APP下载

基于CTA的冠状动脉分叉病变血流动力学仿真分析

2020-12-24郭金兴陈广新包婉秋张春霞张美乐刘阳

软件 2020年7期
关键词:剪切应力壁面动力学

郭金兴 陈广新 包婉秋 张春霞 张美乐 刘阳

摘  要: 针对不同分叉病变区域长度的个体化冠状动脉的血流动力学指标分布特征,进行个体化建模,探讨不同分叉病变区域长度对冠状动脉的影响。应用计算流体力学仿真计算,获得不同分叉病变区域长度的冠状动脉血流动力学指标分布特征。利用CFX CCL语言实现不同的血流动力学指标参数。通过计算机建模与仿真,可实现CTA-STL模型-CFD网格-CFD仿真结果,结果为冠状动脉分叉病变的血流动力学变化受分叉病变的长度影响。

关键词: CTA;冠状动脉分叉病变;血流动力学仿真

中图分类号: TP391.4    文献标识码: A    DOI:10.3969/j.issn.1003-6970.2020.07.024

本文著录格式:郭金兴,陈广新,包婉秋,等. 基于CTA的冠状动脉分叉病变血流动力学仿真分析[J]. 软件,2020,41(07):120-125

CTA Based Simulation Analysis of Coronary Bifurcation Lesions

GUO Jin-xing1, CHEN Guang-xin2, BAO Wan-qiu2, ZHANG Chun-xia2, ZHANG Mei-le2, LIU Yang3*

(1. Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China; 2. Medical Imaging College of Mudanjiang MedicalUniversity, Mudanjiang, 157011, China; 3. Registrars office of Mudanjiang Medical University, Mudanjiang, 157011, China)

【Abstract】: According to the distribution characteristics of individual coronary artery Hemodynamics index with different length of bifurcation lesion area, the individual model was established to explore the influence of different length of bifurcation lesion area on coronary artery. The distribution characteristics of coronary artery Hemodynamics index were obtained by using computational fluid dynamics simulation calculation. Using CFX CCL language to implement different Hemodynamics parameters. Cta-stl model-CFD grid-CFD simulation results are realized by computer modeling and simulation. The results show that the Hemodynamics of coronary bifurcation lesions is affected by the length of bifurcation lesions.

【Key words】: CTA; Coronary bifurcation lesions; Hemodynamics simulation

0  引言

冠状动脉狭窄与心肌缺血是否存在相关性一直没有定论[1-3],中等程度额的冠状动脉狭窄病变可能会引起心肌缺血,冠状动脉分叉病变的影响因素包括狭窄率、狭窄区域长度,所以冠状动脉的形态学研究对弄清冠状动脉的血流动力学特征变化具有重要的意义[4-5]。本研究即基于不同狭窄区域长度的三维模型,应用血流动力学的指标包括壁面剪切应力、

震荡剪切因子、避免剪切应力梯度、时间平均壁面剪切应力等对冠状动脉不同病变长度的LAD进行分析,探讨病变长度对冠状动脉的的血流动力学因素的影响关系。

1  个体化冠状动脉三维模型构建

选取牡丹江医学院附属红旗医院冠状动脉患者病例一例,CTA断层影像数据总计402张,层厚0.5 mm,使用比利时医学交互式影像控制系统(Mater?ialists Interative Medical Image Control System,MIMICS)高級分割工具(ADVANCED SEGMENT)模块中的Coronary专用分割工具进行冠状动脉分割(图1),提取出左冠状动脉蒙版(Mask),并经三维模型计算(Calculate Part生成初步的三维模型并以stl格式导入正向工程软件3-matic中进行光顺、三维模型修复、三角面片划分,最终获取冠状动脉三维模型,此模型病变长度为0(图2),图2中标示了模型的入口、出口位置和病变区域。在此动脉模型基础上构建10 mm,15 mm病变(狭窄)模型。MIMICS是医学逆向工程软件,该软件可实现断层数据的提取、三位建模、测量等,3-matic medical版本是基于正向工程技术的一款三维模型的构建、修复处理软件。

2  计算方法

2.1  材料属性与边界条件

本研究的仿真计算是基于ANSYS CFX软件,Ansys CFX是一款高性能计算流体动力学(CFD)软件工具,能快速稳健地提供准确可靠的解决方案,适用于众多CFD和多物理场应用,作为世界上唯一采用全隐式耦合算法的大型商业软件[6-8]。算法上的先进性,丰富的物理模型和前后处理的完善性使ANSYS CFX在结果精确性,计算稳定性,计算速度和灵活性上都有优异的表现。假设血流密度为1066 kg/m3,血液为牛顿流体,动力粘度为0.0035 。冠状动脉入口采用速度入口,入口速度曲线如图3所示,出口压力曲线如图4所示,不考虑重力的影响。计算两个周期,每个周期的时长为0.8 s,取最后一个周期的结果进行研究。由于血管内压力很小,设置流体域的压力为0。雷诺数为Re=1430<2300,因此采用层流[9-10]

2.3  网格划分

各模型的网格划分采用非结构化的四面体网格(ANSYS FLUENT MESHING划分),为保证计算精度,边界层采用5层加密(图5所示),网格划分后进行网格独立性验证,满足精度要求。ANSYS FLUENT MESHING是全新的基于Ribbon風格的界面,提高了操作的便捷性,改善了用户的体验,同时提供了基于包面方法的全自动脚本生成网格、基于ANSA集成FLUENT MESHING的网格生成、基于SCDM结合FLUENT MESHING等多种网格生成流程。应用该软件划分的网格质量较高,并提供独有的多面体网格技术[11-13]

3  仿真计算结果分析

本计算结果图像后处理分析采用ENSIGHT进行分析,ENSIGHT是美国CEI公司开发的一款具有尖端的科学工程可视化的图像后处理软件。

3.1  血流动力学参数选择

各参数的实现采用CCL编码开发,ccl语言通俗易懂,可开发性较高,本实验程序编码部分如下:

inrad1 = sqrt(area()@INLET1/ pi)

inrad2 = sqrt(area()@INLET2/ pi)

invel1 = max(0 [m s^-1], invmax1 * (1.0 - (zxradius1/inrad1)^2))

invel2 = max(0 [m s^-1], invmax2 * (1.0 - (zxradius2/inrad2)^2))

invmax1 = 2 * INLET1f / ( pi *(inrad1^2)*areaAve(density)@INLET1)

invmax2 = 2 * INLET2f / ( pi *(inrad2^2)*areaAve(density)@INLET2)

inxcen1 = areaAve(Global X Coordinate)@INLET1

inxcen2 = areaAve(Global X Coordinate) @INLET2

inycen1 = areaAve(Global Y Coordinate) @INLET1

inycen2 = areaAve(Global Y Coordinate) @INLET2

inzcen1 = areaAve(Global Z Coordinate) @INLET1

inzcen2 = areaAve(Global Z Coordinate) @INLET2

numaneurysms = 1

numsystoliccycles = 3

peaksystole = 0.13

systoliccyclelength = 0.8

visc = viscval * 1[Pa s]

viscval = 0.0035

vortmag2 = Vorticity X^2 + Vorticity Y^2 + Vorticity Z^2

zxradius1 = sqrt((x-inxcen1)^2 + (y-inycen1)^2 + (z-inzcen1)^2)

zxradius2 = sqrt((x-inxcen2)^2 + (y-inycen2)^2 + (z-inzcen2)^2)

END

ADDITIONAL VARIABLE: Qvar

Option = Definition

Tensor Type = SCALAR

Units = [s^-2]

Variable Type = Unspecified

END

ADDITIONAL VARIABLE: ViscDisp

Option = Definition

Tensor Type = SCALAR

Units = [s^-2]

Variable Type = Unspecified

END

ADDITIONAL VARIABLE: WSSField

Option = Definition

Tensor Type = SCALAR

Units = [Pa]

Variable Type = Specific

END

ADDITIONAL VARIABLE: WSSG

Option = Definition

Tensor Type = VECTOR

Units = [Pa m^-1]

Variable Type = Unspecified

END

ADDITIONAL VARIABLE: WSSxF

Option = Definition

Tensor Type = SCALAR

Units = [Pa]

Variable Type = Specific

END

ADDITIONAL VARIABLE: WSSyF

Option = Definition

Tensor Type = SCALAR

Units = [Pa]

Variable Type = Specific

END

ADDITIONAL VARIABLE: WSSzF

Option = Definition

Tensor Type = SCALAR

Units = [Pa]

Variable Type = Specific

END

MATERIAL: Blood

Material Group = User

Option = Pure Substance

PROPERTIES:

Option = General Material

EQUATION OF STATE:

Density = dens

Molar Mass = 1.0 [kg kmol^-1]

Option = Value

END

DYNAMIC VISCOSITY:

Dynamic Viscosity = visc

Option = Value

END

END

END

END

FLOW: Flow Analysis 1

SOLUTION UNITS:

Angle Units = [rad]

Length Units = [m]

Mass Units = [kg]

Solid Angle Units = [sr]

Temperature Units = [K]

Time Units = [s]

END

ANALYSIS TYPE:

Option = Transient

EXTERNAL SOLVER COUPLING:

Option = None

END

INITIAL TIME:

Option = Automatic with Value

Time = 0 [s]

END

TIME DURATION:

Option = Total Time

Total Time = 2.4 [s]

END

TIME STEPS:

Option = Timesteps

Timesteps = 0.008 [s]

END

END

DOMAIN: FLUIDdom

Coord Frame = Coord 0

Domain Type = Fluid

Location = Assembly

BOUNDARY: INLET1

Boundary Type = INLET

Location = INLET1

BOUNDARY CONDITIONS:

ADDITIONAL VARIABLE: WSSField

Option = Zero Flux

END

ADDITIONAL VARIABLE: WSSxF

Additional Variable Value = 0 [kg m^-1 s^-2]

Option = Value

END

ADDITIONAL VARIABLE: WSSyF

Additional Variable Value = 0 [kg m^-1 s^-2]

Option = Value

END

ADDITIONAL VARIABLE: WSSzF

Additional Variable Value = 0 [kg m^-1 s^-2]

Option = Value

END

FLOW REGIME:

Option = Subsonic

END

MASS AND MOMENTUM:

Normal Speed = invel1

Option = Normal Speed

END

END

END

ADDITIONAL VARIABLE: OSIfield

Additional Variable Value = (1 - \

(WSTaveMag/(WSSField.Trnavg+ 1e-15[Pa])))/2

Option = Algebraic Equation

END

ADDITIONAL VARIABLE: PressGauge

Additional Variable Value = pref + Pressure

Option = Algebraic Equation

END

ADDITIONAL VARIABLE: WSSField

Kinematic Diffusivity = 1e-15 [m^2 s^-1]

Option = Poisson Equation

END

ADDITIONAL VARIABLE: WSSG

Option = Vector Algebraic Equation

Vector xValue = -(1.0-Normal X*Normal X)*WSSField.Gradient X \

-(0.0-Normal X*Normal Y)*WSS?Field.Gradient Y -(0.0-Normal X*Normal \

Z)*WSSField.Gradient Z

Vector yValue = -(0.0-Normal Y* Normal X)*WSSField.Gradient X \

-(1.0-Normal Y*Normal Y)*WSS?Field.Gradient Y -(0.0-Normal Y*Normal \

Z)*WSSField.Gradient Z

Vector zValue = -(0.0-Normal Z*Nor?mal X)*WSSField.Gradient X \

-(0.0-Normal Z*Normal Y)*WSS?Field.Gradient Y -(1.0-Normal Z*Normal \

Z)*WSSField.Gradient Z

END

ADDITIONAL VARIABLE: WSSxF

Kinematic Diffusivity = 1e-15 [m^2 s^-1]

Option = Poisson Equation

END

ADDITIONAL VARIABLE: WSSyF

Kinematic Diffusivity = 1e-15 [m^2 s^-1]

Option = Poisson Equation

END

ADDITIONAL VARIABLE: WSSzF

Kinematic Diffusivity = 1e-15 [m^2 s^-1]

Option = Poisson Equation

END

COMBUSTION MODEL:

Option = None

END

HEAT TRANSFER MODEL:

Option = None

END

THERMAL RADIATION MODEL:

Option = None

END

TURBULENCE MODEL:

Option = Laminar

END

END

END

本文選择血流速度、时间平均壁面切应力(time average wall shear stress,TAWSS)、平均壁面切应力梯度(time average wall shear stress grade,TAWSSG)、剪切震荡系数(oscillatory shear index,OSI)、壁面切应力(wall shear stress,WSS)是指血液流动时在血管壁表面上引起的切向的动态摩擦力。对于脉动流,在一个心脏周期内用每个节点上积分WSS量的值来计算TAWSS:

其中wssi是瞬时剪切应力矢量,T是周期的持续时间。同时提出了壁面切应力梯度(wall shear stress,WSSG),可以更明显观测WSS数值变化,WSSG的时间平均值即平均壁面切应力梯度(TAWSSG):

在一个心动周期内,震荡剪切系数(OSI)可以描述WSS方向的变化程度,OSI值介于(0,0.5)之间,OSI数值越大,表示WSS方向的变化也就越大,但其值的大小与WSS没有必然联系,其表达式为:

3.2  病变长度对TAWSS的影响

本研究提取了最后一个周期的TAWSS云图 (图6),由TAWSS分布云图可见,在分叉病变区域,无病变、10 mm病变长度,15 mm病变长度的病变部位高TAWSS区域依次递增。在病变区域,高TAWSS区域的值都较小,普遍都在0.6左右,而非病变区域的分叉部位病变长度10 mm、15 mm的模型高TAWSS区域要大于无病变者。

Fig.6  TAWSS distribution nephogram (from left to right: no lesion (a), 10 mm lesion length model (b),15 mm lesion length model (c))

3.3  病变长度对OSI的影响

Zhang等人的那研究证实低的OSI能够降低血管内膜增生的可能性。由图7可见,无病变模型、10 mm病变长度模型、15 mm病变长度模型OSI分布差别较小。

3.4  病变长度对TAWSSG的影响

由图8可见,各模型的分叉病变高TWSSG区域按无病变、10 mm、15 mm顺序依次递增。在管壁分叉处,TAWSSG值都较高,有血管损伤的风险。

3.5  病变长度对血流速度分布的影响

为考察病变长度对血流速度的影响,选取血管病变位置的截面速度进行比较研究,图9为截面的位置。三个不同病变长度的截面血流速度分布如图10所示,由图可见,在脉动流周期的入口血流速度峰值时刻,无病变、10 mm病变长度、15 mm病变长度模型的截面血流速度依次递增。

4  讨论

本研究构建了冠状动脉的LAD的不同长度狭窄区域的血管3D模型,并在此基础上使用ANSYS CFX流体仿真软件进行仿真计算,获得冠状动脉不同狭窄区域长度的血流动力学指标分布特征。冠状动脉WSS是引起血管发生病变及病变恶化的重要影响因素,WSS高、低区域的震荡是引起血管损伤的重要因素,其低WSS区域或震荡可能扩大病变狭窄程度,而高WSS可能会造成斑块的软化和不稳定;高OSI可能会增加内皮细胞的功能紊乱和血管内膜增生[12-13]

参考文献

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation, 2015, 131: e29-e322.

  2. Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve(FFTCT) derived from coronary CT angiography. Journal of Cardiovascular Translational Research, 2013, 6(5): 708-714.

  3. Zhang JM, Zhong L, Luo T, et al. Numerical simulation and clinical implications of stenosis in coronary blood flow. In: BioMed Research International, 2014: 1-10.

  4. Taylor CA, Fonte TA, Min JK. Computational fluid dyna?mics applied to cardiac computed tomography for noninva?sive quantification of fractional flow reserve. Journal of the American College of Cardiology, 2013, 61(22): 2233-2241.

  5. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia- causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Journal of the American College of Cardiology, 2011, 58(19): 1889-1996.

  6. Yong AS, Ng AC, Brieger D, et al. Three-dimensional and two dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. European Heart Journal, 2011, 32(3): 345-353.

  7. Iguchi T, Hasegawa T, Nishimura S, et al. Impact of lesion length on functional significance in intermediate coronary lesions. Clinical Investigations, 2013, 36(3): 172-177.

  8. Kristensen TS, Engstr?mb T, Kelb?k H, et al. Correlation between coronary computed tomographic angiography and fractional flow reserve. International Journal of Cardiology, 2010, 144(2): 200-205.

  9. Alghamdi A, Balgaith M, Alkhaldi A. Influence of the length of coronary artery lesions on fractional flow reserve across intermediate coronary obstruction. European Heart Journal Supplements, 2014, 16(Supplement B): 76-79.

  10. 隋國庆, 张培新, 杨国柱, 等. 冠状动脉的数值模拟分析及在支架介入的应用研究[J]. 软件. 2020(1).

  11. 陈广新, 赵东良, 郭金兴, 等. 基于CTA的个体化脑动脉瘤的流固耦合分析及其临床应用[J]. 2020(1).

  12. 王汝良, 胡霖霖, 郭金兴, 等. 颈动脉分叉的非稳态数值模拟分析[J]. 2018(10).

  13. 张凯旋, 陈广新, 邱收, 等. 椎动脉阻断术前后基底动脉瘤的血流动力学数值模拟分析[J]. 2019(6).

猜你喜欢

剪切应力壁面动力学
二维有限长度柔性壁面上T-S波演化的数值研究
具有Markov切换的非线性随机SIQS传染病模型的动力学行为
心瓣瓣膜区流场中湍流剪切应力对瓣膜损害的研究进展
剪切应力对聚乳酸结晶性能的影响
壁面温度对微型内燃机燃烧特性的影响
基于随机-动力学模型的非均匀推移质扩散
动脉粥样硬化病变进程中血管细胞自噬的改变及低剪切应力对血管内皮细胞自噬的影响*
硫化氢在低剪切应力导致内皮细胞自噬障碍中的作用
TNAE的合成和热分解动力学
C36团簇生长动力学及自由能