APP下载

南京信息工程大学季风研究若干重要进展回顾

2020-12-11何金海徐海明王黎娟祁莉朱志伟马静罗京佳

大气科学学报 2020年5期
关键词:梅雨

何金海 徐海明 王黎娟 祁莉 朱志伟 马静 罗京佳

摘要 回顾了南京信息工程大学(简称南信大)建校60年来季风研究的主要历程以及在亚洲季风,特别是在东亚季风研究方面取得的重要成果。20世纪80年代至21世纪初,中美季风合作、中日季风合作和“南海季风试验”3次国际季风合作研究的顺利实施,极大地推进了南信大季风研究团队的组建和壮大,同时也催生了一系列创新性成果。团队首先揭示了东亚季风与印度季风环流的差异,提出了东亚副热带季风的明确概念;发现了东亚副热带夏季风的建立独立并早于南海夏季风;揭示了“亚澳大陆桥”是北半球春季亚洲季风区对流最活跃的地区,其对流的建立和推进对东亚夏季风的建立至关重要;较早开展了东亚季风区季节内振荡北传特征和机制的研究并成功应用于东亚季风区延伸期预报。这些创新性成果的取得为季风研究做出了重要贡献。近年来,南信大秉承“开放发展、联合发展”的办学理念,大力引进高层次人才,进一步推动了季风研究。作为国际季风研究的重要力量之一,南信大季风研究团队将始终坚守季风研究阵地,不断深化季风理论认识、提升季风预测水平。

关键词 亚洲季风;南海夏季风;东亚副热带夏季风;梅雨;季节内振荡

1 季风研究历程

季风,一个古老而又神秘的话题。“南风之薰兮,可以解吾民之愠兮;南风之时兮,可以阜吾民之财兮”,“北风其凉,雨雪其雱;北风其喈,雨雪其霏”。中华文化里很早就有了对季风的描绘。夏季盛行偏南风,带来珍贵雨水;冬季盛行偏北风,送来纷飞大雪。我国地处亚洲季风区,天气气候深受季风活动影响,季风研究具有重要的科学意义和社会价值。

中国的季风研究从20世纪30年代开始,至今已有80多年的历史。作为一所以大气科学学科为特色的高校,南京信息工程大学(以下简称南信大)为季风研究做出了重要贡献。南信大已走过60个春秋,其前身是南京气象学院。学校创立初期,重基础,强实践,以高水平为目标,在艰苦的办学条件下开拓进取,形成了科教融合的办学模式。改革开放以后,学校科研工作得到快速而长足的发展。在朱乾根教授的带领下,学校着力开展了季风研究。在进行国内季风合作研究的同时,我校季风团队也开展了国际领域的合作,可以说,季风研究团队是在3次国际季风合作中成长起来的。

1983—1993年开展了中美季风合作研究,期间共举行了5次研讨会。1983年在北京召开的第一次专题讨论会确立了主要研究内容和技术路线。1984年,何金海完成访学任务回国后就立即加入了朱乾根教授的季风研究团队,潜心开展季风研究。1985年6月,第二次专题讨论会在美国加州蒙特雷市召开,朱乾根教授做了题为“印度季风与东亚季风的环流差异”的报告,首次阐明了东亚季风的独特特征。第三次专题讨论会于1987年6月在昆明举办,会议成立了技术组,陶诗言先生任总顾问,朱乾根教授任技术组副组长。会上,朱乾根和何金海分别做了学术报告,朱乾根教授介绍了低频振荡能量平衡方面的研究工作,何金海则介绍了低频振荡的传播特征,指出了低频振荡传播的复杂性,特别在东亚地区存在明显的经向传播。1989年,第四次专题讨论会在美国宾夕法尼亚大学举行,何金海做了题为“南半球澳大利亚低频冷空气影响东亚夏季风”的学术报告,受到与会专家的关注。会议讨论了中美季风合作取得的亮点成果,并对未来几年的季风研究进行了展望。1993年6月,第五次学术研讨会在杭州召开(图1),此次会议盛况空前,除了总结了此次季风合作的主要成果,还专门讨论了拟开展的南海夏季风试验,明确了该试验的科学目的和研究内容。

1993—1999年的中日季风合作进一步推动了我校季风研究。何金海任专家组成员和技术组副组长。期间,朱乾根和何金海两次访问日本气象研究所,日方的Murakami教授到我校进行了为期一个月的访问,双方在《热带气象学报》(中、英版)上合作发表了题为《TBB资料揭示的亚澳季风区季节转换及亚洲夏季风建立的特征》的学术论文(何金海等,1996a),合作主编出版了《亚洲季风研究的新进展》论文集(何金海等,1996b)。上述论文指出,4月苏门答腊对流中心沿“亚澳大陆桥”的系统性移动导致中南半岛对流活跃,进而触发南海-西太平洋热带夏季风的建立。

1999年3月,第七次中日工作组会议在北京举行,通过了“合作研究科学成果评述”,总结了双方合作取得的亮点成果,主要包括青藏高原地气相互作用的观测和分析、环境条件和积雪(冰)对亚洲季风循环的影响、大尺度季风状况和降水分析、季风数值试验研究以及东亚季风区水分平衡等。

1996—2002年,我国与美国、澳大利亚和东南亚七国合作开展了以丁一汇和李崇银为首席科学家的南海季风试验。何金海任专家组成员和第一课题组组长。外场观测期间,成功观测到了南海北部的早期季风爆发、全面爆发和季风气流北推至江南和长江流域的过程,以及季风爆发和对流发展过程中多个对流系统的演变生命史。南海季风试验催生了多个涉及南海季风的建立和季节进程等方面的新理论,推进了东亚季风基本理论框架的建立,深化了对东亚热带季风本质与变化规律的认识。另一方面也总结和验证了多种南海夏季风指数的应用,为东亚夏季风的业务监测和预报提供了量化依据。

三次国际季风合作研究均取得了令人瞩目的成果,这也直接或间接促成了我校季风团队三次荣获国家级和省级科技进步奖项。1995年,“东亚季风研究”获国家自然科学奖二等奖;2003年,“中南半岛地区热力特征对南海季风爆发的影响和机理研究”获教育部提名国家科学技术奖自然科学一等奖;2010年,由何金海领衔完成的“东亚季风多尺度变率与我国旱涝机理研究”获江苏省科学技术一等奖。

随着三次国际季风合作的顺利开展,我校季风研究团队不断壮大,涌现出一批勇于攻坚、敢于创新的学者。他们与国内外季风专家进行了广泛而深入的合作,取得了一系列创新性成果:发现东亚副热带夏季风的建立独立并早于南海夏季風,由此提出我国汛期应以东亚副热带夏季风及其雨带的建立为标志,并就东亚副热带季风的若干问题举办了全国研讨会(图2);发现东亚季风雨带推进过程存在“旱涝并存、旱涝急转”的重要现象;揭示了“亚澳大陆桥”是北半球春季亚洲季风区对流最活跃的地区,其对流的建立和推进与东亚夏季风建立关系密切,等等。这些创新性科研成果大力推动了季风研究的发展,也为我国气候预测提供了新的科学依据。

自2006年以来,我校全面推进开放办学、联合办学,广招天下英才,先后引进了包括罗斯贝奖章获得者王斌教授、国际知名季风专家李天明教授在内的多位在季风研究领域具有国际影响力的专家。这些专家的加盟为季风研究带来了新的学术思想,活跃了学术氛围,培育了一批年轻英才,推动了季风研究。

毫无疑问,南信大季风研究团队是国际季风研究的重要力量之一,建校以来取得了一系列创新成果。以下我们就这些成果进行简要回顾,热烈庆祝南信大建校60周年。

2 主要創新性成果

2.1 东亚热带夏季风的建立与“亚澳大陆桥”对流活动

东亚季风包括热带季风和副热带季风(Zhu et al.,1986)。早期研究主要关注热带季风,如南海夏季风的建立过程和特征等。何金海等(1996b)基于云顶黑体温度(Temperature of Black Body on the top of cloud,TBB)资料首先提出了4月苏门答腊对流中心沿“亚澳大陆桥”(从苏门答腊到中南半岛的狭长地带)的系统性北移导致中南半岛对流活跃,造成副热带高压在该区域断裂,进而触发南海-西太平洋热带夏季风建立(图3)。这主要是因为太阳辐射季节变化造成的“亚澳大陆桥”对流的季节性移动,也正是热带季风第一推动力的一种表现(曾庆存和李建平,2002)。

He et al.(2006a)进一步指出了“亚澳大陆桥”是北半球春季亚洲季风区对流最活跃的地区,其对流的建立和向北推进与东亚夏季风的建立紧密联系。北半球冬季,主要对流区位于赤道以南,4月中旬以前,中南半岛和印度半岛对大气的加热均以感热为主。4月底至5月初,苏门答腊地区的热带对流开始迅速北进并加强,与此同时中南半岛对流开始活跃并向东西方向扩展,该地区潜热加热和印度半岛的感热加热所激发的气旋性流场在孟加拉湾地区相互叠加,有利于孟加拉湾低涡活动和低槽的形成,这可能是副高断裂和印缅槽活跃的主要机制(图4)。伴随着印缅槽前西南气流和赤道印度洋西风扰动的东传以及南海地区中低纬的相互作用,南海夏季风建立(Xu et al.,2001,2002;何金海等,2002;He et al.,2003;Wang et al.,2004)。温敏等(2004)进一步利用区域气候模式证实了中南半岛对流不仅导致副热带高压带在孟加拉湾断裂,同时由于凝结潜热加热激发的Rossby波在南海北部形成有利于冷空气南下的形势,激发南海北部对流爆发和潜热释放,进而引起高层经向温度梯度反转和西太平洋副热带高压东撤,南海夏季风随之建立。

He et al.(2006b)总结了南海季风建立期间发生在中南半岛至印度半岛之间的一系列事件,包括中南半岛对流潜热加热和印度半岛感热加热的相互叠加、80°E附近赤道两侧“涡旋对”的出现、斯里兰卡低涡的北移、孟加拉湾槽的形成与发展,以及带状副热带高压的断裂和西太平洋副热带高压的迅速东撤等(图5)。南海夏季风的建立不仅是西南风由南向北推进的过程,而是在此之前首先表现为由西向东迅速推进的过程,这就解释了为什么南海夏季风在20个纬度(0°~20°N)范围内几乎同时建立的问题。

事实上,副热带高压带断裂、孟加拉湾槽建立和副热带高压东撤以及南海夏季风建立是一个迅速完成的过程,且伴随着亚洲大尺度流场和水汽输送场的季节突变(He et al.,2007a)。就夏季风建立的源地来看,苏门答腊地区热带对流4月底5月初的迅速北进是亚洲热带夏季风建立的最先征兆,将亚洲热带夏季风的“首发地”定在中南半岛南端、苏门答腊北部的周边地区是比较合理的。亚洲热带夏季风建立过程可以用图6来表示。

Liu et al.(2013)和Wang et al.(2017)进一步阐释了南亚高压对南海夏季风建立的重要作用。中南半岛强烈的深对流活动释放的凝结潜热可以在对流层上层制造出反气旋性相对涡度,导致南亚高压西伸加强,并在孟加拉湾南部高空出现“喇叭口”状的辐散流场,耦合低空汇合流场,进一步促进上升运动(图7)。对流层上下层的耦合可进一步导致对流层中低层副热带高压带断裂和印缅槽加深。印缅槽前西南风将大量水汽输送到槽前的中南半岛地区,反过来进一步促进中南半岛对流的发展。

“亚澳大陆桥”对流活动对东亚夏季风建立的重要作用以及亚洲热带夏季风建立“首发地”的确认,为研究南海-西太平洋夏季风建立机制提供了新思路。基于以上对南海夏季风建立特征的认识,何金海等(2001)从动力学和热力学相结合的角度提出了南海季风监测的新方法,并将其应用于国家气候中心的监测业务中,还确定了近40 a南海夏季风的建立日期(平均于5月中旬建立)。Wang et al.(2007)进一步比较了南海夏季风槽与东亚副热带夏季风槽的结构与演变特征,指出二者存在本质区别。南海夏季风槽主要表现为来自孟加拉湾的暖湿西南气流与西太平洋副热带高压南部的偏东气流辐合带,对流显著,不具备锋面性质,其建立具有爆发性和突然性,但其撤退缓慢,建立过程中东西风向逆转是一个明显的指示因子。这些特征与东亚副热带夏季风槽的锋面结构与演变有明显区别,进一步说明了南海夏季风的热带季风属性。

2.2 东亚副热带夏季风和纬向海陆热力差异

东亚副热带季风的明确概念由我校学者朱乾根等首先提出。朱乾根、何金海和王盘兴(Zhu et al.,1986)通过比较印度季风环流和东亚季风环流,发现印度季风区主要模态为印度低压(图8)。而东亚季风区则较为复杂,由三个主要模态构成(图9),第一模态(负位相)表现为南海低压环流(图9a),其内的南海季风槽位于西太平洋副热带高压南侧,具有热带季风性质;而第三模态(图9c)中除了南海季风槽,还有西太平洋副热带高压北侧的西南风与中高纬冷空气在副热带地区辐合,它位于高层南亚高压脊线北侧下方的西风带中,具有明显的副热带季风性质。因此,东亚季风由两个独立的子系统组成,即位于南海-西太平洋的热带季风和位于中国大陆-日本的副热带季风,而印度季风则为单纯的热带季风(图8)。

随后,陶诗言和陈隆勋给出了东亚季风的完整环流系统图(Tao and Chen,1987)。Wang and Lin(2002)分析了不同区域季风的特征,也将东亚夏季风分为两支,其中南海-西太平洋地区被称为“西北太平洋季风区”,中国大陆-日本的副热带地区被称为“东亚夏季风区”。Li and Zeng(2003)根据标准化的季风指数进一步给出了东亚副热带季风的大致范围。

此时,学术界对东亚副热带季风的存在及其大致的地理范围已基本达成共识。但是,对于东亚副热带季风的本质等问题还存在两种不同的观点:一种观點认为盛行于副热带地区的季风即为东亚副热带季风,并未关注其本质特征;另一种观点则认为南海—西太平洋热带季风向北延伸后形成东亚副热带夏季风。因此,对于东亚副热带季风的建立时间和特征等存在较大的争议。

大量观测事实表明,东亚副热带夏季风于3月底4月初就已建立(Zhao et al.,2007)。此时在副热带地区,对流层低层盛行的冬季偏北风转变为偏南风,降水距平由负转正(图10),日降水率高达6 mm/d,同时经向风垂直切变、冷暖平流、中高层垂直运动等也都发生了显著的季节转变,冬季控制中国大陆的冷高压系统性东移至我国东部沿海等(池艳珍等,2013)。这些特征均标志着东亚副热带夏季风的建立(Qi et al.,2008;任珂等,2010;朱志伟和何金海,2013;Chi et al.,2015)。

东亚副热带夏季风建立的关键推动力是纬向海陆热力差异。由冬至夏,东亚大陆(包括青藏高原)由冷源转为热源,使得东亚大陆与西太平洋的纬向热力差异首先在副热带地区由“西冷东暖”转变为“西暖东冷”(Qi et al.,2008)。大陆感热加热迫使低层大陆冷高压东移入海,激发副热带地区低层偏南风的建立。低层南风一方面输送低纬度热量,维持“西暖东冷”的形势,另一方面它使得垂直经向风切变(低层减高层)由负转正,产生上升运动,进而形成降水释放潜热加热中高层大气。如图11所示,此时加热中心位于对流层中高层,强度与热带对流相当(黄娇文等,2016)。通过“热力适应”过程,潜热加热又加强低层南风,激发高层偏北风的出现,同时凝结潜热对“西暖东冷”的热力分布也有很强的正反馈作用(图12;朱志伟和何金海,2013;Chi et al.,2015)。

事实表明,东亚副热带夏季风雨季建立明显早于热带夏季风雨季,两者的雨带、强低空辐合带、强垂直运动带均是相互分离的,因此,东亚副热带夏季风雨带并不是热带夏季风雨带向北推进的结果(何金海等,2008)。

3月底到4月初,东亚副热带夏季风雨带首先在江南地区建立(也有学者称之为“春雨”),并徘徊在华南地区(包括台湾地区)形成华南前汛期。南海夏季风于5月中旬建立后,前汛期雨带向北推进,于6月中旬形成江淮梅雨,7月中旬以后移至华北、东北地区,形成北方雨季。因此,3月下旬至南海夏季风建立前的这一多雨时段,应属于东亚副热带夏季风的早期阶段,我们对副热带季风雨季的关注点应从5月中旬(南海夏季风建立)提前至3月底,这对我国旱涝预测思路是一个新的拓展(何金海等,2008)。

然而,同样位于副热带的北美东部却不具有季风特征,它的全年雨量分配均匀,不具有“降水显著季节变化”这一季风区的关键特征(常炉予等,2013)。Hu et al.(2020)利用大气环流模式CAM5.1(Community Atmosphere Model Version 5.1)设计敏感性试验(表1)发现,改变海温分布(ZMSST试验)、改变经向热力差异(NOSA试验)均不能改变北美区域降水的季节演变(图13)。然而,如果将北美大陆南移,南移的北美大陆由春至夏出现较强且持续性的感热加热,加强了纬向海陆热力差异,使得北美地区夏半年降水显著增多,呈现显著的季节变化,这表明北美地区出现了季风区的关键特征(图13)。这再次证实了纬向海陆热力差异是形成副热带季风的关键推动力。

综上所述,由于南海-西太平洋热带季风和中国大陆-日本副热带季风这两支性质截然不同季风子系统的共存,东亚区域的季风气候极其复杂(He and Liu,2016)。位于中国大陆-日本的东亚副热带夏季风于3月底、4月初在江南地区首先建立,其关键推动力是东亚大陆(含高原)与西太平洋之间的纬向海陆热力差异。东亚副热带季风建立、季节进程及强度均对我国雨带的位置和强弱有着显著的影响,因此,我们应加强对它的分析和预测,其监测时间也应从5月提前至3月。

2.3 东亚副热带季风的盛期与梅雨

如前所述,南海热带夏季风于5月中旬建立,由于热带夏季风的推动,华南前汛期雨带向北推进,于6月中旬推进至江淮流域,梅雨季节开始。7月中旬雨带北推至华北-东北地区,形成北方雨季(图14)。大量证据表明,梅雨季节是东亚副热带夏季风的典型阶段(盛期),其雨量大,强降水频发,容易造成我国江淮流域大范围洪涝灾害。因此,江淮梅雨一直是我国气象工作者研究的重要课题,也是我校季风研究团队的主要研究方向之一。我校季风研究团队在梅雨入梅的年际变化、东北冷涡的“气候效应”及其对梅雨的影响、梅雨期降水分布非均匀性等方面做出了重要贡献。

从气候角度而言,6月中旬江淮流域入梅,但每年的入梅时间存在很大的差异。通常入梅时间早,梅雨期降水多,反之,降水偏少。早在21世纪初,徐海明等(2001)基于江苏省气象台入梅标准确定的江淮梅雨入梅日期,研究了江淮梅雨入梅的年际变化与前期冬季环流和前期冬春季海温的关系,发现江淮入梅早晚与前期冬季的北大西洋涛动存在显著的相关关系。入梅早的年份,其前期冬季北大西洋涛动强,而入梅晚的年份,则前期冬季北大西洋涛动弱。同时也发现,江淮梅雨入梅早晚与前期冬春季的北大西洋海温之间存在较为稳定持续的显著负相关区。数值试验结果表明,北大西洋海温的异常偏暖可通过激发类似横跨欧亚大陆的欧亚遥相关型波列从而对梅雨产生影响(图15)。在这之前,有关中国东部汛期降水(梅雨)年际变化的研究主要关注印度洋和热带太平洋海温异常的影响,而该研究则表明中国东部汛期降水异常(梅雨)同时也受到其上游北大西洋海温异常的影响,这为后期开展的大量有关大西洋海温异常影响东亚气候的研究有很好的启示作用。竺夏英等(2008)基于长江中下游地区10个观测站的入梅日期构建了一个区域入梅指数,他们同样也发现入梅日期早晚与前期1—4月的北大西洋中纬度海温呈显著的负相关关系。江淮梅雨入梅早晚除了与前期冬春季北大西洋海温异常有关外,也与前期中太平洋ENSO(CP-ENSO)的冷暖位相有关(汪靖等,2009),当前期冬季2月和春季呈现CP-ENSO暖(冷位相)时,梅雨建立偏晚(早),而CP-ENSO主要通过东亚-太平洋(EAP)遥相关型和热带西太平洋异常反气旋影响梅雨的建立。这些结果对中国梅雨的分析和预报十分有益(徐海明等,2001;竺夏英等,2007,2008)。

梅雨期降水量存在明显的年际变化,降水异常偏多或偏少可造成江淮流域严重的洪涝灾害或干旱,如1954年、1991年、1998年和2020年洪涝以及1958年和1994年干旱。江淮梅雨期降水量的年际变化既受到来自热带低纬度系统的影响,同时也受到中高纬天气系统的影响。何金海等(2006)发现频繁的东北冷涡活动具有显著的“气候效应”,即东北冷涡活动异常会引起季节平均气温和降水的异常,对梅雨期降水存在明显的作用。他们发现梅雨期东北冷涡与降水量存在显著的相关关系(图16),东北冷涡越强,梅雨期降水量越多,东北冷涡越弱,梅雨期降水量也偏少。东北冷涡影响江淮梅雨期降水的机制可概括如下:随着东北冷涡的加强南压,它与西伸的西北太平洋副热带高压相互作用使得我国江淮地区南侧对流层中高层气压梯度力加大,动能也随之增大,接着通过动能下传致使江淮以南地区西南低空急流形成,将大量的暖湿气流输送到江淮地区并与东北冷涡引导南下的干冷空气相互作用,形成“上干下湿”的不稳定层结,有利于梅雨锋的形成与维持,在上升运动的触发下,最终导致梅雨量偏多(图17)。2020年夏季,长江流域发生了重大的持续性暴雨与洪水灾害。其中一个重要原因就是东北冷涡不断地向南输送冷空气,并与北上的季风暖湿气流在长江流域相遇,造成了长江流域的多次强暴雨过程。这证实了东北冷涡对梅雨的气候效应。

除了上述梅雨期整个江淮流域降水多寡造成洪涝干旱以外,我国气象工作者还发现,即使在梅雨期降水正常的年份,降水分布的不均匀也可造成局部地区的洪涝干旱(朱乾根等,1992)。竺夏英等(2007)通过对江淮地区15个站江淮梅雨期(6—7月)降水的经验正交函数(EOF)分析,发现第一特征向量为前人主要讨论的江淮流域降水整体同位相的变化,而第二特征向量则反映了梅雨期降水的经向非均匀分布特征,即梅雨期降水型可明显分为南涝北旱和南旱北涝型(图18)。大多数南涝(旱)北旱(涝)年整个江淮地区的梅雨期降水量接近正常年份。当江淮梅雨期降水呈南涝北旱型时,同期梅雨期低层锋区和水汽辐合中心偏南、东亚副热带夏季风偏弱和西太平洋副热带高压和200 hPa南亚高压位置偏南;南旱北涝型时,情况相反。在此基础上,胡景高等(2013)进一步指出,我国江淮地区梅雨期降水空间分布可分为南部型、长江型和江淮型三种基本型态。在年际时间尺度上,梅雨期降水的南北反位相特征更加明显;而长江型梅雨期降水较其他两个型态而言相对独立。这些梅雨期降水量空间非均匀分布特征的揭示为国家气候中心梅雨监测指标体系的建立提供了科学依据。吴志伟等(2006)发现梅雨期降水量在时间上也存在非均匀特征,会出现“旱涝并存、旱涝急转”的现象,即梅雨期某一时段特别旱,而另一时段又特别涝,旱涝交替出现的情形。上述研究结果对梅雨区降水的精细化监测与预报提供了重要参考。

2.4 东亚季风与大气季节内振荡

大气季节内振荡(IntraSeasonal Oscillation,ISO)一般指时间尺度大于7~10 d而小于90 d的大气中所具有的准周期性的变化。20世纪70年代,大气季节内振荡被Madden and Julian(1971)首先在热带发现,并命名为Madden Julian Oscillation(MJO)(最近证实最早由中国学者北京大学谢义炳教授在1963年发现;Li et al.,2018)。人们后来发现,大气季节内振荡广泛存在于热带至中高纬度、对流层至平流层,是全球大气运动的基本特征之一。

大气季节内振荡能够显著影响东亚季风的建立和推进以及月季尺度内的“旱涝急转、旱涝并存”。早在20世纪80年代初,我校何金海与夏威夷大学Murakami和Nakazawa教授就合作开展了一系列有关亚洲季风的季节内振荡研究,揭示了40~50 d大气季节内振荡信号表现出显著的北传特征,阐明了瞬变波动影响季节内振荡北传的动力学机制(Murakami et al.,1984a),同时发现了季风中断与视热源和水汽汇的季节内振荡活动联系紧密(何金海等,1984;Murakami et al.,1984b)。随后,何金海和于新文(1986)进一步聚焦我国东部季风雨带,发现各纬带的水汽输送都存在不同周期的振荡特征,揭示了中国南海北部水汽向北传播输送能够影响中国大陆东部夏季风降水(图19),南海地区(平均纬度18°N)和22.5°N纬带上的水汽经向输送具有大约5 d的位相差。南海地区水汽输送40~50 d振荡的每一次增强过程均对应着一次我国东部大型天气过程。如5月中旬第一次增强过程对应南海季风建立,6月中下旬第二次增强过程对应长江流域的梅雨建立,7月底第三次增强对应着雨带在华北地区的稳定和维持。

除了南海地区水汽季节内尺度的输送对中国东部夏季風降水影响,He(1988)和He and Chen(1988)分别用观测诊断和数值模拟的方法论证了南半球中高纬度冷空气40~50 d季节内振荡活动能够通过越赤道气流影响中国东部夏季降水的季节内振荡变化,强调了与澳大利亚高压和马斯克林高压相联系的南半球冷空气活动是北半球夏季风活动的来源之一。如图20所示,南半球中高纬度温度的季节内振荡波谷超前于赤道上的南风异常,而越赤道南风气流又超前于南海地区的纬向西风异常。数值试验也证实了在有南半球冷空气活动下,经向风扰动存在显著的北传的特征(He et al.,1990;何金海和李俊,1991)。这种南北半球间在季节内尺度上的超前滞后关系证实了由澳洲冬季风和亚洲夏季风组成的亚澳季风系统在季节内尺度上的相互联系和影响。

He and Yang(1990)利用欧洲中心资料发现欧亚大陆中高纬度大气环流的季节内振荡对东亚夏季风降水也有显著影响。中高纬度正压结构的低频波动中的扰动低压异常向东传播,途经地中海、中亚,最后到达东亚沿岸,最终通过影响东亚夏季风槽从而调控东亚夏季风季节内降水变率。这种低频波动类似后来被发现的季节和年际尺度定常罗斯贝波,即丝绸之路波列(Lu et al., 2002; Enomoto et al., 2003)。此外,He et al.(2007b)还讨论了海温对大气季节内振荡的影响,他们利用非地转、斜压的动力理论模型进行了敏感性试验,发现气候态的高海温能激发更高频的天气尺度波动,而海温的正异常能够激发更大尺度、更低频的行星尺度波动,阐明了气候态海表温度和异常的海表温度各自对大气季节内振荡传播的影响。该结论也为全球变暖背景下海表温度影响大气季节内振荡的研究提供了新视角。

綜上,东亚季风受到来自不同源地大气季节内振荡的影响,然而,近年来越来越多的学者也开始认识到东亚副热带季风本身也可以作为北半球副热带的一个重要热源强迫(Zhu and Li,2016),在季节内尺度上对下游北美地区的气候变率产生重要影响(Yang et al.,2020)。

随着天气和气候预测技术的进一步发展,以大气季节内振荡信号为预报源的延伸期天气预报和短期气候预测已成为大气科学领域广泛关注的热点和前沿。针对东亚冬夏季风的季节内变率特征,He et al.(2011)揭示了冬季热带大气季节内振荡的两个主模态和东亚冬季地表气温的超前滞后关系,为东亚冬季气温延伸期预报提供了理论支撑;李文铠等(2014)强调了MJO的2~3位相和6~7位相对后期华南前汛期降水的影响,为华南前汛期降水的延伸期预报提供了科学依据;He et al.(2015)基于东亚地区30~60 d季节内振荡经向传播的特点,利用东亚副热带季风降水的前两个模态的组合,设计了表征季风雨带季节内向北推进的新指数(图21),研发了东亚副热带季风区延伸期监测和预测的方法,取得了良好的效果。

近年来,Zhu et al.(2015)利用拓展的最大协方差方法提取了随时间变化的预报因子场和预报量场时空耦合信息,融合了“过程预报过程”的统计预报思想,构建了多种基于时空投影法的延伸期预报模式(Spatial Temporal Projection Model,STPM)。STPM不仅能将传统的MJO指数统计预报时效提前5~10 d,还能够较好地模拟冬夏季热带对流异常分布,把热带对流异常分布的延伸期预报时效延长至25~30 d。同时,基于长期对东亚季风多尺度变异及其影响因子的理解和认识,挑选了适用于不同预报对象的预报因子,分别建立了中国夏季降水异常分布(Zhu and Li,2017a)、夏季地表温度及热浪(Zhu and Li,2018)、冬季地表温度与极端冷事件(Zhu and Li,2017b)、南海夏季风爆发过程(Zhu and Li,2017c)和西北太平洋群发台风(Zhu et al.,2017)等统计延伸期预报模式,均达到了15~20 d的预报时效,显示了可喜的预测技巧。

3 结语

从竺可桢、涂长望时期的“统计季风”,到叶笃正、陶诗言等的“环流季风”,再到当今的“物理季风”、“全球变暖下的季风”;从印度季风,到东亚季风、亚澳季风,再到全球季风(Wang and Ding,2008;Wang et al.,2018);季风研究不断推进,逐步深入,从未停歇。

季风作为自然奥秘的典型代表,吸引着我们不断探索的脚步,进一步加深其变化机理的认识、提升其预测水平,无论是过去、现在还是将来都是我们前进的动力和方向。未来季风研究的一大挑战是季风的时空多尺度预测,包括延伸期、季节、年际、年代际预测和季风变化预估以及季风暴雨、季风雨带等,预测水平的提升依赖新理论的发现、新方法的探索以及新工具的应用。此外,亚洲季风区作为强大的热源,可能对全球气候产生影响,这或许是未来季风研究的一大热点。

我国科学家是亚洲季风、特别是东亚季风研究的主力之一,在东亚季风研究方面具有显著的国际地位和影响,季风研究水平也位于国际前列。南京信息工程大学的季风研究团队作为国际季风研究的重要力量之一,将秉承传承发展、开拓创新的理念,始终坚守季风研究的前沿阵地,不断深化季风理论认识,为提升季风预测水平做出重要贡献。

参考文献(References)

常炉予,何金海,祁莉,等,2013.东亚与北美东部降水和环流季节演变差异及其可能机理分析[J].气象学报,71(6):1074-1088. Chang L Y,He J H,Qi L,et al.,2013.A study of the different characteristics of seasonal variations of the precipitation and large-scale circulation between East Asia and eastern North America and its possible mechanism[J].Acta Meteorol Sin,71(6):1074-1088.(in Chinese).

池艳珍,刘丹妮,何金海,等,2013.东亚-太平洋地区环流场和热力场由冬向夏转换的过程特征及其可能机制[J].高原气象,32(4):983-992. Chi Y Z,Liu D N,He J H,et al.,2013.Features of transformation on circulation and thermal fields over East Asia-Pacific regions from winter to summer and its possible mechanism[J].Plateau Meteor,32(4):983-992.(in Chinese).

Chi Y Z,Zhang F Q,Li W,et al.,2015.Correlation between the onset of the East Asian subtropical summer monsoon and the eastward propagation of the Madden-Julian oscillation[J].J Atmos Sci,72(3):1200-1214.

Enomoto T,Hoskins B J,Matsuda Y,2003.The formation mechanism of the Bonin high in August[J].Quart J Roy Meteor Soc,129(587):157-178.

He J H,1988.The transfer of physical quantities in a quasi-40-day periodic oscillation and its relation to the interaction between the northern and southern hemisphere circulation[J].Adv Atmos Sci,5(1):97-106.

何金海,于新文,1986.1979年夏季我国东部各纬带水汽输送周期振荡的初步分析[J].热带气象学报,2(1):9-16. He J H,Yu X W,1986.A preliminary analysis of the periodic oscillation in water vapour transportation crossing different latitudes over the east of China[J].J Trop Meteor,2(1):9-16.(in Chinese).

He J H,Chen L Z,1988.The Southern Hemisphere mid-latitude quasi-40-day periodic oscillation with its effect on the Northern Hemisphere summer monsoon circulation[J].Acta Meteorol Sin,2(3):333-339.

He J H,Yang S,1990.Meridional propagation of East Asian low-frequency mode and midlatitude low-frequency waves[J].Acta Meteorol Sin,4(5):537-544.

何金海,李俊,1991.澳大利亚冷空气活动影响东亚夏季风的过程——数值试验[J].气象学报,49(2):162-169. He J H,Li J,1991.Numerical experiment with processes for effect of Australian cold air activity on East-Asian summer monsoon[J].Acta Meteorol Sin,49(2):162-169.(in Chinese).

He J H,Liu B Q,2016.The East Asian subtropical summer monsoon:recent progress[J].J Meteor Res,30(2):135-155.

何金海,Murakami T,Nakazawa T,1984.1979年夏季亚洲季风区域40~50天周期振荡的环流及其水汽输送场的变化[J].南京气象学院学报,2:163-175. He J H,Murakami T,Nakazawa T,1984.Circulation with 40—50 day oscillation and changes in moisture transport over monsoon Asia in 1979 summer[J].J Nanjing Inst Meteor,2:163-175.(in Chinese).

He J H,Li J,Li Y P,1990.Numerical experiment with processes for effect of Australian cold air activity on East-Asian summer monsoon[J].Acta Meteorol Sin,4(1):52-59.

何金海,丁一汇,陈隆勋,1996a.亚洲季风研究的新进展:中日亚洲季风机制合作研究论文集[M].北京:气象出版社. He J H,Ding Y H,Chen L X,1996a.New progress in Asian monsoon studies:a collection of papers on Sino Japanese cooperation on Asian monsoon mechanism[M].Beijing:China Meteorological Press.(in Chinese).

何金海,朱乾根,Murakami M,1996b.TBB资料揭示的亚澳季风区季节转换及亚洲夏季风建立的特征[J].热带气象学报,12(1):34-42. He J H,Zhu Q G,Murakami M,1996b.The characteristics of seasonal transition and the establishment of Asian summer monsoon revealed by TBB data[J].J Trop Meteor,12(1):34-42.(in Chinese).

何金海,丁一汇,高辉,等,2001.南海夏季风建立日期的确定与季风指数[M].北京:气象出版社. He J H,Ding Y H,Gao H,et al.,2001.Determination of the establishment date of the South China Sea Summer Monsoon and monsoon index[M].Beijing:China Meteorological Press.(in Chinese).

何金海,温敏,施晓晖,等,2002.南海夏季風建立期间副高带断裂和东撤及其可能机制[J].南京大学学报(自然科学版),(3):318-330. He J H,Wen M,Shi X H,et al.,2002.Splitting and eastward withdrawal of the subtropical high belt during the onset of the South China sea summer monsoon and their possible mechanism[J].J Nanjing Univ Nat Sci Ed,(3):318-330.(in Chinese).

He J H,Xu H M,Wang L J,et al.,2003.Climatic features of SCS summer monsoon onset and its possible mechanism[J].Acta Meteorol Sin,17:19-34.

何金海,吴志伟,江志红,等,2006.东北冷涡的“气候效应”及其对梅雨的影响[J].科学通报,51(23):2803-2809. He J H,Wu Z W,Jiang Z H,et al.,2006.“Climate effect” of the northeast cold vortex and its influences on Meiyu[J].Chin Sci Bull,51(23):2803-2809.(in Chinese).

He J H,Wen M,Ding Y H,et al.,2006a.Possible mechanism of the effect of convection over Asian-Australian “land bridge” on the East Asian summer monsoon onset[J].Sci China Ser D:Earth Sci,49(11):1223-1232.

He J H,Wen M,Wang L J,et al.,2006b.Characteristics of the onset of the Asian summer monsoon and the importance of Asian-Australian “land bridge”[J].Adv Atmos Sci,23(6):951-963.

何金海,赵平,祝从文,等,2008.关于东亚副热带季风若干问题的讨论[J].气象学报,66(5):683-696. He J H,Zhao P,Zhu C W,et al.,2008.Discussions on the East Asian subtropical monsoon[J].Acta Meteorol Sin,66(5):683-696.(in Chinese).

He J H,Sun C H,Liu Y Y,et al.,2007a.Seasonal transition features of large-scale moisture transport in the Asian-Australian monsoon region[J].Adv Atmos Sci,24(1):1-14.

He J H,Yu J J,Shen X Y,2007b.Impacts of SST and SST anomalies on low-frequency oscillation in the tropical atmosphere[J].Adv Atmos Sci,24(3):377-382.

He J H,Lin H,Wu Z W,2011.Another look at influences of the Madden-Julian Oscillation on the wintertime East Asian weather[J].J Geophys Res,116(D3):D03109.

He J H,Chang L Y,Chen H,2015.Meridional propagation of the 30 to 60-day variability of precipitation in the East Asian subtropical summer monsoon region:Monitoring and prediction[J].Atmosphere-Ocean,53(2):251-263.

胡景高,周兵,徐海明,2013.近30年江淮地區梅雨期降水的空间多型态特征[J].应用气象学报,24(5):554-564. Hu J G,Zhou B,Xu H M,2013.Characteristics of multi-patterns of precipitation over the Yangtze-Huaihe basins during Meiyu season in recent 30 years[J].J Appl Meteor Sci,24(5):554-564.(in Chinese).

Hu M,Xu H M,Deng J C,et al.,2020.Influence of the southwards shift of North American continent on North American monsoon[J].Int J Climatol.doi.org/10.1002/joc.6572.

黄娇文,何金海,徐海明,等,2016.东亚季风环流季节转变与亚太热力场之间的联系及其可能机理[J].热带气象学报,32(6):817-830. Huang J W,He J H,Xu H M,et al.,2016.Relationship between the seasonal transition of East Asian monsoon circulation and Asia Pacific thermal field and possible mechanisms[J].J Trop Meteor,32(6):817-830.(in Chinese).

Li J P,Zeng Q C,2003.A new monsoon index and the geographical distribution of the global monsoons[J].Adv Atmos Sci,20(2):299-302.

Li T,Wang L,Peng M,et al.,2018.A paper on the tropical intraseasonal oscillation published in 1963 in a Chinese journal[J].Bull Am Meteor Soc,99(9):1765-1779.

李文铠,何金海,祁莉,等,2014.MJO对华南前汛期降水的影响及其可能机制[J].热带气象学报,30(5):983-989. Li W K,He J H,Qi L,et al.,2014.The influence of the madden-Julian oscillation on annually first rain season precipitation in South China and its possible mechanism[J].J Trop Meteor,30(5):983-989.(in Chinese).

Liu B Q,Wu G X,Mao J Y,et al.,2013.Genesis of the South Asian high and its impact on the Asian summer monsoon onset[J].J Climate,26(9):2976-2991.

Lu R Y,Oh J H,Kim B J,2002.A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer[J].Tellus A:Dyn Meteorol Oceanogr,54(1):44-55.

Madden R A,Julian P R,1971.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].J Atmos Sci,28(5):702-708.

Murakami T,Nakazawa T,He J H,1984a.On the 40—50 day oscillations during the 1979 Northern Hemisphere summer[J].J Meteor Soc Japan,62(3):440-468.

Murakami T,Nakazawa T,He J H,1984b.On the 40—50 day oscillation during the 1979 Northern Hemisphere summer.Part II:heat and moisture budget[J].J Meteor Soc Japan,62(3):469-484.

Qi L,He J H,Zhang Z Q,et al.,2008.Seasonal cycle of the zonal land-sea thermal contrast and East Asian subtropical monsoon circulation[J].Chin Sci Bull,53(1):131-136.

任珂,何金海,祁莉,2010.東亚副热带季风雨带建立特征及其降水性质分析[J].气象学报,68(4):550-558. Ren K,He J H,Qi L,2010.The establishment characteristics of the East Asian subtropical monsoon rain-belt and an analysis of its nature of precipitation[J].Acta Meteor Sin,68(4):550-558.(in Chinese).

Tao S Y,Chen L X,1987.A review of recent research on the East Asian summer monsoon in China[M]//Monsoon Meteorology.Oxford:Oxford University Press:60-92.

Wang B,LinHo,2002.Rainy season of the Asian-Pacific summer monsoon[J].J Climate,15(4):386-398.

Wang B,Ding Q H,2008.Global monsoon:dominant mode of annual variation in the tropics[J].Dyn Atmos Ocean,44(3/4):165-183.

Wang B,Li J,Cane M A,et al.,2018.Toward predicting changes in the land monsoon rainfall a decade in advance[J].J Climate,31(7):2699-2714.

汪靖,何金海,刘宣飞,等,2009.江淮梅雨建立的年际变化及其前期强影响信号分析[J].科学通报,54(1):85-92. Wang J,He J H,Liu X F,et al.,2009.Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal[J].Chin Sci Bull,54(1):85-92.(in Chinese).

Wang L J,He J H,Guan Z Y,2004.Characteristics of convective activities over Asian-Australian “land bridge” areas and its possible factors[J].Acta Meteor Sin,18(4):441-454.

Wang L J,Guan Z Y,He J H,et al.,2007.Comparison of the double summer monsoon troughs over East Asia[J].Acta Meteor Sin,21(1):75-86.

王丽娟,何金海,司东,等,2010.东北冷涡过程对江淮梅雨期降水的影响机制[J].大气科学学报,33(1):89-97. Wang L J,He J H,Si D,et al.,2010.Analysis of impacts of northeast cold vortex processes on Meiyu rainfall period over Yangtze-Huaihe River basin[J].Trans Atmos Sci,33(1):89-97.(in Chinese).

Wang L J,Dai A G,Guo S H,et al.,2017.Establishment of the South Asian high over the Indo-China Peninsula during late spring to summer[J].Adv Atmos Sci,34(2):169-180.

溫敏,何金海,肖子牛,2004.中南半岛对流对南海夏季风建立过程的影响[J].大气科学,28(6):864-875. Wen M,He J H,Xiao Z N,2004.Impact of the convection over the indo-China peninsula on the onset of SCS summer monsoon[J].Chin J Atmos Sci,28(6):864-875.(in Chinese).

吴志伟,何金海,李建平,等,2006.长江中下游夏季旱涝并存及其异常年海气特征分析[J].大气科学,30(4):570-577. Wu Z W,He J H,Li J P,et al.,2006.The summer drought-flood coexistence in the middle and lower reaches of the Yangtze River and analysis of its air-sea background feathers in anomalous years[J].Chin J Atmos Sci,30(4):570-577.(in Chinese).

徐海明,何金海,董敏,2001.江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系[J].气象学报,59(6):694-706. Xu H M,He J H,Dong M,2001.Interannual variability of the Meiyu onset and its association with North Atlantic oscillation and SSTA over North Atlatic[J].Acta Meteorol Sin,59(6):694-706.(in Chinese).

Xu H M,He J H,Dong M,2001.Effect of the Indian peninsula on the course of the Asian tropical summer monsoon[J].Acta Meteorol Sin,15(3):308-322.

Xu H M,He J H,Wen M,et al.,2002.A numerical study of the effect of the Indo-China peninsula on the establishment and maintenance of the South China Sea summer monsoon[J].Chin J Atmos Sci,26(3):252-266.

Yang Y,Zhu Z W,Li T,et al.,2020.Effects of western Pacific intraseasonal convection on surface air temperature anomalies over North America[J].Int J Climatol,40(6):2913-2923.

曾庆存,李建平,2002.南北两半球大气的相互作用和季风的本质[J].大气科学,26(4):433-448. Zeng Q C,Li J P,2002.Interaction between the Northern and Southern Hemispheric atmospheres and the essence of monsoon[J].Chin J Atmos Sci,26(4):433-448.(in Chinese).

Zhao P,Zhang R,Liu J,et al.,2007a.Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall[J].Clim Dyn,28:797-811.

Zhao P,Zhang R H,Liu J P,et al.,2007b.Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall[J].Clim Dyn,28(7/8):797-811.

Zhu Q G,He J H,Wang P X,1986.A study of circulation difference between East-Asian and Indian summer monsoon with their interaction[J].Adv Atmos Sci,3(4):466-477.

朱乾根,林锦瑞,寿绍文,等,1992.天气学原理和方法[M].北京:气象出版社. Zhu Q G,Lin J R,Shou S W,et al.,1992.The fundamentals and methods of synoptic meteorology[M].Beijing:China Meteorological Press.(in Chinese).

竺夏英,何金海,吴志伟,2007.江淮梅雨期降水经向非均匀分布及异常年特征分析[J].科学通报,52(8):951-957. Zhu X Y,He J H,Wu Z W,2007.Meidional seesaw-like distribution of the Meiyu rainfall over the Changjiang-Huaihe River Valley and characteristics in the anomalous climate years[J].Chin Sci Bull,52(8):951-957.(in Chinese).

竺夏英,何金海,吳志伟,2008.长江中下游入梅指数及早晚梅年的海气背景特征[J].大气科学,32(1):113-122. Zhu X Y,He J H,Wu Z W,2008.Regional Meiyu onset index over the middle and lower reaches of the Yangtze River and the associated ocean-atmospheric features for the early/late Meiyu onset years[J].Chin J Atmos Sci,32(1):113-122.(in Chinese).

朱志伟,何金海,2013.东亚副热带季风的季节转变特征及其可能机理[J].热带气象学报,29(2):245-254. Zhu Z W,He J H,2013.Seasonal transition of east Asian subtropical monsoon and its possible mechanism[J].J Trop Meteor,29(2):245-254.(in Chinese).

Zhu Z W,Li T,2016.A new paradigm for continental U.S.summer rainfall variability:Asia-North America teleconnection[J].J Climate,29(20):7313-7327.

Zhu Z W,Li T,2017a.The statistical extended-range (10—30-day) forecast of summer rainfall anomalies over the entire China[J].Clim Dyn,48(1/2):209-224.

Zhu Z W,Li T,2017b.Statistical extended-range forecast of winter surface air temperature and extremely cold days over China[J].Quart J Roy Meteor Soc,143(704):1528-1538.

Zhu Z W,Li T,2017c.Empirical prediction of the onset dates of South China Sea summer monsoon[J].Clim Dyn,48(5/6):1633-1645.

Zhu Z W,Li T,2018.Extended-range forecasting of Chinese summer surface air temperature and heat waves[J].Clim Dyn,50(5/6):2007-2021.

Zhu Z W,Li T,Hsu P C,et al.,2015.A spatial-temporal projection model for extended-range forecast in the tropics[J].Clim Dyn,45(3/4):1085-1098.

Zhu Z W,Li T,Bai L,et al.,2017.Extended-range forecast for the temporal distribution of clustering tropical cyclogenesis over the western North Pacific[J].Theor Appl Climatol,130(3/4):865-877.

This paper reviews the main course of monsoon research in Nanjing University of Information Science and Technology (NUIST) since the founding of NUIST 60 years ago,and the important achievements in the Asian monsoon,especially in the East Asian monsoon.From 1980s to early 2000s,the successful implementation of the PRC-US,PRC-Japan cooperated monsoon research projects and the “South China Sea Monsoon Experiment” has greatly promoted the formation and growth of the monsoon research team in NUIST,and also contributed to a series of innovative achievements.First,the atmospheric circulation differences between the East Asian monsoon and the Indian monsoon were revealed,and the clear concept of the East Asian subtropical monsoon was proposed.Second,an earlier onset of the East Asian subtropical summer monsoon than the South China Sea summer monsoon with the former independent of the latter was found.Third,the Asian-Australian “land bridge” was identified as the region with the most active convections in the Asian monsoon region in the Northern Hemisphere in spring,and the associated convection occurrence and northward advancement play a vital role in the onset of the East Asian summer monsoon.Fourth,the northward-propagation characteristics and mechanism of the summer intraseasonal oscillation over the East Asian monsoon region were unraveled and successfully applied to the extended-range forecast.These innovative achievements have made great contributions to the monsoon research.In recent years,NUIST has been adhering to the idea of “Open Development and Joint Development” and vigorously introducing high-level talents,which further contribute to the monsoon research.As one of the important teams dedicated to international monsoon research,NUIST monsoon research team will keep deepening the understanding of monsoon theory and improving the level of monsoon forecast.

Asian monsoon;South China Sea summer monsoon;East Asian subtropical summer monsoon;Meiyu;intraseasonal oscillation

doi:10.13878/j.cnki.dqkxxb.20200903001

(责任编辑:张福颖)

猜你喜欢

梅雨
我爱雨
时间轴上的彩线
黄梅时节家家雨
送别
梅雨或成日本“第五季”
定风波·初逢梅雨
又到梅雨季
从诗人笔下品味江南梅雨
以诗为伞,撑出梅雨江南