程中,在满足保护性耕作秸秆覆盖要求和机具作业低功耗要求的前提下,秸秆混埋深度、秸秆混埋量、秸秆长度3个因素可以适当选择较大的值。

2.2 多因素优化试验

2.2.1 试验设计

为探究上述3个影响因素对土壤水分入渗性能的影响规律及优化参数组合,以渗水量为评价指标,开展多因素优化试验。多因素优化试验利用Design Expert软件进行设计,根据Box-Behnken试验原理设计的三因素三水平试验[31-32],共包括17组试验,各水平试验重复3次。由单因素试验结果可知:秸秆混埋深度1、秸秆混埋量2以及秸秆长度3对渗水量有重要影响。根据单因素试验分析结果,将秸秆混埋深度分别设置为10、15、20 cm,秸秆混埋量分别设置为60%、70%、80%,秸秆长度分别设置为4、7、10 cm。表1为试验因素水平。

表1 试验因素水平

2.2.2 试验结果与分析

试验结果如表2所示,根据表2结果,利用Design Expert软件进行多元拟合及回归性分析,建立渗水量与秸秆混埋深度、秸秆混埋量、秸秆长度这3个自变量间的响应面回归模型,如式(1)所示,并对模型进行显著性检验如表3所示。

表2 试验设计方案及结果

表2描述了17组试验中湿润锋运移时间,由数据可知,增加秸秆混埋深度、提高秸秆混埋量、增大秸秆长度,可以提高湿润锋推进速度、减少渗水量。分析其原因在于,秸秆混埋深度及秸秆混埋量增加、秸秆长度越长增大了土壤的孔隙度,大孔隙的存在对水分优先迁移具有显著作用[33],利于土壤水分下渗和增加持水能力。因此,采用覆混作业的农田地块在降水后可以加快雨水渗入混埋有秸秆的土壤中,并增加土壤持水能力,起到涵养水源的作用。

由表3可知,模型显著性检验=193.15,<0.000 1,说明回归模型差异极显著;失拟性检验中,=0.29,>0.1,为不显著,说明试验模型模拟情况与实际情况相符合,可以准确反映渗水量与秸秆混埋深度1、秸秆混埋量2、秸秆长度3之间的关系,能对试验中各种情况进行较好预测。模型的一次项秸秆混埋深度1、秸秆混埋量2、秸秆长度3影响均为极显著;二次项秸秆混埋深度12、秸秆混埋量22、秸秆长度32影响为极显著;交互项秸秆混埋深度1与秸秆混埋量2影响为显著,交互项秸秆混埋深度1与秸秆长度3影响为极显著,交互项秸秆混埋量2与秸秆长度3影响为极显著。模型值分别为1 287.97、85.51、146.64,可发现对渗水量影响主次顺序为秸秆混埋深度、秸秆长度、秸秆混埋量。

表3 模型显著性检验

注:**表示差异极显著(<0.01);*表示差异显著(<0.05)。

Note: ** means extremely significant (<0.01); * means significant (<0.05).

2.2.3 响应曲面分析

根据模型利用Design Expert软件生成响应面如图3所示,进一步分析秸秆混埋深度1、秸秆混埋量2、秸秆长度33个因素对响应值渗水量的交互影响。

图3a为秸秆混埋深度1、秸秆混埋量2对渗水量交互作用的响应曲面图,可知当增大秸秆混埋深度与秸秆混埋量有助于降低渗水量,出现该现象的主要原因是增大秸秆混埋深度与秸秆混埋量增加了土壤中毛管孔隙的数量,毛管孔隙对水分入渗有阻碍效果,使渗水量减少。

图3b为秸秆混埋深度1、秸秆长度3对渗水量交互作用的响应曲面图,可知随着秸秆长度及秸秆混埋深度的增大,渗水量有降低的趋势,出现该现象的主要原因是秸秆混埋深度增大,使得秸秆在土壤中分布范围变广,增加了土壤中毛管孔隙数量;秸秆长度增大,虽有大孔隙存在,但长秸秆吸水后膨胀,会持有部分水分,且长秸秆阻断了土壤水分流通的毛管孔隙,使渗水量减少。

图3c为秸秆混埋量2、秸秆长度3对渗水量交互作用的响应曲面图,由响应面的形状可以看出,增大秸秆混埋量及秸秆长度可以降低渗水量,出现该现象的主要原因是增大秸秆混埋量提高了秸秆在土壤中的含量,秸秆内部孔隙可吸附部分水分,且秸秆长度增大对于土壤水分下渗起到阻碍作用,土壤中混埋秸秆可以涵养水分,使渗水量减少。

2.2.4 参数优化

根据模型分析效果,利用Design Expert软件寻优功能进行参数优化,为提高耕层土壤蓄水能力,就要获得较低的渗水量,必须要求秸秆混埋深度、秸秆混埋量、秸秆长度选择合适的参数,参数优化约束条件为

利用Design Expert软件中的优化求解器对回归方程模型(1)进行优化求解。利用软件优化后,得到秸秆混埋深度20 cm、秸秆混埋量80%、秸秆长度9 cm时,渗水量达到最小值0.249 L。为了验证优化后参数准确性,采用优化后参数进行3次重复试验,土柱装填深度及土壤容重与前文试验相同,秸秆混埋深度20 cm、秸秆混埋量80%、秸秆长度9 cm,分别装填自然风干并过2 mm网筛的土壤,得到3次试验平均渗水量为0.247 L。试验得到数值与模型优化值相对误差均小于5%,说明参数优化模型可靠。

3 结 论

1)本文通过室内土柱模拟试验,研究了黑土区覆混耕作中玉米秸秆对土壤水分入渗性能的影响。由试验结果可知,对渗水量的影响主次顺序依次为:秸秆混埋深度、秸秆长度、秸秆混埋量。

2)以渗水量为评价指标,对影响因素进行参数优化,优化后最佳参数为:秸秆混埋深度20 cm、秸秆混埋量80%、秸秆长度9 cm。通过试验对建立的渗水量的二元多项式回归模型的优化参数进行验证,实测值与模型优化值误差小于5%,说明模型可靠。

3)通过多因素试验对比湿润锋运移时间和渗水量,得出覆混耕作中土壤水分入渗规律:增加秸秆混埋深度、提高秸秆混埋量、增大秸秆长度,可以减少湿润锋运移时间、降低渗水量,从而为黑土区土壤水分入渗性能研究提供试验依据。

[1]何进,李洪文,陆海涛,等. 保护性耕作技术与机具研究进展[J]. 农业机械学报,2018,49(5):1-19.

He Jin, Li Hongwen, Lu Haitao, et al. Research progress of conservation tillage technology and machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 1-19. (in Chinese with English abstract)

[2]胡立峰,李洪文,高焕文. 保护性耕作对温室效应的影响[J]. 农业工程学报,2009,25(5):308-312.

Hu Lifeng, Li Hongwen, Gao Huanwen. Influence of conservation tillage on greenhouse effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 308-312. (in Chinese with English abstract)

[3]Komp M. Conservation Technology Information Center. CRM Survey Data[EB/OL]. (1982-01-01) [2020-09-10] https://www.ctic.org/crm/

[4]常钦. 秸秆利用,下气力培育产业链[EB/OL]. (2018-07-08) [2020-09-10]http://society.people.com.cn/n1/2018/0708/c1008-30132996.html

[5]Qi J T, Tian X L, Li Y, et al. Design and experiment of a subsoiling variable rate fertilization machine[J]. Int J Agric & Biol Eng, 2020, 13(4): 118-124.

[6]魏丹,匡恩俊,迟凤琴,等. 东北黑土资源现状与保护策略[J]. 黑龙江农业科学,2016(1):158-161.

Wei Dan, Kuang Enjun, Chi Fengqin, et al. The present situation and protection strategy of black soil resources in northeast China[J]. Heilongjiang Agricultural Sciences, 2016(1): 158-161. (in Chinese with English abstract)

[7]Yang H S, Xu M M, Koide R T, et al. Effects of ditch-buried stover return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system[J]. Journal of the Science of Food and Agriculture, 2016, 96(4): 1141-1149.

[8]梁卫,袁静超,张洪喜,等. 东北地区玉米秸秆还田培肥机理及相关技术研究进展[J]. 东北农业科学,2016,41(2):44-49.

Liang Wei, Yuan Jingchao, Zhang Hongxi, et al. Research progress on mechanism and related technology of corn stover returning in northeast China[J]. Journal of Northeast Agricultural Sciences, 2016, 41(2): 44-49. (in Chinese with English abstract)

[9]丛萍,王婧,董建新,等. 秸秆还田对黑土亚表层微生物群落结构的影响特征及原因分析[J]. 农业工程学报,2020,36(1):109-118.

Cong Ping, Wang Jing, Dong Jianxin, et al. Effects and analysis of stover returning on subsoil microbial community structure in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 109-118. (in Chinese with English abstract)

[10]张万锋,杨树青,娄帅,等. 耕作方式与秸秆覆盖对夏玉米根系分布及产量的影响[J]. 农业工程学报,2020,36(7):117-124.

Zhang Wanfeng, Yang Shuqing, Lou Shuai, et al. Effects of tillage methods and stover mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 117-124. (in Chinese with English abstract)

[11]Da Veiga M, Horn R, Reinert D J. Soil compressibility and penetrability of an oxisol from southern Brazil, as affected by long-term tillage systems[J]. Soil and Tillage Research, 2007, 92(1/2): 104-113.

[12]王金武,唐汉,王金峰. 东北地区作物秸秆资源综合利用现状及发展分析[J]. 农业机械学报,2017,48(5):1-21.

Wang Jinwu, Tang Han, Wang Jinfeng. Comprehensive utilization status and development analysis of crop stover resourcein northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21. (in Chinese with English abstract)

[13]Kasteel R, Garnier P, Vachier P, et al. Dye tracer infiltration in the plough layer after stover incorporation[J]. Geoderma, 2007, 137(3/4): 360-369.

[14]Kim S H, Gitz D C, Sicher R C, et al. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2[J]. Environmental and Experimental Botany, 2007, 61(3): 224-236.

[15]Zhou Deyi, Li Mao, Li Yang, et al. Detection of ground stover coverage under conservation tillage based on deep learning[J]. Computers and Electronics in Agriculture, 2020, 172: 105369.

[16]朱强根,朱安宁,张家宝,等. 黄淮海平原保护性耕作下玉米季土壤动物多样性[J]. 应用生态学报,2009,20(10):2417-2423.

Zhu Qianggen, Zhu Anning, Zhang Jiabao, et al. Diversity of soil fauna in corn fields in Huang Huai Hai Plain of China under effects of conservation tillage[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2417-2423. (in Chinese with English abstract)

[17]吕美蓉,李增嘉,张涛,等. 少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响[J]. 农业工程学报,2010,26(1):41-46.

Lü Meirong, Li Zengjia, Zhang Tao, et al. Effects of minimum or no-tillage system and stover returning on extreme soil moisture and yield of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 41-46. (in Chinese with English abstract)

[18]王增丽. 秸秆不同处理还田方式对土壤理化特性和作物生长效应的影响[D]. 杨凌:西北农林科技大学,2010. Wang Zengli. Effects of Different Stover Incorporation Manners on Soil Physical and Chemical Properties and Crop Growth[D]. Yangling: Northwest A&F University, 2010. (in Chinese with English abstract)

[19]殷涛,何文清,严昌荣,等. 地膜秸秆双覆盖对免耕种植玉米田土壤水热效应的影响[J]. 农业工程学报,2014,30(19):78-87.

Yin Tao, He Wenqing, Yan Changrong, et al. Effects of plastic mulching on surface of no-till stover mulching on soil water and temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 78-87. (in Chinese with English abstract)

[20]刘继龙,李佳文,周延,等. 秸秆覆盖与耕作方式对土壤水分特性的影响[J]. 农业机械学报,2019,50(7):333-339.

Liu Jilong, Li Jiawen, Zhou Yan, et al. Effect of stover mulching and tillage on soil water characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 333-339. (in Chinese with English abstract)

[21]余坤,冯浩,李正鹏,等. 秸秆还田对农田土壤水分与冬小麦耗水特征的影响[J]. 农业机械学报,2014,45(10):116-123.

Yu Kun, Feng Hao, Li Zhengpeng, et al. Effects of different pretreated stover on soil water content and water consumption characteristics of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 116-123. (in Chinese with English abstract)

[22]赵永敢,王婧,李玉义,等. 秸秆隔层与地覆膜盖有效抑制潜水蒸发和土壤返盐[J]. 农业工程学报,2013,29(23):109-117.

Zhao Yonggan, Wang Jing, Li Yuyi, et al. Reducing evaporation from phreatic water and soil resalinization by using stover interlayer and plastic mulch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 109-117. (in Chinese with English abstract)

[23]付强,李铁男,李天霄,等. 秸秆覆盖对季节性冻融期土壤水分特性的影响[J]. 农业机械学报,2015,46(6):141-146.

Fu Qiang, Li Tienan, Li Tianxiao, et al. Influence of stover mulching on soil moisture characteristics during seasonal freeze-thaw period[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 141-146. (in Chinese with English abstract)

[24]王晓彤,胡振琪,赖小君,等. 黏土夹层位置对黄河泥沙充填复垦土壤水分入渗的影响[J]. 农业工程学报,2019,35(18):86-93. Wang Xiaotong, Hu Zhenqi, Lai Xiaojun, et al. Influence of clay interlayer position on infiltration of reclaimed soil filled with Yellow River sediment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 86-93. (in Chinese with English abstract)

[25]Mohammad M. Chari, Mohammad T. Poozan, Peyman Afrasiab. Modelling soil water infiltration variability using scaling[J]. Biosystems Engineering, 2020, 196: 56-66.

[26]李帅霖,王霞,王朔,等. 生物炭施用方式及用量对土壤水分入渗与蒸发的影响[J]. 农业工程学报,2016,32(14):135-144.

Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)

[27]程东娟,周客,王利书,等. 秸秆施入深度对土壤水分运移和水吸力变化的影响[J]. 水土保持学报,2020,34(1):116-120. Cheng Dongjuan, Zhou Ke, Wang Lishu, et al. Effect of stover application depth on soil moisture transport and water suction changes[J]. Journal of Soil and Water Conservation, 2020, 34(1): 116-120. (in Chinese with English abstract)

[28]仵峰,张凯,宰松梅,等. 小麦玉米秸秆掺土还田量对土壤水分运动特性的影响[J]. 农业工程学报,2015,31(24):101-105. Wu Feng, Zhang Kai, Zai Songmei, et al. Impact of mixed stover on soil hydraulic properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 101-105. (in Chinese with English abstract)

[29]王珍,冯浩. 秸秆不同还田方式对土壤入渗特性及持水能力的影响[J]. 农业工程学报,2010,26(4):75-80. Wang Zhen, Feng Hao. Effect of stover-incorporation on soil infiltration characteristics and soil water holding capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 75-80. (in Chinese with English abstract)

[30]仵峰,王富斌,宰松梅,等. 玉米秸秆复合渗灌管研制及渗水性能研究[J]. 农业工程学报,2019,35(14):98-104. Wu Feng, Wang Fubin, Zai Songmei, et al. Development and infiltration performance of corn stover composite infiltration irrigation pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 98-104. (in Chinese with English abstract)

[31]吴腾,胡良龙,王公仆,等. 步行式甘薯碎蔓还田机的设计与试验[J]. 农业工程学报,2017,33(16):8-17.

Wu Teng, Hu Lianglong, Wang Gongpu, et al. Design and test of walking sweet potato (Ipomoea batatas) vines crushing and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 8-17. (in Chinese with English abstract)

[32]田辛亮,赵岩,陈学庚,等. 4JSM-2000A型棉秆粉碎及搂膜联合作业机的研制[J]. 农业工程学报,2018,34(10):25-35.

Tian Xinliang, Zhao Yan, Chen Xuegeng, et al. Development of 4JSM-2000A type combined operation machine for cotton stalk chopping and residual plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 25-35. (in Chinese with English abstract).

[33]吴继强,张建丰,高瑞. 大孔隙对土壤水分入渗特性影响的物理模拟试验[J]. 农业工程学报,2009,25(10):13-18.

Wu Jiqiang, Zhang Jianfeng, Gao Rui. Physical simulation experiments of effects of macropores on soil water infiltration characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): 13-18. (in Chinese with English abstract)

Soil water infiltration under mulch tillage affected by maize stovers returning in black soil areas

Qi Jiangtao1,2, Tian Xinliang1,2, Liu Kai1,2, Li Mingsen3, Zheng Tiezhi4, Li Guang3, Fan Xuhui3※

(1.,,,130022,;2.,,130022,;3.,130022,;4.,130022,)

Conservation tillage has become a promising farming technology with mechanized operations as the main means. The method of minimum tillage or no tillage planting is widely adopted, where the crop stover and stubble are used to cover on the soil surface, in order to effectively reduce the soil wind erosion and water erosion, while improve the ability of soil to keep moisture and water. As a kind of conservation tillage, mulch tillage is mainly used to chop up the stover by a combined tillage machine and mix it evenly into the soil. As such, the mulch tillage can contribute to soil moisture infiltration, and high-quality seed beds. After the corn harvest in the first autumn, the full amount of stover-covered arable land was operated directly by the combined soil planter with the soft rake. In the second spring, the seed bed making machine was used to prepare the whole field of the seed bed, to build a high-quality seed bed and improve the emergence rate of corn. Most previous research focused on the effect of stover mulching and tillage methods on soil moisture infiltration performance. However, it is of great significance to explore the suitable stover returning and tillage method for soil protection in black soil area. In this study, a Design Expert software and a Box-Behnken test were used to conduct an experimental study on the infiltration performance of stover on soil moisture in black soil area in mulching tillage. In the column experiment, a quadratic regression orthogonal experiment was designed with three factors and three levels, including the depth, the quantity, and the length of mixed stover. The experimental results showed that the significant order of the influence on the amount of water seepage was as follows: the depth of mixed stover, the length of stover, the quantity of mixed stover. A response surface mathematical model was established to analyze the influence of various factors on soil moisture infiltration performance, and thereby to comprehensively optimize the influencing factors. The optimal combination was achieved, where the water seepage reached the maximum, when the depth of mixed stover was 20 cm, the quantity of mixed stover was 80%, and the length of stover was 9 cm. Using the optimized parameters for experiments, the soil water infiltration rate was up to 0.247 L. The findings can provide a sound reference for the adjustment parameters in the combined tillage machine in the mulch tillage, particularly on a theoretical support for black soil protection.

agricultural engineering; mulch tillage; black soil area; water infiltration; maize stover

齐江涛,田辛亮,刘凯,等. 黑土区覆混耕作中玉米秸秆还田对土壤水分入渗性能的影响[J]. 农业工程学报,2021,37(1):141-147.doi:10.11975/j.issn.1002-6819.2021.01.018 http://www.tcsae.org

Qi Jiangtao, Tian Xinliang, Liu Kai, et al. Soil water infiltration under mulch tillage affected by maize stovers returning in black soil areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 141-147. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.018 http://www.tcsae.org

2020-09-10

2020-12-11

国家自然科学基金资助项目(31971783)

齐江涛,教授,博士生导师,中国农业工程学会高级会员(No.E041201131S),主要从事精准农业与智能农业装备研究。 Email:qijiangtao@jlu.edu.cn

范旭辉,研究员,主要从事保护性耕作及其智能装备研究。Email:cchkbjomfan@163.com

10.11975/j.issn.1002-6819.2021.01.018

S152.7

A

1002-6819(2021)-01-0141-07

猜你喜欢

土壤水分耕作长度
喀斯特坡耕地块石出露对土壤水分入渗的影响
磷素添加对土壤水分一维垂直入渗特性的影响
基于数字孪生的农业耕作监控系统
北京土石山区坡面土壤水分动态及其对微地形的响应
保护性耕作试验监测数据分析
腐植酸:盯住东北三省5650 万亩黑土地保护性耕作发力
耕作与施肥方式对油菜产量和养分吸收利用的影响
衡水湖湿地芦苇的生物量与土壤水分变化的相关性研究
绳子的长度怎么算
爱的长度