推迟灌拔节水条件下种植模式对冬小麦抗倒伏特性和产量的影响
2021-03-31刘仲秋徐杭杭张浩男李全起
刘仲秋,徐杭杭,张浩男,2,吴 浩,李全起
推迟灌拔节水条件下种植模式对冬小麦抗倒伏特性和产量的影响
刘仲秋1,徐杭杭1,张浩男1,2,吴 浩1,李全起1※
(1. 山东农业大学水利土木工程学院,泰安 271018; 2. 沂沭河水利管理局沭河水利管理局,临沂 276001)
华北平原冬小麦在粮食生产中占据重要地位,受到灌溉用水短缺影响以及生育后期易倒伏减产的制约,冬小麦供需矛盾日益突出。该研究探究了推迟灌拔节水条件下不同种植模式对冬小麦抗倒伏特性的影响,设置宽幅精播(W)与常规种植(C)2种种植模式,每种种植模式设置灌拔节水60 mm(I1)和推迟10 d灌拔节水60 mm(I2)2种灌溉处理,研究冬小麦关键生育期茎秆物理指标,倒数第2节间茎杆力学、抗倒伏指数、蠕变变形量、产量及其组成等指标,探究冬小麦抗倒伏特性综合调优的种植模式和灌溉制度。结果表明,宽幅精播模式下推迟灌拔节水对抽穗期倒数第2节间茎杆抗折力有显著提升的趋势,显著提高了抗弯刚度,显著降低了蜡熟期倒数第2节间茎杆抗折力和抗弯刚度,以及植株蜡熟期鲜质量;宽幅精播模式下推迟灌拔节水显著提高了抽穗期抗倒伏指数,并提升了灌浆期抗倒伏指数,该处理在抽穗期、灌浆期和蜡熟期的抗倒伏指数平均值分别为2.03、1.58和1.87 N/(m·g)。冬小麦倒数第2节间茎杆在施加小于其极限抗折力的不同比例荷载时具有蠕变特性,宽幅精播模式下推迟灌拔节水茎杆蠕变极值平均值在抽穗期最大,灌浆期表现仍然较好,均由减速蠕变过渡到稳定蠕变阶段,蠕变极值范围介于0.6%~3.7%,蠕变极值平均值介于0.7%~2.5%。综合考虑抗倒伏指数和蠕变试验结果,冬小麦在宽幅精播模式下结合推迟10 d灌拔节水处理的抗倒伏特性最优。研究结果可为华北平原冬小麦节水高产提供理论依据和技术支持。
灌溉;种植模式;冬小麦;宽幅精播;抗倒伏指数;蠕变
0 引 言
华北平原是中国重要的农业生产区之一,冬小麦产量约占中国总产量的75%[1],同时华北平原也是世界上水资源短缺最为严峻的地区之一[2]。近年来,冬小麦产量水平不断提高。为了进一步提高冬小麦产量,余松烈院士团队[3]提出了宽幅精播种植模式,播种量相同的情况下,改传统播种机播幅宽3.0~5.0 cm为6.0~8.0 cm,改生产上密集一条线条播为单粒分散式粒播,这一播种模式在北方冬麦区获得了大面积单产最高纪录。但是,高产冬小麦田群体数量大,在生育后期茎秆负荷力持续增大,倒伏问题加剧[4],增加真菌霉素污染储存籽粒的可能性[5],还会带来收获困难等问题,制约了冬小麦的高产和稳产。
亏缺灌溉是有效的农业节水措施,能合理利用有限的水资源[6]。研究表明,亏缺灌溉显著改善了冬小麦旗叶光合特性和水分利用效率等生理指标,其形态结构和产量亦会受到影响[7]。由拔节期灌溉推迟至拔节后10 天灌溉,冬小麦的水分利用效率和籽粒产量均显著提高[8-9]。Pierre等[10]研究认为,拔节期前水分胁迫可调节小麦植株节间长度、外径和硬度。Ma等[11]研究发现,拔节期水分亏缺处理提高了节间单位长度干质量,提升了茎秆抗倒伏能力。植物茎秆是一种黏弹性材料,受到可变的外部压力时,可通过蠕变与松弛行为来调节自身机体的几何结构从而适应外界变化[12]。Feng等[5]认为,风速是引起倒伏的主要因子,小麦倒伏主要是由基部节间上的风引起的弯曲力矩导致的。Chen等[13]研究了21种冬小麦茎秆的应力松弛特性,表明分数阶Zener模型能够准确描述应力松弛现象。梁莉等[14]利用四元件Burgers模型精准描述了蜡熟期小麦茎秆拉伸蠕变特性。有研究表明,应力水平、应力保持时间对拉伸蠕变有显著影响[15]。到目前为止,推迟灌拔节水条件下宽幅精播冬小麦茎秆节间力学、抗倒伏指数和蠕变特性研究较少,制约了推迟灌拔节水和宽幅精播技术的进一步发展。本研究以种植模式和拔节水灌溉时间为切入点,分析冬小麦抗倒伏特性,以期为华北平原冬小麦节水高产提供理论依据和技术支持。
1 材料与方法
1.1 试验区概况
本试验于2016年10月-2018年6月在山东农业大学试验站(36°10′19″N,117°09′03″E)水分池内进行。水分池长×宽为3.0 m×3.0 m,深1.5 m,四周水泥抹面,不封底,池中土壤为壤质黏土,0~20 cm土壤碱解氮、速效磷和速效钾含量分别为108.1、16.1和92.4 mg/kg,有机质质量分数为1.4%,土壤容重为1.5 g/cm3,田间持水率为32.4%(体积含水率)。该试验点属温带大陆性半季风气候区,多年平均降水量为697.0 mm,约70%集中在7-9月。冬小麦生育期气象数据由气象站采集记录,距离试验地约150 m。2016-2018年冬小麦生育期气温和降雨情况如图1所示。自然降雨不能满足冬小麦正常生长需水,冬小麦生育期间必须进行补充灌溉。
1.2 试验设计与过程
供试冬小麦品种为济麦22。试验采用裂区设计,主区为2种种植模式:宽幅精播(W)与常规种植(C);副区为2个灌溉时间,灌溉拔节水60 mm(I1)的时间分别为2017年3月23日和2018年3月21日,推迟10 d灌溉拔节水60 mm(I2)的时间为2017年4月2日和2018年4月1日,采用水表严格控制水量。2种种植模式的播种量均为222粒/m2,采用人工点播。宽幅精播种植模式的行距为28 cm,播幅为6~8 cm;常规种植模式的行距为20 cm,播幅为2~3 cm。播种前,每个水分池底施尿素19.2 g/m2,磷酸二铵26.1 g/m2,硫酸钾21.0 g/m2,拔节期追施尿素19.2 g/m2。2个生长季中,冬小麦生长期间不遮雨。本试验共4个处理,每处理重复3次,共12个水分池,随机区组排列。
1.3 指标测定与计算
于冬小麦抽穗期、灌浆期和蜡熟期,各小区连续取15株有代表性植株,采用精度10-2g电子天平测量其鲜质量(M,g),精度1 mm的卷尺测量株高(,cm)和重心高度(H,cm)。截取倒数第2节间(剥离叶鞘),采用精度为10-4g的电子天平测量其鲜质量(M2,g),精度为1 mm的直尺测量茎秆长度(L2,mm),精度为0.02 mm游标卡尺测量长轴(D,mm)、短轴外径(D,mm)和壁厚(,mm)。
倒数第2节间茎杆外径()(mm)计算公式为
倒数第2节间茎秆鲜密度(ρ2,g/cm3)[16]计算公式为
采用量程为0~200 N的微机控制电子万能试验机对倒数第2节间进行三点弯曲试验和蠕变试验,加载速度分别为50和0.5 mm/min,支点间距离()为5 cm,为中间加载点的弯曲挠度(cm)。弯曲试验测定的时间-应力曲线峰值即为茎秆抗折力(B,N),蠕变试验测定时间-应变曲线,加载时间为400 s。考虑到茎杆个体差异性,蠕变试验每个处理选取3个试样,施加荷载采用每个处理平均抗折力的40%、60%和80%,达到额定荷载时保持力不变,测定时间-应变曲线。
倒数第2节间抗弯刚度(EI,N·cm2)[16]为
冬小麦抗倒伏指数(R,N/(m·g))[17]计算公式为
产量及产量构成因素测定:在冬小麦成熟时,每小区取除边3行外生长均匀一致的1.5 m双行考察穗数,后风干脱粒测产。另每小区连续选取具有代表性的20株,于室内计数穗粒数和千粒质量。
1.4 数据处理与统计分析
采用数据处理系统(Data Processing System)统计分析系统、Microsoft Excel 2016和Origin Pro 2017进行数据处理和统计分析,采用最小显著差数法(Least-Significant Difference method,LSD)进行显著性检验。
2 结果与分析
2.1 茎秆物理指标
2016-2017生长季,抽穗期WI1处理的株高较CI1处理显著降低了5.8%(表1);抽穗期CI1处理的植株鲜质量显著大于WI1和WI2处理,WI1处理的鲜质量较CI1处理显著降低了27.0%。蜡熟期WI1处理的鲜质量最高。2017-2018生长季,灌浆期WI2处理的植株鲜质量较CI1处理显著降低了12.3%。从2个生长季来看,宽幅精播模式下推迟灌拔节水会显著降低蜡熟期鲜质量;2017-2018生长季各处理株高和重心高度均低于2016-2017生长季,而蜡熟期的鲜质量均高于2016-2017生长季。
2016-2017生长季,抽穗期CI2处理倒数第2节间鲜密度显著高于其余处理(表2);灌浆期CI2处理壁厚显著低于其余处理,蜡熟期WI2处理壁厚较CI2处理显著增加40%。2017-2018生长季,灌浆期CI2处理鲜密度较WI1处理显著增加31.9%,蜡熟期WI2鲜密度在各处理中最低;抽穗期WI2处理壁厚较CI1处理显著增加25%,蜡熟期WI1处理的壁厚显著大于CI1和CI2处理。从2个生长季来看,2016-2017生长季从抽穗期到灌浆期茎杆外径逐渐增大;2017-2018生长季各处理茎杆鲜密度均高于2016-2017生长季;宽幅精播模式有提高蜡熟期倒数第2节间茎杆壁厚的倾向。
表1 冬小麦不同生育期植株株高、重心高度和鲜质量
注:数据后不同字母表示同一生育期处理间差异(<0.05)。WI1、WI2、CI1、CI2分别为宽幅精播灌溉拔节水60 mm、宽幅精播推迟10 d灌溉拔节水60 mm、常规种植灌溉拔节水60 mm、常规种植推迟10 d灌溉拔节水60 mm。下同。
Note: Different letters after the data indicate significant difference among treatments at same growth stage (<0.05) .WI1, WI2, CI1 and CI2 are wide precision planting pattern with 60 mm irrigation at jointing stage, wide precision planting pattern with 10-d delaying irrigation 60 mm at jointing stage, conventional cultivation planting pattern with 60 mm irrigation at jointing stage, conventional cultivation planting pattern with 10-d delaying irrigation 60 mm at jointing stage, respectively. The same below.
表2 冬小麦不同生育期倒数第2节间茎秆外径、鲜密度和壁厚
2.2 茎秆力学指标
2016-2017生长季,抽穗期WI1处理倒数第2节间抗折力较CI1处理显著降低了46.9%(图2a),宽幅精播模式显著降低了抗弯刚度(图2b),灌浆期CI1处理抗折力和抗弯刚度均显著高于其余处理;蜡熟期WI1处理抗折力和抗弯刚度均显著高于其余处理。2017-2018生长季,抽穗期WI2处理抗折力显著高于其余处理,CI1处理抗弯刚度显著高于其余处理;灌浆期CI1处理抗折力和抗弯刚度均显著高于其余处理;蜡熟期WI1处理抗折力显著高于其余处理,CI2处理抗弯刚度显著低于其余处理。从2个生长季来看,2017-2018生长季各处理抗折力和抗弯刚度均高于2016-2017生长季,抽穗期WI1处理抗折力和抗弯刚度最小,灌浆期CI1处理抗折力和抗弯刚度最大,蜡熟期WI1处理抗折力最大,CI2处理抗折力和抗弯刚度最小;宽幅精播模型下推迟灌溉拔节水对抽穗期抗折力有显著提升的趋势,对抗弯刚度有显著提升,对蜡熟期抗折力和抗弯刚度有显著降低。
2.3 冬小麦抗倒伏指数
2016-2017生长季,抽穗期WI1处理抗倒伏指数显著低于WI2和CI2处理(图3),较WI2处理降低了29.9%;灌浆期CI1处理指数显著高于其余处理,较WI2处理提高了55.4%;蜡熟期WI2处理指数显著低于WI1处理。2017-2018生长季,抽穗期WI2处理指数显著高于其余处理,灌浆期CI2处理指数显著低于其余处理,蜡熟期WI1处理指数显著低于CI1处理。从2个生长季来看,2017-2018生长季抗倒伏指数显著大于2016-2017生长季;抽穗期WI2处理指数最高,灌浆期CI1处理指数最高,宽幅精播模式下推迟灌拔节水显著提高了抽穗期抗倒伏指数,并提升了灌浆期抗倒伏指数;灌拔节水时,宽幅精播模式抽穗期和灌浆期抗倒伏指数均可能小于常规种植模式;蜡熟期各处理年际差异较大,但宽幅精播模式下推迟灌拔节水表现在2017-2018年仍然较好,此模式下在抽穗期、灌浆期和蜡熟期抗倒伏指数2 a的平均值分别为2.03、1.58和1.87 N/(m·g)。
2.4 冬小麦茎秆蠕变试验
一般材料蠕变试验下时间-应变曲线可分为瞬时变形、减速蠕变、稳定蠕变和加速蠕变4个阶段,主要与应变率相关。当曲线斜率逐渐增加,并有明显的斜率增加突变值时,即认为进入加速蠕变阶段,此时茎杆的应变会迅速增加。大部分茎杆材料在施加小于其极限抗折力的比例荷载时均表现为蠕变的前3个阶段(图4)。从2个生长季来看,生育后期含水率下降,茎秆变形量也相应减少,减速与稳定蠕变阶段曲线符合General Kelvin模型中的Burgers模型。
2016-2017生长季,不考虑加速蠕变曲线,抽穗期不同比例荷载下各处理加载400 s内蠕变极值应变范围为0.8%~3.7%(表3),灌浆期和蜡熟期应变范围分别为0.6%~3.1%和0.7%~1.4%;共出现4次加速蠕变,分别为抽穗期CI1处理倒数第2节间加载到平均抗折力80%,灌浆期CI1处理加载到60%,以及蜡熟期WI2和CI1处理加载到80%。2017-2018生长季,抽穗期蠕变极值应变范围为0.7%~3.2%,灌浆期和蜡熟期应变范围分别为0.7%~2.6%和0.4%~3.5%;共出现6次加速蠕变,分别为抽穗期WI2、CI1和CI2处理加载到80%,灌浆期CI1处理加载到80%,以及蜡熟期CI1和CI2处理加载到80%。从2个生长季来看,2017-2018生长季出现加速蠕变的次数要大于2016-2017生长季,CI1处理出现的次数最多,达到了6次。从2 a不同比例荷载下蠕变极值的平均值来看,蠕变极值平均值介于0.7%~2.5%,WI2处理在抽穗期均为最大,灌浆期仍然表现较好。
表3 冬小麦生育期倒数第2节间茎秆不同比例荷载下蠕变极值
注:表中—表示出现加速蠕变情况。
Note: “—” in the table indicates the occurrence of accelerated creep behavior.
2.5 冬小麦产量及产量构成因素
如表4所示,2016-2017年,宽幅精播模式显著提高了冬小麦产量,WI2较WI1产量显著提高了4.2%,且穗数和穗粒数分别显著提高了3.0%和4.9%;2017-2018年,宽幅精播模式显著提高了冬小麦产量,WI2较WI1产量显著提高了8.5%,且穗数、穗粒数和千粒质量分别显著提高了7.0%、2.2%和2.2%。从2个生长季来看,宽幅精播模式较常规种植模式显著提高了冬小麦产量,该模式下实施拔节后10天灌水进一步显著提高了产量。
表4 2016—2018年生育期冬小麦籽粒产量及其构成因素
3 讨 论
有研究表明,拔节期和抽穗期各灌60 mm,宽幅精播模式会显著提高抽穗期株高,降低抽穗期和蜡熟期鲜质量,降低各时期的抗折力,并降低蜡熟期抗倒伏指数[17-18]。本研究表明,宽幅精播模式下结合推迟灌拔节水相比于WI1处理降低了蜡熟期鲜质量,说明推迟灌溉可对宽幅精播冬小麦蜡熟期鲜质量累积起到一定的调控作用。但其对灌水量和灌溉时期的耦合响应机制尚不清晰。宽幅精播模式下推迟灌拔节水显著提升了抽穗期抗折力和抗弯刚度,并显著降低了蜡熟期抗折力和抗弯刚度,这可能与拔节期水分适度激发作物生长补偿效应、促进碳水化合物向籽粒转移,有效缩减倒数第1、2节间长度、外径,提高单位长度节间比例有关[11]。宽幅精播模式下推迟灌拔节水显著提高了抽穗期抗倒伏指数,并提升了灌浆期抗倒伏指数,灌拔节水时,宽幅精播模式较常规种植模式不具优势。冬小麦茎秆抗倒伏特性是多因素协同作用的结果[19],主要和株高、穗质量、茎秆基部节间外径、壁厚机械强度等密切相关,本研究表明,冬小麦抗倒伏指数主要与重心高度、茎杆抗折力和抗弯刚度密切相关,但密切相关性随生育期的不同存在差异。
在施加不同比例极限抗折力荷载时,小麦茎杆不会瞬时折断产生倒伏,此时风荷载的持续时间会对小麦的倒伏产生较大影响[20],恒定风荷载作用下茎杆随时间的变形规律具有重要的研究价值。冬小麦茎秆具有黏弹性,水分作为增塑剂,在茎秆纤维素结构中发挥了软化紧密坚硬结构的作用[15],使得茎杆能够产生较大变形;随着生育期推后,植株含水率的降低,弯曲强度和弹性模量增加[21],从而减小外荷载下的变形,而加载过程中茎秆内的黏性组织结构对其持续变形的黏滞阻力逐渐增大,导致茎秆折断和小麦倒伏。研究表明,冬小麦倒数第2节间茎杆在施加小于其极限抗折力的比例荷载时具有蠕变特性,如果此时茎杆在加载过程中出现加速蠕变现象,说明其仍然会瞬间折断产生倒伏,其抵抗持续风荷载能力最弱。宽幅精播模式下推迟灌拔节水茎杆蠕变极值平均值在抽穗期最大,灌浆期表现仍然较好,均由减速蠕变过渡到匀速稳定蠕变阶段,2 a试样的减速蠕变阶段基本在50 s以内,400 s内的蠕变极值范围介于0.6%~3.7%,蠕变极值平均值介于0.7%~2.5%,满足弹性应变范围[15],且加速蠕变出现次数较少,抵抗持续风荷载能力较强。
在特定风速大小和持续时间下,小麦茎杆可能在达到极限抗折力之前就会产生加速蠕变或大变形现象,从而引起倒伏,在抗倒伏评价中,除了抗倒伏指数,增加额定时间下的蠕变变形判据具有实际意义。本试验中出现稳定蠕变阶段的应变值范围较小,茎杆不会由于产生大变形而破坏,因此结合抗倒伏指数,抽穗期和灌浆期时宽幅精播模式下推迟灌拔节水对于抵抗瞬时破坏和蠕变破坏能力最好,在蜡熟期,各处理下未显示出一致规律,有待进一步研究。宽幅精播和推迟灌拔节水均对光合有效辐射的分布有一定促进作用[22-23],宽幅精播模式下,推迟灌拔节水提高了冠层内光合有效辐射截获率,促进了干物质积累与转运,提高产量[8];在未来全球变暖的气候条件下,中国强风出现可能性会上升,华北地区干旱灾害风险较大[24]。因此研究不同种植模式及灌溉处理对茎杆材料组成的影响,以及在持续风荷载作用下的蠕变特性,对于分析小麦茎杆结构在倒伏过程中的时间滞后机理,揭示冬小麦群体在风雨作用下的力学响应规律,具有重要意义。
4 结 论
1)宽幅精播模式下推迟灌拔节水,对抽穗期倒数第2节间茎杆抗折力有显著提升的趋势,显著提高了抗弯刚度,显著降低了蜡熟期倒数第2节间茎杆抗折力和抗弯刚度,以及植株蜡熟期鲜质量。
2)宽幅精播模式下推迟灌拔节水,显著提高了抽穗期抗倒伏指数,并提升了灌浆期抗倒伏指数。该处理抽穗期、灌浆期和蜡熟期抗倒伏指数2 a的平均值分别为2.03、1.58和1.87 N/(m·g)。冬小麦倒数第2节间茎杆在施加小于其极限抗折力的不同比例荷载时具有蠕变特性,宽幅精播模式下推迟灌拔节水茎杆蠕变极值平均值在抽穗期最大,灌浆期表现仍然较好,均由减速蠕变过渡到匀速稳定蠕变阶段,蠕变极值范围介于0.6%~3.7%,蠕变极值平均值介于0.7%~2.5%。
3)宽幅精播模式较常规种植模式显著提高了冬小麦产量,该模式下实施拔节后10 天灌水进一步显著提高了产量。结合抗倒伏指数和蠕变试验,宽幅精播模式下推迟拔节水灌溉处理抗倒伏特性最优。
[1]王学,李秀彬,谈明洪,等. 华北平原2001-2011年冬小麦播种面积变化遥感监[J]. 农业工程学报,2015,31(8):190-199.
Wang Xue, Li Xiubin, Tan Minghong, et al. Remote sensing monitoring of changes in winter Wheat area in North China Plain from 2001 to 2011[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 190-199. (in Chinese with English abstract)
[2]Gleeson T, Wada Y, Bierkens M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012, 488(7410): 197-200.
[3]余松烈,于振文,董庆裕,等. 小麦亩产789.9 kg高产栽培技术思路[J]. 山东农业科学,2010,429(4):11-12.
Yu Songlie, Yu Zhenwen, Dong Qingyu, et al. Theory of cultivation techniques for wheat with yield of 789.9 kg per mu[J]. Shandong Agricultural Science, 2010, 429(4): 11-12. (in Chinese with English abstract)
[4]刘忠阳,陈怀亮,胡程达,等. 后期倒伏对冬小麦干物质分配和产量的影响[J]. 中国农业气象,2017,38(5):321-329.
Liu Zhongyang, Chen Huailiang, Hu Chengda et al. Effects of lodging at the late growth stage on dry matter distribution and yield of winter wheat[J]. Chinese Journal of Agrometeorology, 2017, 38(5): 321-329. (in Chinese with English abstract)
[5]Feng S, Kong D, Ding W, et al. A novel wheat lodging resistance evaluation method and device based on the thrust force of the stalks[J]. PLoS One, 2019, 14(11): e0224732.
[6]孟兆江,段爱旺,高阳,等. 调亏灌溉对冬小麦氮、磷、钾养分吸收与利用的影响[J]. 农业机械学报,2016,47(12):203-212.
Meng Zhaojiang, Duan Aiwang, Gao Yang, et al. Effect of regulated deficit irrigation on uptake and utilization of nitrogen, phosphorus and potassium for winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 203-212. (in Chinese with English abstract)
[7]刘小飞,李彪,孟兆江,等. 隔沟调亏灌溉对冬小麦旗叶生理特性与产量形成的影响[J]. 农业机械学报,2019,50(9):320-328.
Liu Xiaofei, Li Biao, Meng Zhaojiang, et al. Effects of regulated deficit irrigation under furrow irrigation on physiological characteristics of flag leaf after anthesis and yield formation of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 320-328. (in Chinese with English abstract)
[8]Fan Yanli, Liu Junmei, Zhao Jiatao, et al. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns[J]. Agricultural Water Management, 2019, 221: 371-376.
[9]郎坤,刘泉汝,卞城月,等. 推迟拔节水灌溉对宽幅精播麦田冠层温度与叶片水分利用效率的影响[J]. 生态学报,2015,35(15):5262-5268.
Lang Kun, Liu Quanru, Bian Chengyue, et al. Effect of delayed irrigation at jointing stage on canopy temperature and leaf water use efficiency winter wheat in wide-precision planting pattern[J]. Acta Ecologica Sinica, 2015, 35(15): 5262-5268. (in Chinese with English abstract)
[10]Pierre C S, Trethowan R, Reynolds M. Stem solidness and its relationship to water-soluble carbohydrates: Association with wheat yield under water deficit[J]. Functional Plant Biology, 2010, 37: 166-174.
[11]Ma Shouchen, Duan Aiwang, Ma Shoutian, et al. Effect of early-stage regulated deficit irrigation on stem lodging resistance, leaf photosynthesis, root respiration and yield stability of winter wheat under pos-anthesis water stress conditions[J]. Irrigation and Drainage, 2016, 65(5): 673-681.
[12]Niklas K J. Plant Biomechanics: An Engineering Approach to Plant Form and Function[M]. Chicago & London: The University of Chicago Press, 1992.
[13]Chen Longjian, Liao Na, Xing Li, et al. Description of wheat straw relaxation behavior based on a fractional-order constitutive model[J]. Agronomy Journal, 2013, 105(1): 134-142.
[14]梁莉,李玉萍,郭玉明. 小麦茎秆粘弹性力学性质试验研究[J]. 农机化研究,2011,33(5):174-177.
Liang Li, Li Yuping, Guo Yuming. Experimental research on the viscoelastic mechanical properties of winter wheat stalks[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 174-177. (in Chinese with English abstract)
[15]马瑞峻,萧金庆,郑普峰,等. 穴盘水稻秧苗茎秆蠕变与应力松弛特性的试验研究[J]. 农业工程学报,2018,34(13):43-53.
Ma Ruijun, Xiao Jinqing, Zheng Pufeng, et al. Experimental study on characteristics of creep and stress relaxation for rice seedling stem raised in cell tray[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 43-53. (in Chinese with English abstract)
[16]孙训方. 材料力学(I)[M]. 北京:高等教育出版社,2009.
[17]刘仲秋,刘馨惠,卞城月,等. 秸秆覆盖条件下宽幅精播冬小麦茎秆抗倒性研究[J]. 灌溉排水学报,2016,35(1):6-10.
Liu Zhongqiu, Liu Xinhui, Bian Chengyue, et al. Research of stalk lodging resistance of winter wheat with wide-precision planting pattern under straw mulching[J]. Journal of Irrigation and Drainage, 2016, 35(1): 6-10. (in Chinese with English abstract)
[18]刘仲秋,卞城月,刘馨惠,等. 种植模式及灌水频次对冬小麦抗倒性的影响[J]. 排灌机械工程学报,2015,33(4):338-345.
Liu Zhongqiu, Bian Chengyue, Liu Xinhui, et al. Effect of different planting patterns and irrigation frequency on stalk lodging resistance of winter wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(4): 338-345. (in Chinese with English abstract)
[19]Shah L, Yahya M, Shah S M A, et al. Improving lodging resistance: Using wheat and rice as classical examples[J]. International Journal of Molecular Sciences. 2019, 20: 4211.
[20]Joseph G M D, Mohammadi M, Sterling M, et al. Determination of crop dynamic and aerodynamic parameters for lodging prediction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104169.
[21]Esehaghbeygi A, Hoseinzadeh B, Khazaei M, et al. Bending and shearing properties of wheat stem of alvand variety[J]. World Applied Sciences Journal, 2009, 6(8): 1028-1032.
[22]卞城月,马长健,刘馨惠,等. 灌溉频次与种植模式对冬小麦产量及水分利用效率的影响[J]. 灌溉排水学报,2016,35(2):81-85.
Bian Chengyue Ma Changjian, Liu Xinhui, et al. Effect of irrigation frequency and planting patterns on grain yield and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2016, 35(2): 81-85. (in Chinese with English abstract)
[23]Dong Hao, Xia Guangli, Ju Zhengchun, et al. Effects of irrigation quantity and term on water consumption and yield of winter wheat by wide precision sowing[J]. Agricultural Science & Technology, 2016, 17(9): 2051-2054.
[24]秦大河. 中国极端天气气候事件和灾害风险管理与适应国家评估报告[M]. 北京:科学出版社,2015.
Effects of planting patterns on the lodging resistance characteristics and yield of winter wheat with delaying irrigation at the jointing stage
Liu Zhongqiu1, Xu Hanghang1, Zhang Haonan1,2, Wu Hao1, Li Quanqi1※
(1.,,271018,; 2.,276001,)
Winter wheat is the primary cropping system in grain production in the North China Plain. In this study, two planting patterns were applied, including the precision planting pattern (W) and conventional cultivation planting pattern (C), in order to clarify the effect of different planting pattern on lodging resistance of winter wheat with delaying irrigation at the jointing stage. In each planting pattern, the winter wheat was irrigated with 60 mm at the jointing stage (I1), and delaying irrigation 60 mm for 10 d at the jointing stage (I2). The main physical indexes of winter wheat stalk were measured, including the plant height, gravity center height, and fresh weight, as well as the diameter, fresh density, and the wall thickness of the basic secondary internode. A systematic investigation was made on the internode mechanical indexes, such as the bending resistance and bending rigidity of basic secondary internode, lodging resistance index, the creep deformation in the basic secondary internode of winter wheat at heading, filling and dough growth stage. The planting pattern and irrigation schedule were explored for comprehensive optimization on the lodging resistance of winter wheat. The results showed that there was a significant trend to improve the bending resistance strength in the basic secondary internode, and the bending rigidity significantly increased at the heading stage under the wide precision planting pattern with delaying irrigation at the jointing stage. However, the bending resistance strength and bending rigidity in the basic secondary internode, and the fresh weight were significantly reduced at the dough stage in this treatment. The wide precision planting pattern with delaying irrigation at the jointing stage significantly increased the lodging resistance index at the heading stage, and thereby improved the lodging resistance index at the dough stage, where the average lodging resistance index at the heading, filling, and waxing stage were 2.03, 1.58and 1.87 N/(m·g), respectively. The basic secondary internode of winter wheat had creep characteristics under the proportional load less than its ultimate bending resistance strength. Specifically, the average maximum of creep strain was the highest at the heading stage, and it was still large at the filling stage under the wide precision planting pattern with delaying irrigation at the jointing stage. All of mechanical behavior was in the transition from the deceleration to stable creep stage, where the maximum creep strain ranged from 0.6%-3.7%, and the average maximum of creep strain ranged from 0.7%-2.5%. Combined with the lodging resistance index and creep test, the lodging resistance of winter wheat was the best under the condition of wide precision planting pattern with delaying irrigation for 10 d at the jointing stage. The findings can provide a promising theoretical basis and technical support for water saving and high yield of winter wheat in North China Plain.
irrigation; planting pattern; winter wheat; wide precision planting pattern; lodging resistance index; creep
刘仲秋,徐杭杭,张浩男,等. 推迟灌拔节水条件下种植模式对冬小麦抗倒伏特性和产量的影响[J]. 农业工程学报,2021,37(1):101-107.doi:10.11975/j.issn.1002-6819.2021.01.013 http://www.tcsae.org
Liu Zhongqiu, Xu Hanghang, Zhang Haonan, et al. Effects of planting patterns on the lodging resistance characteristics and yield of winter wheat with delaying irrigation at the jointing stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 101-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.013 http://www.tcsae.org
2020-07-15
2020-10-01
国家自然科学基金项目(31571603);山东省自然科学基金项目(ZR2014CQ033);山东省重点研发计划项目(2019GSF109054)
刘仲秋,博士,副教授,硕士生导师,研究方向为水利工程力学问题。Email:zqliu08@sdau.edu.cn
李全起,博士,教授,博士生导师,研究方向为灌排理论与技术、农业水土资源与环境问题。Email:quanqili@sdau.edu.cn
10.11975/j.issn.1002-6819.2021.01.013
S318
A
1002-6819(2021)-01-0101-07