APP下载

基于正交光纤光栅阵列的负载感知系统研究

2021-03-08张梅菊黄漫国梁晓波刘智超

激光技术 2021年2期
关键词:施力传感波长

王 高,张梅菊,黄漫国,梁晓波,刘智超

(1.中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051; 2.中国航空工业集团公司 北京长城航空测控技术研究所 状态监测特种传感技术航空科技重点实验室,北京 100022; 3.长春理工大学 光电工程学院 光电测控技术研究所, 长春 130000)

引 言

生产线上有很多自动抓取、装配设备,随着国家工业化发展的深化,未来很多人工装配过程也将会被机械取代[1],而通过机械结构对物体抓取、装配就会涉及抓握力、夹持力等的大小问题[2],研究具有负载受力状态感知的传感系统,对于提高抓取、装配过程稳定性具有重要意义。

在生产线中,传统的自动抓取、装配机械结构一般分为两大类。一是通过路径规划完成对机械臂的控制,这种方法由机械臂运动路径编程实现,通常可用于抓取、装配、点焊等工艺流程中,比较简单易行,但缺点是要求操作位置稳定、被操作物体相对简单、结构复杂或步骤复杂都会使累计误差大幅增加,从而导致报废率增大。QI等人研究的优化A*路径规划算法,提高了机械臂路径的稳定性,降低了机械磨损[3]。YOU等人研究的双向快速扩散随机树算法可以实现9个自由度的控制,大大提升了基于路径控制的复杂程度[4]。二是采用应变片对夹持位置应力监测,该方法的优点是应变片价格便宜、处理电路简单,但缺点是标量测量,无法提供应力的指向性信息,同时易受电磁干扰对工况环境要求高[5-6]。LU等人[7]利用应变片采集机械结构应力分布,从而控制动态扭矩的测量,其可应用于抓握力、夹持力等力度大小的控制。SUMAYYAH等人[8]通过压电阵列实现了4.0cm×4.0cm范围的应力传感,但由于电路复杂、价格高昂,很难广泛使用。

基于光纤传感[9]的反馈型控制系统是新型应力感知系统,由于其体积小、无电磁干扰等[10-12]优势,在应力定向识别方面具有很好的应用前景。作者采用光纤布喇格光栅(fiber Bragg grating,FBG)[13-18]传感器阵列设计了一种负载感知模块,并针对其灵敏度、稳定性进行了测试分析。

1 负载感知系统

负载感知系统由电脑、解调模块、光纤及FBG阵列组成。解调模块具有8路光纤接口,实验中采用两路,分别连接夹持结构中的两根传感光纤,再通过数据线将解调后的数据传输给电脑。FBG阵列摆布形式为4横和4纵,分别对应图1中的y轴和z轴,获取夹持过程中在y轴和z轴方向上的应力值。利用解调模块将回波波长信息解算成应力信息,从而反馈给电脑,通过电脑得算法分析完成对夹持状态的分析。

Fig.1 Schematic diagram of load sensing system

2 感知阵列结构设计及解算方法

感知结构设计采用阵列排布结构形式如图2a所

Fig.2 Design of sensing module

示,对于单个FBG而言,其受力分析如图2b所示。

依据FBG的工作原理,温度通过标定可理解为常数,即得到FBG仅与应力应变敏感的函数关系,则波长的改变量Δλ与应变ε的函数关系有:

Δλ=(1-p)ελ0

(1)

式中,λ0为初始波长,p为应力系数。

由图1可知,x轴方向为厚度方向,也是施力方向,产生的摩擦力为z方向,设力的大小为F,感知模块为正方形,故长度均为d,则FBG的应变量可表示为:

(2)

式中,Δd为x轴方向的延长率,E为杨氏模量,ρ表示泊松比。沿y轴的力F与Δd的正比系数为k,则代入(2)式有:

(3)

由于材料因受力的应变一般不会特别大,可近似看作α≈β,则:

Δd′=Δdcosβ

(4)

故应变可写为:

(5)

应变传感单元主要受力的大小和力的作用影响,而由于FBG阵列是正交排布的,所以,无论在哪个方向,产生最大偏转角度都存在一组FBG对齐夹角不大于45°,这也是正交排布的原因。

3 参量优化仿真

为了在不改变系统尺寸、成本的基础上提高感知模块灵敏度,使系统达到最优状态,利用MATLAB对不同几个可调参量进行了分析计算。夹持材料采用5.0cm×5.0cm的橡胶块,杨氏模量值是2.843GPa,泊松比是0.463。主要仿真参量为FBG埋入深度,即x轴中的Δx。由于埋入深度对成本及体积基本没有影响,是一个比较理想的调节参量。其次是对FBG的有效长度l进行仿真,由于其同样也是不影响成本与体积的,但其会对空间分辨有影响,所以在仿真分析时,给它的调节区间是要结合夹持区域范围设定的。仿真结果如图3所示。

Fig.3 Parameter simulation of sensor module

图3a中,FBG的长度是固定的,设置数值为10.0mm,然后对不同埋入深度进行分析,从仿真结果可知,不同位置处应变响应不同,同一位置处不同深度对形变的影响也不同,从3.0mm~7.0mm逐渐加深,灵敏度先是增强,后又减小,大约在5.0mm位置时达到最优值,从此可见,FBG埋入深度选取5.0mm可以获得最优效果。

图3b中,将FBG放置深度设置为5.0mm,然后对不同长度进行仿真分析,由结果可知,不同位置处应变响应不同,同一位置处不同FBG长度对形变的影响也不同,从2.0mm~10.0mm逐渐加长,灵敏度也逐渐增加,呈单调递增趋势,但由于FBG尺寸过大会导致感知模块的空间分辨率降低,故尺寸选择原则应是符合空间分辨率时的FBG最大值为宜。从此可见,在本系统中,当放置深度为5.0mm时,FBG长度选择10.0mm最合适。

4 实 验

实验系统由宽带光源、光隔离器、光耦合器、光纤光栅解调模块(光谱分辨率为±0.5pm)、电脑及光纤光栅传感阵列组成。负载感知模块为两个正对的5.0cm×5.0cm的橡胶块,夹持重量范围0kg~10kg。实验过程中,逐渐增加负载上的重量,在被夹物体发生移动前,测试了不同施力条件下感知系统的响应能力。当重量进一步增大、物体产生移动时,又对状态改变条件下的回波光谱变化进行了分析。FBG埋入深度为5.0mm,夹持物大小为4.0cm×4.0cm的正方体块。

4.1 感知精度实验结果分析

根据图2a的分布设计可知,虽然有8个传感单元,但是对于中间位置而言,如果是对称位置的话,那样两个对称位置的FBG响应效果是相近的,故下面着重给出了在针对中心位置受力条件下FBG1,FBG3,FBG5和FBG7的波长变化,首先是左右不施力,而仅受重力递增的条件(z轴方向),实验结果如图4a所示。然后再在固定重力的条件下,在水平方向上施加作用力(y轴方向),实验结果如图4b所示。

Fig.4 Variation of applied wavelength in different directions

由图4a中的实验结果可知,其中FBG1和FBG5基本没有响应,只是有微弱波动,由其安排的位置可以发现,这两个FBG的轴向位置与施力方向垂直,受力敏感度弱,相反,FBG3和FBG7随着施力的增大而增大,并且基本成线性变化关系,这两个FBG的轴向位置与施力方向平行。同时, 两个FBG的波长变化方向是相反的,这是因为一个为拉伸效果一个为压缩效果,通过应力与波长的函数关系计算可知,平均垂向灵敏度为31.4pm/N。其余几个FBG与其对称位置的FBG的测试数据基本一致,不再赘述。由图4b中的实验结果可知,与垂向实验效果相反,FBG3和FBG7基本没有响应,只是有微弱波动,相反,FBG1和FBG5随着施力的增大而增大,并且呈线性变化关系。同时,两个FBG的波长变化方向是相反的,同样其也满足一个拉伸一个压缩的等效关系,通过应力与波长的函数关系计算可知,平均水平灵敏度为29.9pm/N。

4.2 滑动测试

实验中通过改变夹持力使被加持物达到接近临界夹持状态,然后进一步增加施力大小,使被夹物体产生滑动,然后对这个过程的光谱回波情况进行记录与分析,从超过临界值后到完全掉落出夹具的整个过程约为0.5s,对应的波长测试曲线如图5所示。

Fig.5 Trend of wavelength shift during sliding

当被夹持物在感知位置上不发生滑动时,施力与摩擦力可以抵消,这样中心波长即使因为应变产生偏移,但稳定后,波长将不再变化,中心波长也基本不变化。当被夹持物在感知位置上发生滑动时,感知模块会受到一个明显变化的剪切力作用,故中心波长会随之产生偏移。由此可见,完全可以通过系统光谱分布的测试数据分辨出被加持物体是否产生滑动,从而为夹持机构提供数据支撑的。

5 结 论

针对自动抓取、装配等过程可能出现的抓力过大损坏产品或抓力过小滑落的问题,提出了一种基于正交光纤光栅阵列的负载感知系统。该系统利用FBG阵列完成对夹具的应力场分布获取,从而实现对负载夹持状态的感知,为抓取、装配等提供校正反馈信息。实验显示,系统具有很好的应力方向识别性,灵敏度高且符合线性变换要求。该系统在自动生产线等领域具有很好的应用价值。

猜你喜欢

施力传感波长
HPLC-PDA双波长法同时测定四季草片中没食子酸和槲皮苷的含量
《传感技术学报》期刊征订
新型无酶便携式传感平台 两秒内测出果蔬农药残留
IPv6与ZigBee无线传感网互联网关的研究
双波长激光治疗慢性牙周炎的疗效观察
日本研发出可完全覆盖可见光波长的LED光源
便携式多用途光波波长测量仪
“力”易错题练习
某型Fabry-Perot光纤应变计的传感特性试验
“力”综合测试题