藜麦啤酒的研究进展
2021-01-18孙婧譞何新益程凯悦王雪廖振宇叶金铎李航
孙婧譞,何新益,程凯悦,王雪,廖振宇,叶金铎,李航*
(1.天津农学院食品科学与生物工程学院,天津 300392;2.天津市农副产品深加工技术工程中心,天津 300392;3.天津市食品研究所有限公司,天津 301609;4.谱尼测试科技(天津)有限公司,天津 300392;5.天津理工大学机械学院,天津 300384)
随着现代科学技术的不断发展,酒的种类也越来越繁多,由之前单一的种类逐渐向多元化发展。近几年研究发现,将各种香甜的口味融入到啤酒当中,更受到消费者的青睐。作为一种大众所喜爱的饮品,人们在关注其色泽与口感的同时,更关注健康问题。在不断地摸索与思考中发现,藜麦与小麦有相似的特点也可以酿酒。由于其营养价值远高于其他谷物,并赋予啤酒独特的感官味道,所以藜麦作为酿造辅料逐渐被啤酒行业关注[1]。
1 藜麦的营养价值
从植物学上讲,藜麦属于藜科,藜麦(Chenopodium quinoa Willd),别称南美藜、印第安麦、藜谷等。藜麦在生态极端的条件下也可生存,在智利北部和玻利维亚南部的盐碱地种植也可存活。因其地理位置与海拔的优势,其生长的藜麦也相当精良。但由于进口物种价格昂贵,以及在运输途中造成的不必要的浪费,近几年我国在多地也开始商业化种植,现已经将藜麦种植范围扩展到甘肃、青海、陕西、山西、河北等10多个省区,而且种植的藜麦从外观、口感、营养等方面都与进口的没有多少差别。藜麦的种植方法简单,田间管理较为方便,很多养殖户都倾向于藜麦种植,是农民们种植经济作物的首要选择[2]。
藜麦是一种营养价值丰富的假谷物,富含蛋白质、氨基酸、矿物质、维生素等,被联合国农粮组织认为是一种可以满足人体基本营养需求的单体植物[3-5]。藜麦种子中富含锰、镁、钾和硒等微量营养元素,且藜麦中钾、钙、磷、硫、铁、锌矿物质含量远高于谷类,易于吸收,补充营养、增强免疫力、降低血管压力;由于藜麦不含麸质,使其成为乳糜泻患者的良好替代品,此外,由于其营养价值和蛋白质含量,逐渐被应用于婴幼儿食品的研究开发中[6-9]。MIRANDA等[10]对智利不同地区生产的6种生态型藜麦进行了分析,因种植地区和土壤不同,维生素含量也有差异,其中北部高地种植的Ancovinto中 VB2含量最高,VB1、VB3含量最高的是南部地区种植的Regalona,南部地区种植的Villarrica则是VE的良好来源。卢宇等[11]研究发现藜麦中矿物质含量丰富,其中磷、钾、镁、钙、铁、VB1和 VB2都有较高的含量。藜麦还是一种很好的膳食纤维来源,有益于癌症、糖尿病、血管疾病等。所以,选择藜麦来酿造啤酒可以把藜麦的营养物质带入到啤酒当中,丰富了啤酒口感的同时使啤酒更加健康。另外,对于患有高血压、心脏病、糖尿病等病的患者,严格来说不可以喝酒,但却可以选择适量饮用藜麦啤酒。
1.1 黄酮
多酚普遍存在于植物性食物中,对人体健康有促进作用。黄酮则是蔬果、茶、饮料中的多酚类化合物之一。研究表明,藜麦种子中黄酮类化合物含量丰富,黄酮对退行性疾病有预防作用[12]。不同品种藜麦所含黄酮化合物含量也不尽相同,藜麦颜色与黄酮含量成正相关。李玉英等[13]对山西种植的3种藜麦中的黄酮化合物进行了分析,结果表明这3种藜麦均有较好的抑菌效果和抗氧化活性。其中,藜麦颜色与黄酮含量和抗氧化活性成正相关。吴雅露等[14]优化了超声波辅助提取工艺,在最佳条件下提取藜麦种子中总黄酮含量为0.31%。ZHU等[15]采用柱层析法从藜麦种子中分离出6种黄酮类化合物,并对其自由基清除能力进行了研究,发现相较于其中4种山奈酚3-糖苷,另外2种槲皮素3-糖苷的DPPH自由基清除能力更强。
1.2 皂苷
皂苷位于藜麦种皮外层,可以有效防止鸟类和昆虫食用,大量皂苷具有溶血性,有潜在毒性,食用前需通过碾磨或洗涤去除种皮,当藜麦中皂苷含量在0.11%以内是可被接受的[16]。YOUSIF等[17]采用了一种新方法水滴表面张力法(water droplet surface tension,WDST)测定皂苷中藜麦浓度,该方法可准确测定浓度在0.05 mg/mL~0.15 mg/mL(皂苷在藜麦中占比0.05%~0.15%)的皂苷,可用于筛选低皂苷品种藜麦和检验处理后的藜麦种子。同时皂苷还具有抗敏、抗炎、抗菌、免疫刺激性等特性,在医疗、保健、药品、食品、化妆品等方面都有很好的应用价值。DANG等[18]在藜麦壳中提取出6种皂苷,并就其对食源性致病菌的抗菌效果进行了研究,结果表明这几种皂苷对金黄色葡萄球菌、表皮葡萄球菌、蜡样芽孢杆菌均有抑制作用。
2 藜麦啤酒
藜麦营养价值高,具有降血脂的潜力,同时对高血压、心脏病、糖尿病等患者皆有好处,兼有药酒之效。近些年,藜麦啤酒工艺研究逐渐成为热点,KORDIALIK-BOGACKA等[19]研究了用藜麦部分代替麦芽对麦汁和啤酒性能的影响,同时对藜麦种子和藜麦切片作为酿造辅料的适用性进行了研究。结果表明,藜麦是一种很好的酿造辅料,即便没有外源酶的参与也可用藜麦代替30%麦芽。卞猛[20]以藜麦为辅料研究了藜麦啤酒的加工工艺,并进行了藜麦啤酒中试验,藜麦麦汁酵母活力低于全麦麦汁酵母活力,但藜麦的添加对酵母发酵的影响不显著,将制得的藜麦啤酒与市售的两款啤酒进行了对比,结果发现藜麦啤酒中乙醛含量和醇酯比均低于市售啤酒,可减少饮酒后的“上头感”。俞志敏等[21]制备了藜麦麦芽作为辅料用于啤酒酿造,更好的满足了糖化过程中对酶的需求。藜麦啤酒工艺中最主要是糖化和发酵两大工序。
2.1 糖化工艺
糖化工艺流程包括:大麦、藜麦粉碎→糊化→糖化→糖化醪过滤→麦汁煮沸→沉淀→冷却→充氧。糖化工艺为啤酒生产中的关键流程,同时又对啤酒发酵、过滤性能和口味稳定性起着重要作用。糖化是麦汁中的非水溶性组分在酶的作用下向水溶性组分转化,提高浸出率的过程,是麦汁制备中的重要工序[22]。糖化过程中温度、pH值、料液比等工艺参数,对麦汁形成过程中物质转化及麦汁最后成分均有决定性作用[23]。麦汁中酸性物质在35℃~37℃溶出、45℃~55℃时蛋白质开始降解,当温度升至62.5℃和70℃时分别到达β-淀粉酶和α-淀粉酶的最适温度,继续升温,直至温度达到能钝化除α-淀粉酶外的所有水解酶时(70℃~80℃)糖化终止[24]。卞猛等[25]根据料液比、下料温度、pH值等工艺参数对麦汁中总黄酮含量的影响优化了藜麦啤酒糖化工艺,优化后其总黄酮含量达到了0.320 mg/mL。刘鹤祥等[26]采用单因素和响应面法优化了藜麦糖化工艺,藜麦糖化醪总黄酮含量为1.85 mg/mL,在此工艺下藜麦中黄酮等化合物被最大程度的保留下来。陈树俊等[27]研究了小米-藜麦复配谷物的最佳糖化工艺,且发现糖化时间和β-淀粉酶添加量为主要影响因素。
2.2 发酵工艺
发酵工艺流程包括:麦汁→酵母扩培→添加酵母→发酵→成品。啤酒发酵是啤酒生产工艺的重要环节,是在相对密闭的空间中开展的,也是微生物菌体进行新陈代谢的过程,对啤酒整个生产过程起着重要的作用[28-29]。啤酒发酵过程中,酵母生长繁殖、合成代谢、发酵作用会受到麦汁中可发酵性糖组分的种类和含量的影响,从而造成了对成品酒的风味和口感的影响。刘倩等[30]研究了发酵过程中糖组分含量与发酵度的关系,发现麦汁极限发酵度可通过添加可发酵性糖来增加。DEZELAK等[31]以荞麦和藜麦为原料尝试了无麸质啤酒的研制,并对连续发酵时分析了染色体蛋白质的变化,研究发现菌株TUM 34/70适合于藜麦麦汁的连续投料,但还需对发酵底物评估,以了解连续发酵对终产品的影响。卞猛[20]采用上面发酵法以藜麦为辅料研究了藜麦啤酒酿造工艺,发现于19℃~20℃下发酵效果最佳,醇酯比较低,适合大量饮用。啤酒发酵是一个复杂的过程,在整个酿造过程中,环境变量因素很多,会影响啤酒酵母生长,从而影响成品啤酒中的挥发性风味物质和啤酒品质。
3 挥发性风味物质
风味被认为包括气味、香味、味道、口感等[32]。许多风味物质在啤酒发酵过程中生成,这些物质对啤酒风味有显著影响[33]。啤酒中主要风味物质包括:醇类、酯类、含硫化合物、有机酸、羰基化合物、醛类物质等[34-35]。高级醇也称杂醇油,主要包括异丁醇、丙醇、异戊醇等,其中异戊醇占比最高。高级醇对啤酒风味有着促进作用。高级醇在啤酒中最适宜的浓度为50 μg/mL~100 μg/mL。适宜的高级醇可以赋予啤酒协调、柔和的口感,对啤酒风味有着不可或缺的作用,但高级醇含量过度会使啤酒滋味淡薄,若过高则会影响啤酒口感且会产生“上头感”[36-38],故藜麦啤酒发酵过程中,醇类物质含量的检测尤为关键。钟成等[39]就发酵条件对啤酒中高级醇含量进行了研究,发现酵母接种量与啤酒中高级醇含量呈负相关,但影响不显著;发酵温度、麦汁浓度与啤酒中高级醇含量呈正相关,但也有部分高级醇(如异丁醇等)不遵循此规律,SMOGROVICOVA等[40]也有类似研究结果。杨贵恒等[41]采用气相色谱-质谱联用(gas chromatography-mass spectrometry,GC-MS)对藜麦啤酒中风味物质进行了检测,测定了发酵20 d中啤酒风味物质的变化。综合藜麦啤酒感官评价,确定藜麦啤酒最佳发酵天数为16 d,此时醇类物质及香气均较丰富,虽较发酵29 d时香气稍逊色,但此时持泡性更佳。
酯类物质对啤酒香气至关重要,是啤酒香气的主要来源。酯类物质间存在协同效应,这意味着低于阈值的酯类物质也会对啤酒风味有所影响,大多是酯类物质浓度接近阈值,故轻微的浓度波动也会使啤酒风味产生较大变化[42]。适宜浓度的酯类物质可以给啤酒增添风味,若浓度过低,啤酒中香气寡淡,但若浓度过高则会给啤酒带来不愉快的异香气味[43-44]。酯类物质可有效缓解高级醇带来的“上头感”,故给予啤酒合适的醇酯比是非常有必要的。吕微等[45]采用气相色谱法测定了啤酒中几种较主要的酯类物质,确定了下面发酵浅色啤酒中各酯类物质最适宜浓度。啤酒中酯类物质主要在发酵期形成,麦汁中的溶解氧含量对啤酒中酯类物质含量有一定影响。王海明[46]对影响酯类含量的单因素进行了分析,研究发现,酵母菌种、辅料以及对酵母旺盛发酵有促进作用的工艺条件(酵母代数、满罐时间、酵母峰值、双乙酰还原时间、大罐降温时间等)均对啤酒中酯类物质含量有影响。将所得出的所有有利于酯类生成的条件联合应用进行生产试验,酯类物质总含量提升了120.5%。DEŽELAK等[47]以荞麦和藜麦为原料分别制备了两种无麸质啤酒,并对其特性进行了分析,经研究发现,相比大麦啤酒和荞麦啤酒,藜麦啤酒中2-甲基丁醇、2-苯乙醇、乙酸异戊酯等挥发性风味物质含量较低,但藜麦啤酒中含有其他啤酒中没有的挥发性风味物质,有着独特口感及风味,藜麦啤酒和荞麦啤酒都有较好的接受性,荞麦啤酒感官优于藜麦啤酒,但藜麦啤酒的风味有着更多的独特性。
除醇类和酯类外,有机酸、醛类物质、含硫化合物等对啤酒风味也有一定影响。有机酸由于其酸味及其独特的口感和味道成为了影响啤酒风味的又一重要物质。此外,有机酸还对啤酒的pH值和缓冲性有一定作用,对啤酒的稳定性做出了贡献[48]。有机酸对啤酒风味的影响是每一种有机酸综合后产生的整体影响,为此,向阳等[49]建立了评价体系,对啤酒中的有机酸进行综合评价。啤酒中的醛类物质是使啤酒风味变差的原因之一,超过风味阙值的醛类会使啤酒带有不愉快的气味。啤酒中含量最多的醛类物质是乙醛,对大脑有刺激性,是饮用啤酒后上头的原因之一。啤酒老化产生纸板味主要原因是反式-2-壬烯醛[50]。此外,Strecker降解产生的醛类物质也是啤酒老化风味的重要原因之一[51]。含硫化合物是啤酒中又一重要的呈味物质,虽然在啤酒中含量很低,但由于其风味强度,在低于风味阈值时会给啤酒带来独特的风味和口感,可使酒体香气协调,但当其高于风味阈值时则会给啤酒风味带来不利影响[52],如二甲基硫有腐烂蔬菜味、二甲基三硫给啤酒带来洋葱味、硫化氢会使啤酒有明显的酵母臭味[53]。
4 展望
藜麦含有丰富的营养价值,富含的黄酮类化合物对高血压、糖尿病、心脏病等退行性疾病有预防作用,具有作为功能性食品的潜力,藜麦啤酒的出现对啤酒的老式观念进行了改进,改进的同时藜麦的色、香、味也随之融入其中,更加符合当代消费者的需求。藜麦啤酒工艺的研究还处于发展阶段,现有的研究主要是对藜麦啤酒的糖化、发酵工艺和风味物质的探讨,对功能特性在藜麦啤酒成品中的体现感官优化的研究很少,在保证营养成分的同时优化工艺使藜麦啤酒拥有更佳的口感也可成为今后的研究方向。