钙钛矿发光二极管的研究进展
2021-03-11卜世啸葛子义
卜世啸,葛子义
(中国科学院 宁波材料技术与工程研究所,浙江 宁波 315201)
1 引 言
在如今的现代化社会中,人类日常生活中最重要的核心技术之一就是显示技术。目前发光二极管(LED)是市场上最主流的显示器件之一,随着科技发展大爆炸的热潮,人们对高质量生活的不断追求,对显示相关的技术和产业的发展也有了更高的要求。对科研人员而言,就需要对显示技术的方方面面做出突破,包括但不限于稳定性、分辨率、色域等方面,而这就需要科研人员综合考虑各类发光材料的性能,选取最佳的发光材料或者对已有的材料进行整合,查漏补缺,综合提升性能。
在照明领域,发光二极管是最新一代的成员,其主要特点包含:亮度高、节能环保、集成度高以及使用寿命长等,目前已经成为人们日常生活中不可或缺的一部分。常见的电致发光材料可以认为是以下3大类。(1)无机电致发光材料:以氧化物和硫化物为主的第二主族和第六主族的化合物材料[1]。由该种材料制备的器件主要优点是稳定性强,但是由于材料的特性,其一般需要掺杂活化剂并且无法突破显示多种色彩光的限制。(2)有机电致发光材料:在过去的三十多年中,有机电致发光材料经历了从传统的荧光,磷光和三重态-三重态湮灭材料到热活化延迟荧光材料时代,从小分子到聚合物,发射体材料得到了飞速发展[2]。有机发光二极管(OLED)具有许多优点,例如低能耗、主动照明、全固态和低驱动电压等。目前,OLED已经是成熟的产业化照明设备,从智能手环屏幕到智能手机再到便携式显示器、大型电视显示等,OLED已经是目前市场上主推的显示器件,各大厂商纷纷推出了各类电子设备,极大地丰富了人们的日常生活。但是有机发光二极管也存在一些缺点,比如:有机发光分子的合成过程比较复杂、色纯度较低、发光色域较窄、发光光谱较宽、稳定性较差[3]。半导体胶体量子点(Quantum dots,QDs)[4]较之有机发光二极管,其器件性能的量子效率更佳、色彩更纯。但是由于其制备工艺过于复杂、可控性低、严重耗能、稳定差等缺点,目前只能作为一种备选材料或者显色剂来使用,并不具备大规模推广的可能[5]。(3)有机无机杂化电致发光材料:近十年来,有机无机杂化电致发光材料风靡了整个光电领域,是目前发展最快,最有希望达到和超越有机发光二极管的新兴半导体材料。主要原因在于其对有机和无机两种传统材料去芜存菁,将两种材料强强联合,从而具有比两种单独材料更优异的性能。在制备过程中,可以通过调节卤素成分等简单方法得到不同波段的发射光,具备实现全波段发光的潜力,大大拓宽了科研人员的主观能动性和创造性,可以根据不同实验结果进行调节,从而达到所需求的光电性能。
金属卤化物钙钛矿材料是近几年有机无机杂化电致发光材料中反响最热、发展最快的材料。近十年来,钙钛矿材料由于其优异的性能在光电领域引起了一波热潮。根据钙钛矿材料的特性,光电领域的研究人员开发出了各种各样的应用,例如光电存储器、激光器等。
电致发光二极管(LED)的结构主要分为5层:阳极、P型空穴注入层(HTL)、发射层、N型电子注入层(ETL)和阴极。将发射层放在空穴和电子传输层之间形成异质结结构,可以有效地限制电荷载流子的注入,在传输层结构中,电子和空穴传输层不仅能够传输载流子还能够阻挡激子及载流子从发射层逃逸。
金属卤化物钙钛矿是一类新型直带隙半导体发光材料,其具有的半峰宽更窄、色域更宽、合成温度较低且具有高达100%的光致发光量子产率(PLQY),更可以使用不同卤素或调节不同卤素的比例使发光光谱可控化,使其实现全光谱的发光[6-7]。实验室级别的钙钛矿薄膜的制备方法包括:一步反溶剂法、两步浸泡法和气相沉积法,而大面积制备方法一般是丝网印刷、狭缝涂布、刮涂法等。制备量子点级别的钙钛矿材料代表性的两种方法是室温配体辅助再沉淀法和高温热注入法,根据需求的钙钛矿种类的不同可以灵活运用。独特的光电特性使得钙钛矿材料在新一代显示器件的竞争中处于领先地位。
2 钙钛矿材料的种类及发展
目前 ,钙钛矿材料在LED领域已经展开了广泛研究。其实钙钛矿的电致发光研究历史最早来自于日本佐贺大学的Masanao Era教授,早在1994年就发表了关于层状钙钛矿化合物的电致发光研究,PAPI用作发光层制备得到了发光峰在520 nm的LED,亮度超过10 000 cd·m-2,但是由于该器件中存在大量缺陷且对制备和工作环境要求苛刻,从而在当时没有引起人们的重视[7]。直到 2014 年,英国剑桥大学的 Friend 课题组才首次报道了钙钛矿材料在常温下的电致发光,但是器件的效率仍然较差[8]。但在随后的短短6年间,绿光、红光和近红外钙钛矿发光二极管得到了迅速的发展,其外量子效率均已突破20%[9-13],可以与目前市场上的有机发光二极管和量子点发光二极管相媲美[17]。2018年,魏展画课题组利用全无机钙钛矿CsPbBr3/MABr的“准核壳”结构,首次实现了外量子效率( EQE) 超过 20% 的绿光 PeLED 器件,在100 cd·m-2亮度下,该器件工作寿命为46 h。同年,王建浦课题组在发射峰为803 nm近红外PeLED上也取得了 20.7% 的 EQE,在100 mA· cm-2的电流密度下,寿命达到20 h。2020年,游经碧研究员和张兴旺研究员采用了添加60%EABr的PeLEDs结构,实现了高达12.1%EQE的488 nm天蓝色电致发光。
根据钙钛矿层的不同表现形式可以将其分为三维钙钛矿、二维-准二维钙钛矿和钙钛矿纳米晶三大类。钙钛矿的带隙是由铅和卤素的原子轨道共同作用,所以卤素离子的种类和比例直接决定了其荧光光谱,这与其他电致发光材料相比具有很大优势。
2.1 三维钙钛矿
根据图1所示,三维钙钛矿形成如图的正八面体结构,所有的八面体都以8个顶角互相连接,总体形成了三维骨架结构。3种元素的相对位置皆如图所示。“钙钛矿”一族具有的分子通式:ABX3,其中A位是无机金属阳离子(Rb+,Cs+等)或有机阳离子(CH3NH3+或HC(NH2)2+),B位是过渡离子(Pb2+,Bi2+,Ge2+,Sn2+等),X是卤素离子(Cl-,Br-,I-)[6]。
图1 经典ABX3的钙钛矿晶体结构[7]Fig.1 Typical ABX3 perovskite crystal structure[7]
2014,Friend 和Snaith[8]首次报道了在室温条件下,通过溶液处理法制备的钙钛矿二极管。通过调节钙钛矿中的卤化物组成证明了近红外,绿色和红色的电致发光。以CH3NH3PbBr3作为绿光活性层制备器件的VOC为3.3 V,在123 mA·cm-2的JSC下实现了 364 cd·m-2的亮度,优化后器件的EQE最高为 0.1%,内量子效率IQE为0.4% 。在红外器件中,将15 nm的CH3NH3PbI3-xClx钙钛矿薄层夹在二氧化钛和聚(9,9'-二辛基芴)(F8)层之间,在电流密度为363 mA·cm-2时,产生了13.2 W·sr-1·m-2的红外辐射。其最高的外部量子效率和内部量子效率分别为0.76%和3.4%。红外发光器件的结构虽然效率很低,但这却是钙钛矿LED发展进程中的重大转折,从此钙钛矿材料正式走上发光领域的大舞台,推动了光电行业的迅速发展。
2015年,黄维团队[14]报告了一种全新结构的PeLED。该器件结构是将聚乙烯亚胺(PEI)作为修饰层,插入了氧化物ZnO电子传输层和钙钛矿活性层之间;器件结构为ITO/PEI修饰后的ZnO/CH3NH3PbI3-xCl/TFB/MoOx/Au,其中电子注入层为通过PEI修饰的ZnO层,这种方法主要是通过PEI来降低电子注入层的功函数,使得电子能够更容易注入发射层。经过优化后的红光器件的EQE提升至3.5%。同结构下的绿光器件EQE为0.8%,亮度可达20 000 cd·m-2。
2017年,游经碧课题组发表了一篇具有突破性进展的钙钛矿发光文章[15]。文中为解决全无机钙钛矿形貌差,层间界面和钙钛矿晶界处的高非辐射复合以及电荷注入不平衡所导致的高漏电流问题,创新性地将少量的MA+掺入原全无机钙钛矿的晶格中,形成了高质量的掺杂后的薄膜。并且将一种非离子型高分子化合物(PVP)应用到发光器件之中,取得了当时亮度最高,效率最高的绿光的实验结果:91 000 cd·m-2和10.4%。
2020年,黄维院士、王建浦教授团队,创造性地提出通过中间相工程,调控相转变路径,低温制备可高效发光的CsPbI3薄膜的新思路。通过引入有机胺盐,在原位成膜过程中首先低温形成了一种中间相,随后在氧化锌吸质子作用下分解并与游离的铯离子发生离子置换,形成黑相CsPbI3。通过反应动力学研究表明,此类型的相转变路径具有普适性,并可以有效降低形成黑相CsPbI3所需要的活化能垒。这种低温制备的黑相CsPbI3薄膜具有很高的质量,荧光量子效率可达38%。制备的发光二极管EQE达到10.4%,JSC为100 mA·cm-2时,EQE保持在8%,红光钙钛矿器件效率滚降得到明显抑制[16]。
2.2 二维-准二维钙钛矿
在典型的钙钛矿结构中,每种钙钛矿“B”原子通过离子键与6个相邻的“X”原子连接,“A”基团具有12个最近的相邻“X”原子。A,B和X的离子半径应满足公差因子t接近1的要求,为了从三维晶体获得二维结构,通常有两种策略可将[BX6]4-八面体固定在同一方向上:(1)通过限制其沿一个方向的生长,将层状钙钛矿的厚度减小到小于大体积样品的激子玻尔半径的两倍,如图2(a)所示。该方法不仅可用于有机-无机杂化钙钛矿(OIHPs),而且可用于全无机卤化物钙钛矿。(2)通过绝缘长有机分子链来阻止层状钙钛矿的相互作用,但此方法只能用于OIHPs[17-18]。
在二维结构中,MX6八面体在拐角处以分层或波纹状板连接,如图2(a)所示。实际上存在两种二维卤化物钙钛矿。一种是由三维钙钛矿材料定向生长的具有二维纳米结构形态的钙钛矿晶体和纳米结构。这些更接近传统的二维材料,比如石墨烯。另一种是固有的二维分层晶体结构。由于在被有机阳离子电介质层隔开的每个MX6层中的量子限制,即使在宏观来看,它们也是属于电子“2D”[18]。
图2 (a)二维层状钙钛矿的形成过程[11];(b)二维钙钛矿多量子阱结构中的能量转移示意图[17]。Fig.2 (a) Formation process of two-dimensional layered perovskite[11];(b) Schematic diagram of energy transfer in a two-dimensional perovskite multiple quantum well structure[17].
应该注意的是,尺寸减小和分子取向导致钙钛矿的对称破坏,可能导致其性质的改变。例如带隙、激子束缚能、稳定性、能谱、激子结合能等[18]。但是二维钙钛矿在缺陷控制方面具有独特的优势。在三维材料和其他流行的二维材料中,缺陷是不可预料的和不可避免的,因为它们可能会引发有害的陷阱缺陷,而二维钙钛矿中缺陷的电子活性可以将缺陷损失调整为最小化[15]。如图2(b)所示形成的这种多重的量子阱结构,避免了激子的猝灭,实现了有效辐射复合[17]。
2016年,著名教授Edward H.Sargent和Dong Ha Kim课题组通过掺入大体积阳离子苯基乙基铵(PEA = C8H9NH3)合成了多层准二维钙钛矿化合物,这是二维钙钛矿在发光器件中的第一次尝试。由于PEA具有较大的离子半径,不适合角共享的卤化铅八面体3D框架,因此会导致钙钛矿架构分离为图层形态。准二维钙钛矿的每个晶胞的厚度将通过加入其他阳离子而扩大。通过这种方式可以调节碘化甲基铵和碘化PEA(PEAI)的比例来实现尺寸调制。最终形成的结构组成为PEA2(CH3NH3)n-1PbnI3n+1。由该结构得到的近红外发光器件的EQE提升至8.8%,辐射度为80 W·sr-1·m-2 [19]。
就在第一篇二维钙钛矿文章发表的3个月后,黄维课题组展示了一种基于溶液处理的钙钛矿LED,该二极管基于具有出色薄膜形态的自组织多量子阱,使用的准二维钙钛矿材料是NMA2-(FAPbI3)PbI4,EQE突破至高达11.7%,当JSC为100 mA·cm-2时,能量转换效率为5.5%[18]。这一优异性能的表现是因为钙钛矿多量子阱有效地限制了产生电致发光的较低带隙区域,使其具有了更高的能隙,有效地减少了非辐射复合,从而提高了器件性能。该小组还对他们的准二维钙钛矿 LED 做了工作状态老化测试,其实验表明在 LED 中准二维钙钛矿比三维钙钛矿稳定很多,对指导提高卤化物钙钛矿LED工作稳定性提供了宝贵经验。这一文章的发表进一步证明开发此类材料的必要性,特别是对于发光而言带来了真正的希望。
2020年,华南理工大学马东阁、陈江山,澳门大学邢贵川等人通过重新排列准二维钙钛矿中的低维相位分布,来制备一种高效率的天蓝色钙钛矿LED。研究人员将钠离子掺入到Cl/Br混合的准二维钙钛矿中,其中苯乙胺大阳离子为有机间隔,CsPbX3为无机骨架。研究发现,引入的钠离子可显著减少以非辐射跃迁为主的负面相的形成,并增加其他有益相的形成,实现了有效的激子能量转移。通过调控准二维钙钛矿的相分布,研究人员制备的天蓝色钙钛矿LED的最大外量子效率高达11.7%,并且在488 nm处具有稳定的发光峰[20]。
2.3 钙钛矿纳米晶
钙钛矿纳米晶顾名思义是指在纳米级别尺寸下的钙钛矿,这类钙钛矿包含很多成员,通常按照不同的最终表现形式进行分类。目前在光电领域研究较多的是钙钛矿量子点,钙钛矿纳米晶与三维钙钛矿联系紧密,不仅结构式相同,而且也可以通过改变卤素的组分对其带隙和发光颜色进行调控,如图3所示。
图3 (a)CsPbBr3 纳米晶的典型TEM 图像[19];(b)全无机钙钛矿CsPbX3在紫外线(UV)灯(λ= 365 nm)下的钙钛矿纳米晶分散体[21]。Fig.3 (a) Typical TEM image of CsPbBr3 nanocrystals[19];(b) Perovskite nanocrystalline dispersion of CsPbX3 all-inorganic perovskite under ultraviolet (UV) lamp (λ=365 nm)[21].
2015年,北京理工大学团队开发了一种配体辅助的再沉淀策略,制备了明亮发光且颜色可调的胶体CH3NH3PbX3量子点,其在室温和低激发通量下的绝对量子产率高达70%。为了说明这些量子点中的光致发光增强,进行了全面的表征,并确定了与时间和温度有关的光致发光光谱。比较了量子点(平均直径3.3 nm)和相应的微米级块状颗粒(2~8 μm),表明光致发光量子产率的大幅提高源自尺寸减小、激子结合能的增加,以及富溴表面的适当化学钝化。此外,该量子点表现出了非常有趣的纳米级激子特性,可以预见其在电致发光器件、光学探测器和激光器中也具有潜在应用[21]。
同年6月,Andrey L.Rogach课题组通过调节温度对配体辅助的再沉淀过程进行控制,首次展示和证明了CH3NH3PbBr3量子点的尺寸与带隙的可调性。相应的发射峰覆盖范围为475~520 nm,取得了74%~93%的PLQY。随着合成温度的升高,吸收光谱也显示出带边红移。靠近谱带边缘的吸收光谱趋势类似于在其他胶体量子点系统中观察到的,例如CdSe和CdTe。证明了钙钛矿纳米晶与表面配体息息相关,关键是要在合成中控制好表面配体的长度和数量[22]。
2016年,瑞士苏黎世联邦理工学院通过设计高发光的钙钛矿基胶体量子点材料,展示了合成卤化物钙钛矿的新途径。使用廉价的商业前驱体合成了全无机的卤化铯铅钙钛矿CsPbX3的单分散胶体纳米颗粒(4~15 nm)。通过卤素成分调制和固有的量子尺寸效应,实现了带隙和发射光谱在整个可见光谱区域内(410~700 nm)的可调整性。CsPbX3纳米晶体的光致发光的特点是具有非常窄的发射半峰宽(12~42 nm),色域宽,可覆盖色坐标的140%,高量子产率可达90%,辐射寿命在29 ns内。显著增强的光学性能和化学稳定性使得CsPbX3纳米晶体在光电应用具有很大的潜力,特别是在高清显示领域具有非常大的应用潜力。特别是因为在蓝绿光谱区域(410~530 nm)中典型的硫基金属化合物量子点会发生光降解[23]。
如图4所示,2018年魏展画和熊启华课题组报道了一种新的合成方法,一种用于管理器件中成分分布的新策略,该策略可同时提供高发光度和实现电荷注入的平衡。具体措施是将添加剂MABr与预先合成的全无机钙钛矿CsPbBr3与之共溶,由于两种成分的溶解度差异较大,可以很简便地用MABr包裹住核心的CsPbBr3,形成类似其他量子点的核壳结构。添加剂MABr不仅能够作为保护壳层,而且起到钝化作用,优化器件效率,并且通过MABr层达到了电荷注入的平衡[24]。首次实现了EQE>20%的突破,意味着钙钛矿LED的广大应用前景。
图4 (a)器件结构图;(b)EQE为20.3%的绿光PeLED[26]。Fig.4 (a) Device structure diagram;(b) Green PeLED with EQE of 20.3%[26].
2020年,南京理工大学曾海波和宋继中等人报道了一种双边钝化策略,原理是通过氧化膦分子(二苯基氧化膦-4-(三苯基甲硅烷基)苯基(TSPO1))钝化量子点膜的顶部和底部界面,从而极大地提高了钙钛矿LED的效率和稳定性。通过密度泛函理论(DFT)计算解释了性能的提升是由于缺陷陷阱和非辐射复合的减少。通过瞬态谱分析和空间电荷限制电流方法进一步验证了缺陷的减少,激子复合效率的提高体现在量子点薄膜的量子阱密度从43%增加到79%和转换效率的提高(电流效率从20 cd·A-1提高到75 cd·A-1,量子效率从7.7%提高到18.7%)。通过单面钝化和双面钝化的对比实验,证明了双面钝化的必要性。除TSPO1外,该体系中使用的其他一系列有机分子也取得了令人印象深刻的结果,显示了这种双边钝化方法的普适性[25]。
3 展 望
目前,钙钛矿发光器件的潜力正被不断挖掘,国内外学者的研究成果如雨后春笋般频发,特别在国际疫情不断爆发的大环境下。随着对钙钛矿材料进一步认知和对结构的不断优化,红、绿、蓝光器件的外量子效率均取得了突破性的进展,然而钙钛矿发光器件要进一步迈向产业化的道路,就必须在稳定性和封装技术等方面再进一步[26-28],这就需要所有研究人员的共同努力,可以预见钙钛矿LED前路可期!