APP下载

东亚夏季风与澳洲冬季风强弱互补变化联系及其异常环流特征

2020-12-11陈蔚管兆勇杨华栋

大气科学学报 2020年5期

陈蔚 管兆勇 杨华栋

摘要 利用NCEP/NCAR再分析资料、Hadley中心海温资料及CMAP降水资料等,通过亚澳季风联合指数挑选异常年份,对东亚夏季风和澳洲冬季风强度反相变化特征进行研究。结果表明,当东亚夏季风偏强、澳洲冬季风偏弱时,南北半球中低纬地区都出现了复杂的异常环流系统。在热带地区对流层低层,西北太平洋为异常反气旋式环流系统所控制,与南太平洋赤道辐合带的异常反气旋环流在赤道地区发生耦合,形成赤道异常东风,而在南北印度洋上则存在两个异常气旋式环流系统。在这两对异常环流之间的海洋性大陆地区,出现赤道以南为反气旋环流而赤道以北为气旋式环流。在东亚季风区,东南沿海的东侧海洋上存在反气旋异常,中国东南地区受异常反气旋西南侧的东南风影响。此外,澳洲北部受异常西风影响。这就形成了东亚夏季风偏强、澳洲冬季风偏弱的情形,从而东亚夏季风和澳洲冬季风活动出现了强弱互补的变化特征。当东亚夏季风偏弱、澳洲冬季风偏强时,南北半球的环流特征则出现与上述相反的环流特征。总体而言,当东亚夏季风偏强、澳洲冬季风偏弱时,东亚—澳洲季风区在南北半球呈现出不同的气候异常分布特征,即北半球降水北少南多、气温北高南低,南半球降水西多东少、气温西高东低。

关键词 东亚夏季风;澳洲冬季风;强弱互补;环流特征;北半球夏季

近年来,在全球变暖的背景下,我国灾害性天气气候事件频发,而这些事件的发生通常与季风活动异常有关。亚澳季风是全球季风的重要组成部分,其主要活动于亚澳地区[40°~160°E,30°S~30°N](Lau and Wu,1999,滕代高等,2005)。亚澳季风区覆盖了全球近三分之一的热带及副热带地区(Wang and Ding,2006;丛菁等,2007),对全球区域气候有着深远影响(Lau and Weng,2001;Zhou et al.,2009)。亚澳季风,尤其是亚洲夏季风,从太平洋和印度洋携带充沛的水汽到陆地并形成降水。由于降水的多寡则可引起大范围的旱涝灾害,因而可给亚澳季风区经济、工农业生产、人类活动带来重大影响(Yang et al.,2002;顾雷等,2008;Xi et al.,2015)。

亞澳季风区主要由东亚季风、澳洲季风和南亚季风三部分组成,其中澳洲季风与东亚季风可通过海洋性大陆区域的越赤道气流和大气侧向耦合构成东亚-澳洲季风体系(Manton and McBride,1992;Matsumoto,1992)。然而,由于海陆配置差异以及热带海洋信号的影响,东亚季风和澳洲季风会各自成为相对独立的区域气候系统(Ding et al.,2010;Feng et al.,2011)。从流场结构来看,东亚夏季风具有很明显的副热带特征,盛行经向气流和经向风垂直切变,即低层南风,高层北风,且纬向气流高低层配置相对复杂,经向跨度大,维持时间长。相比之下,澳洲冬季风属纬向型热带季风,盛行纬向气流和纬向风垂直切变,且高低层纬向气流呈反相配置,即低层东风,高层西风,经向跨度小,维持时间短(陈际龙和黄荣辉,2006,2007)。

东亚夏季风活动具有显著的年际和年代际变化特征,这不仅与反Walker环流和中高纬度西风带系统变动有关(卢楚翰等,2013),也与东亚地区海-陆-气相互作用和远程海洋热力强迫(如ENSO和印度洋偶极子事件(India Ocean Dipole,IOD))等有重要关联(Saji et al.,1999;Xu et al.,2019),因此东亚夏季风系统活动复杂多变。当东亚夏季风活动异常时,西太副高强度会发生改变,东亚地区会出现显著的降水异常。而西太副高的季节性移动也对东亚地区雨带分布起着重要作用(Matsumura et al.,2015;钱代丽和管兆勇,2018,2019)。来自欧亚大陆东传的Rossby波将能量向下游输送,以及西太平洋暖池海温异常激发出向高纬传播的Rossby波,都可促使西太副高呈现出异常变化,其主要表现为南北进退和东西振荡,进而将影响东亚雨带的位置分布(尹志聪等,2011;王国栋等,2019)。

位于南半球的澳洲冬季风年际变化会受到大尺度海平面气压场、海表温度以及云团变化等多方面影响(Feng et al.,2010),一方面澳大利亚高压和马斯克林高压作为南半球最重要的环流系统,其强度可以直接影响北部的越赤道气流,进而影响南北半球季风活动(陈蔚和管兆勇,2016;范倩莹等,2018);另一方面,热带海洋信号对澳洲季风活动也存在显著影响,当El Nio发生时,澳洲北部和东北部降水偏少,La Nia发生时,则相反(郝立生等,2012)。IOD与澳洲降水也存在显著负相关(Ashok et al.,2003)。另外,位于南半球中高纬的环状模作为中高纬大气环流变化的一个很好的指示因子,也与澳洲区域降水异常存在密切关系(Feng et al.,2010)。

之前已将东亚夏季风和澳洲冬季风作为一个整体进行研究,针对两者之间的相互作用进行了讨论分析(Chen and Guan,2017;Chen et al.,2019,2020),发现东亚夏季风和澳洲冬季风具有协同变化的特征,也就是当澳洲冬季风偏强(弱)时,东亚夏季风偏强(弱),这是一种亚澳季风协同变化的主要模态。然而,东亚夏季风和澳洲冬季风也存在此强彼弱的现象。由于澳洲冬季风与东亚夏季风可被看成两个独立系统,在一定条件下,两者并不会总是发生同强同弱的变化。那么,在强弱互补联系发生时,其环流变化有何特征?分别受到什么影响呢?揭示这一现象及背后的物理机制将具有重要的科学意义和应用参考价值。

1 资料与方法

资料:1)Hadley中心的空间水平分辨率为1°×1°的全球海温逐月海表温度格点资料(Rayner,2003);2)美国国家海洋局(NOAA)研究中心提供的CPC Merged Analysis of Precipitation(CMAP)全球月平均降水资料,其分辨率2.5°×2.5°(Schneider,2011);3)NOAA提供的Interpolated Outgoing Longwave Radiation(OLR)全球月平均资料,其分辨率2.5°×2.5°(Liebmann,1996);4)NCEP/NCAR再分析资料,其变量包括:月平均的17层风场、17层等压面上气温、12层等压面上的垂直速度,湿度场以及地面气压等。资料的水平分辨率为2.5°×2.5°(Kalnay et al,1996)。资料时间长度为1979年1月—2018年12月。夏季为6—8月,季节划分均相对于北半球而言。下文中所述物理量的“异常”或“距平”均为与40 a夏季平均的差值,40 a夏季平均是指某变量经过夏季92 d平均后再进行40 a平均。

主要采用合成分析、相关分析等方法。运用t检验对风场距平等变量场合成平均以及相关分析进行显著性检验。

3 东亚夏季风和澳洲冬季风强弱互补变化时气候异常特征

季风环流在调制东亚季风区和澳洲季风区降水变化中起着关键作用(Chen and Pfaendtner,1993;Yang et al.,2007)。这里对东亚夏季风和澳洲冬季风强弱互补年份的降水、OLR和地表气温进行差值合成(图2)。由图2可见,无论是降水还是地表气温异常均明显地与季风环流异常变化有关。

当东亚夏季风偏强,澳洲冬季风偏弱时,北半球西太平洋赤道至热带区域,降水大范围偏多,在(120°E,15°N)处,降水异常可达1.6 mm/d之上。30°N以北地区,水汽出现显著辐散,降水异常达到-1.6 mm/d之上(大部分区域通过置信度为90%的显著性检验;图2a)。中国受到异常水汽环流输送的影响,长江以南地区降水偏少,长江以北的中国东部沿海地区降水偏多。南半球的SPCZ(South Pacific Convergence Zone,南太平洋辐合带)地区降水显著偏少,这与该区域逆时针水汽环流及辐散运动有关。在印度洋上,南北半球气候变动受异常气旋式环流的影响,降水也出现显著偏多。降水异常分布与OLR(Outgoing Longwave Radiation,发射长波辐射)异常变化有很好的对应,即OLR正异常区降水偏少,OLR负异常区降水偏多(图2b)。在北半球西太平洋热带地区为OLR负异常区,OLR负异常中心位于海洋性大陆赤道区域,表示该区域对流活动旺盛,有利于降水偏多形成;而在副热带的黑潮延伸区,OLR为显著正异常区域,正值中心达到8 W/m2,对流偏弱,与降水偏少区相对应。另外在南半球可以明显地看到,从南印度洋向东南延伸至澳洲南部区域,存在一条狭长的OLR负值带,解释了澳洲区域降水的偏多现象。

东亚夏季风和澳洲冬季风活动异常还表现在地表气温异常上(图2c)。由图2c可见,北半球西太平洋低纬地区气温偏冷,30°N以北以及青藏高原气温偏高,在日本北部出现高温中心,达到0.5 ℃以上。而在南半球受其上空异常反气旋環流和周边海域海温异常的共同影响,SPCZ地区气温略有偏低,南印度洋和澳洲中部的沙漠地区气温则偏高。总体来说,海洋上2 m处的气温异常与SSTA分布类似(图4),说明海洋与大气间存在明显的变化联系。

当东亚夏季风偏弱,澳洲冬季风偏强时,上述情形相反。

4 东亚夏季风和澳洲冬季风强弱互补变化与环流异常

当东亚夏季风和澳洲冬季风活动发生此强彼弱变化时,大气环流呈现非常独特的分布型态。

当东亚夏季风偏强,澳洲冬季风偏弱时(图3a),对流层低层850 hPa上,在SPCZ至赤道地区以及热带西北太平洋为异常反气旋式环流系统,两者在赤道西太平洋发生侧向耦合,有利于赤道异常东风的维持。在南北半球的印度洋上也存在一对异常气旋环流,加强了赤道西风异常。赤道东风和赤道西风在海洋性大陆地区发生汇合,形成辐合运动,有利于该地区降水异常偏多。同时在海洋性大陆地区,赤道以南为逆时针型异常反气旋系统,而赤道以北为顺时针型异常气旋系统。在对流层低层,P-J/EAP型遥相关(Pacific-Japan Pattern/East Asia-Pacific Teleconnection Pattern)可建立这一气旋式环流与其东北方向上临近的反气旋异常间的联系(Huang,1987;Nitta,1987;Guan and Yamagata,2003)。由此,该系统与西北太平洋显著的反气旋异常环流发生耦合,有利于中国东南沿海出现南风扰动,此时[v′850]*Box-B>0,东亚夏季风偏强,该异常南风气流主要来自西北太平洋地区异常反气旋环流南侧的东南风异常。相比之前所揭示的东亚夏季风和澳洲冬季风协同变化时(Chen and Guan,2017),来自西太平洋上的异常反气旋的西北侧则主要呈西南向和正南向的气流是非常不同的。在南半球,澳洲上空为异常气旋式环流,盛行西风气流,-[u′850]*Box-A<0,不利于澳洲冬季风增强,但利于I*AAM取得较小的数值。由此可以发现,东亚夏季风偏强时,澳洲冬季风却减弱,即两个季风系统出现了强度互补的变化特征。

在200 hPa(图3b)上,北半球的副热带地区出现了异常气旋式环流运动,中国东南沿海为异常北风扰动控制,与图3a对比,大气环流呈现斜压结构。而在南半球澳洲上空仍为显著的异常气旋式环流,在20°S形成了异常西风,高低层一致,进一步表明环流斜压性减弱,澳洲冬季风显著偏弱。在海洋性大陆北半球区域也为平直的西风异常气流控制,而南半球区域则为异常反气旋系统。

正如上文所提及,控制东亚夏季风和澳洲冬季风活动的西太副高和澳洲冷高压位置都向中纬地区略有偏移,这一点从海平面气压场(图3c)上也可以清楚地看到,西太副高强度变强,而澳洲冷高压强度变弱,从而导致东亚夏季风偏强,澳洲冬季风偏弱,南北半球季风系统强度出现反相变化特征。在海洋性大陆区域海平面气压也有所降低,与异常气旋式环流系统一致,有利于该区域降水增多。

5 东亚夏季风和澳洲冬季风强弱互补变化与热力强迫

降水与气温异常的形成与非绝热强迫异常及由此导致的环流异常有关。为揭示东亚夏季风和澳洲冬季风环流异常的物理成因,这里分析海温异常和大气热力强迫。

5.1 海温异常强迫

异常海温变化可产生异常热力强迫并通过Gill/Matsuno响应(Matsuno,1966;Gill,1980)激发环流系统异常,而大气异常热力状况也有利于海温异常分布的形成和维持。

当东亚夏季风偏强,澳洲冬季风偏弱时(图4),赤道西太平洋上的海温呈现冷暖间隔分布的现象。在海洋性大陆赤道区域和180°附近存在冷海温区,其可能与赤道异常东风导致偏冷海水涌升有关。这主要因为异常东风作用于海面,可在赤道地区产生向极的科氏力,引起赤道上海水辐散,从而导致下层较冷海水涌升所致。同时因为海温偏冷,大气受到冷却,导致对流层低层大气辐散,有利于海面海水蒸发,通过风-蒸发-海温(Wind-Evaporation-SST Feedbacks,以下简称WES)反馈机制,可使得冷海温维持(Xie and Philander,1994)。中国东南沿海及其附近的西北太平洋地区存在显著的冷异常海温区域。由于此区域处于东风区,WES机制对该区域冷海温维持有利。另一方面,由于南海地区存在气旋性环流异常,海温偏低现象的维持亦受到降水异常增多,对短波辐射起阻挡作用有关。当然此区域的冷海温分布也可能与其上空的气温异常偏低有关(图2c),大气对海洋存在着异常冷却作用。

日本附近的偏暖海温则与其上空的异常反气旋环流有关。由于科氏力的作用,这个异常反气旋环流将会导致暖海水向西北太平洋35°N附近辐聚,有利于该区域海表海水暖异常。且因为异常反气旋的下沉作用,海表附近的太阳辐射偏强,导致海洋吸收更多的太阳辐射,有利于海温异常偏高的维持。同时这个异常反气旋南侧的东风异常,有利于南侧冷海水涌升,从而利于冷海温的维持(图4)。而这种冷海温异常强迫可导致850 hPa上中国东南沿海低层辐散(图3a),并进而导致副热带异常反气旋向西延伸,加强了东亚夏季风([v′850]*Box-B>0)。

在南半球热带地区的巴布亚新几内亚东北方向,海温异常偏暖,其与该地区反气旋性环流异常有关。同时偏暖中心的存在,有利于其西南侧澳洲大陆上空异常气旋性涡度的形成,因而利于澳洲冬季风偏弱(图3a)。同时,还可以看到,澳洲大陆北部附近海域海温偏冷,这不仅可能与澳洲冬季风偏弱时,其上空的西北风造成离岸流所致异常涌升有关,还可能与大气异常热力状况有关。另外在印度洋上也存在冷海温异常分布,这些与南北半球异常气旋环流有关。

5.2 大气热源强迫

上述分析说明,东亚夏季风和澳洲冬季风系统活动强弱互补变化时,海温异常受到了大气环流异常的影响,反过来,海温异常也可强迫大气做出响应,从而造成大气非绝热加热异常在东亚夏季风加强和澳洲冬季风减弱中起到重要作用(图5)。

当东亚夏季风偏强,澳洲冬季风偏弱时,大气热源出现显著异常。在赤道太平洋至赤道印度洋地区,视热源为正(图5a),这主要与大气异常上升导致潜热释放增多有关(图5b),还与气柱中的净辐射加热有关(图5c)。同时视热源和视水汽汇的正值区由赤道印度洋向南北半球延伸,这与南北印度洋降水显著增多导致潜热释放偏多有关。根据Gill理论(Gill,1980),赤道地区的非绝热加热将激发Kelvin波,利于赤道东风的产生和维持,同时在加热源的西北侧激发出Rossby波,有利于其西北侧的南海地区形成气旋性环流异常(图3a)。

在北半球(150°E,30°N)附近的西北太平洋上,视水汽汇出现了显著的大范围负异常分布,数值达到了-50 W/m2以上(图5b),这可能与该区域降水显著不足导致潜热释放减少,大气受到异常冷却有关。尽管在(150°E,30°N)附近存在弱的暖海温,但大气的异常冷却仍是主导的。这个冷却对其西北侧的异常反气旋环流的形成和维持有利。另外注意到,在120°E以东,从菲律宾以东向东北延伸至东亚中高纬地区视热源和视水汽汇呈现“+-+”分布,在数值上更为显著,表明在北半球环流异常可能受到EAP/PJ型遥相关影响(Huang,1987;Nitta,1987)。在南半球,澳洲北部存在负异常分布,其与海温异常分布相配合,利于澳洲北部反气旋性环流异常的维持。

有意思的是,潜热释放异常在东亚夏季风和澳洲冬季风强弱互补关系中起到非常重要的作用。这是因为在[v′850]*Box-B>0和[u′850]*Box-A>0的形成中,环流异常的维持由图5a所示的分布特征所决定。然而,在扣除潜热释放后,西北太平洋和南印度洋至澳洲大陆上空仍然存在非绝热加热异常,但与图2a所示的主要大值区的符号相反。由图5c知,热力异常分布区域主要集中在副热带及中纬度地区,说明即使没有降水异常造成的潜热释放,东亚夏季风和澳洲冬季风环流仍可能出现异常。在(150°E,30°N)处的正的非绝热加热异常,由式(3)—(5)可知,异常加热主要包括暖海温对大气的湍流加热,长波辐射加热和下沉运动及暖平流引起的动力加热。在澳洲东北侧的SPCZ地区(图5c),存在显著的非绝热加热不利于其西南侧异常反气旋的形成和维持。

6 结论

东亚夏季风和澳洲冬季风存在同强同弱(Chen and Guan,2017)和强弱互补两种情形。本文利用东亚-澳洲季风联合指数IAAM,挑选出东亚夏季风和澳洲冬季风强度互补变化的年份,进行差值合成分析。得到如下结论:

当东亚夏季风偏强,澳洲冬季风偏弱时,在SPCZ至赤道地区以及热带西北太平洋为异常反气旋式环流系统,两者在赤道西太平洋发生耦合,有利于赤道异常东风的维持。在南北半球的印度洋上则存在一对异常气旋性环流。在这两对系统之间的海洋性大陆地区,赤道以南为异常反气旋式系统,而赤道以北为异常气旋式系统。南海及菲律宾以东地区的气旋性环流与西北太平洋显著的反气旋异常环流的存在共同有利于中国东南沿海出现东南风扰动,[v′850]*Box-B>0,西太副高异常偏强偏北,东亚夏季风偏强。在南半球,澳洲上空为异常气旋式环流,澳洲冷高压偏弱,盛行西风气流,[u′850]*Box-A>0,不利于澳洲冬季风增强。也就出现了东亚夏季风偏强时,澳洲冬季风却减弱的强弱互补变化特征。

澳洲冬季风和东亚夏季风环流系统强弱互补变化也与非绝热加热异常关系密切。在海洋性大陆赤道地区,正的加热异常自东南沿海延伸至160°E附近。这一加热可激发Kelvin波,引起和维持赤道地区的东风异常,同时激发出南海上空的Rossby波,引起南海上空850 hPa上的气旋性环流,并通过EAP/PJ型遥相关加强30°N处西北太平洋上的反气旋环流。这个反气旋环流的西南侧的东南风扰动导致东亚夏季风在中国东部增强。在南半球,澳洲北部存在异常大气冷却,其与海温冷异常分布相配合,利于澳洲北部反气旋性環流异常的维持;而澳洲东北侧的SPCZ地区存在显著的海温偏暖以及大气异常冷却,有利于其西南侧澳洲大陆上空异常气旋性涡度的形成,此时澳洲上空西风偏强,澳洲冬季风偏弱。

总体来说,东亚夏季风和澳洲冬季风此强彼弱变化时,南北半球呈现出非常有特点的气候异常分布。当东亚夏季风偏强、澳洲冬季风偏弱时,西北太平洋降水北少南多,气温北高南低,而在南半球印度洋至澳洲地区降水偏多,气温偏高,SPCZ地区则降水偏少,气温偏低。

参考文献(References)

Ashok K,Guan Z Y,Yamagata T,2003.A look at the relationship between the ENSO and the Indian Ocean dipole[J].J Meteor Soc Japan,81(1):41-56.

陈际龙,黄荣辉,2006.亚澳季风各子系统气候學特征的异同研究Ⅰ.夏季风流场结构[J].大气科学,30(6):1091-1102. Chen J L,Huang R H,2006.The comparison of climatological characteristics among Asian and Australian monsoon subsystems.part Ⅰ.the wind structure of summer monsoon[J].Chin J Atmos Sci,30(6):1091-1102.(in Chinese).

陈际龙,黄荣辉,2007.亚澳季风各子系统气候学特征的异同研究Ⅱ.夏季风水汽输送[J].大气科学,31(5):766-778. Chen J L,Huang R H,2007.The comparison of climatological characteristics among Asian and Australian monsoon subsystems.part Ⅱ:water vapor transport by summer monsoon[J].Chin J Atmos Sci,31(5):766-778.(in Chinese).

Chen T,Pfaendtner J,1993.On the atmospheric branch of the hydrological cycle[J].J Climate,6(1):161-167.

陈蔚,管兆勇,2016.2015/2016年超强El Nio在成熟/衰减阶段对澳洲夏季风环流与降水异常的影响[J].大气科学学报,39(6):801-812. Chen W,Guan Z Y,2016.Impacts of the super El Nio event in 2015/2016 on Australian summer monsoon circulation and precipitation anomalies[J].Trans Atmos Sci,39(6):801-812.(in Chinese).

Chen W,Guan Z Y,2017.A joint monsoon index for East Asian-Australian monsoons during boreal summer[J].Atmos Sci Lett,18(10):403-408.

Chen W,Guan Z Y,Xu Q,et al.,2019.Variation of anomalous convergence around Kalimantan island in lower troposphere and its role in connecting the east Asian summer monsoon and Australian winter monsoon[J].J Geophys Res Atmos.doi:10.1029/2018JD030215.

Chen W,Guan Z Y,Yang H D,et al.,2020.Characteristic East Asian-Australian monsoon anomalies independent of ENSO and IOD and their impacts on regional climate in summer[J].J Meteor Soc Japan,98(2):283-297.

丛菁,管兆勇,王黎娟,2007.夏季亚澳季风区两支越赤道气流年(代)际变化及其与夏季风活动的联系[J].大气科学学报,30(6):779-785. Cong J,Guan Z Y,Wang L G,2007.Interannual(Interdecadal) variabilities of two cross-equatorial flows in association with the Asia summer monsoon variations[J].Trans Atmos Sci,30(6):779-785.(in Chinese).

Ding R Q,Ha K J,Li J P,2010.Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean[J].Clim Dyn,34(7/8):1059-1071.

范倩莹,李忠贤,王健治,2018.夏季南海低空越赤道气流变化与亚澳季风区降水异常的联系[J].大气科学学报,41(5):684-691. Fan Q Y,Li Z X,Wang J Z,2018.Contact between precipitation anomaly in Asian-Australian monsoon region and low-level cross-equatorial flow variation over South China Sea in summer[J].Trans Atmos Sci,41(5):684-691.(in Chinese).

Feng J,Wang L,Chen W,et al.,2010.Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter[J].J Geophys Res,115:D24122.doi:10.1029/2010jd014761.

Feng J,Chen W,Tam C Y,et al.,2011.Different impacts of El Nio and El Nio Modoki on China rainfall in the decaying phases[J].Int J Climatol,31(14):2091-2101.

Gill A E,1980.Some simple solutions for heat-induced tropical circulation[J].Quart J Roy Meteor Soc,106(449):447-462.

顾雷,魏科,黄荣辉,2008.2008年1月我国严重低温雨雪冰冻灾害与东亚季风系统异常的关系[J].气候与环境研究,13(4):405-418. Gu L,Wei K,Huang R H,2008.Severe disaster of blizzard,freezing rain and low temperature in January 2008 in China and its association with the anomalies of east Asian monsoon system[J].Clim Environ Res,13(4):405-418.(in Chinese).

Guan Z Y,Yamagata T,2003.The unusual summer of 1994 in East Asia:IOD teleconnections[J].Geophys Res Lett,30(10):1544.

郝立生,丁一汇,闵锦忠,2012.东亚季风环流演变的主要模态及其与中国东部降水异常的联系[J].高原气象,31(4):1007-1018. Hao L S,Ding Y H,Min J Z,2012.Main modes in east Asian monsoon circulation evolution and its relationship with precipitation anomaly in Eastern China[J].Plateau Meteor,31(4):1007-1018.(in Chinese).

Huang R H,1987.Influence of the heat source anomaly over the western tropical Pacific on the subtropical high over East Asia[C]//Proc.International Conference on the General Circulation of East Asia.

Kalnay E,Kanamitsu M,Kistler R,et al.,1996.The NCEP/NCAR 40-year reanalysis project[J].Bull Amer Meteor Soc,77(3):437-471.

Lau K M,Wu H T,1999.Assessment of the impacts of the 1997—1998 El Nio on the Asian-Australia monsoon[J].Geophys Res Lett,26(12):1747-1750.

Lau K M,Weng H Y,2001.Coherent modes of global SST and summer rainfall over China:an assessment of the regional impacts of the 1997—1998 El Nio[J].J Climate,14(6):1294-1308.

Liebmann B,1996.Description of a complete(interpolated) outgoing longwave radiation dataset[J].Bull Amer Meteor Soc,77:1275-1277.

盧楚翰,管兆勇,李永华,等,2013.太平洋年代际振荡与南北半球际大气质量振荡及东亚季风的联系[J].地球物理学报,56(4):1084-1094. Lu C H,Guan Z Y,Li Y H,et al.,2013.Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon[J].Chin J Geophys,56(4):1084-1094.(in Chinese).

Luo H,Yanai M,1984.The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979.Part Ⅱ:heat and moisture budgets[J].Mon Wea Rev,112(5):966-989.

Manton M J,McBride J L,1992.Recent research on the Australian monsoon[J].J Meteor Soc Japan,70(1B):275-285.

Matsumoto J,1992.The seasonal changes in Asian and Australian monsoon regions[J].J Meteor Soc Japan,70(1B):257-273.

Matsumura S,Sugimoto S,Sato T,2015.Recent intensification of the western Pacific subtropical high associated with the east Asian summer monsoon[J].J Climate,28(7):2873-2883.

Matsuno T,1966.Quasi-geostrophic motions in the equatorial area[J].J Meteor Soc Japan,44(1):25-43.

Nitta T,1987.Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J].J Meteor Soc Japan,65(3):373-390.

钱代丽,管兆勇,2018.超强与普通厄尔尼诺海-气特征差异及对西太平洋副热带高压的不同影响[J].气象学报,76(3):394-407. Qian D L,Guan Z Y,2018.Different features of super and regular El Nio events and their impacts on the variation of the West Pacific Subtropical High[J].Acta Meteorol Sin,76(3):394-407.(in Chinese).

钱代丽,管兆勇,2019.滤除ENSO信号前后夏季热带印度洋海盆尺度海温距平对西太平洋副热带高压的不同影响[J].气象学报,77(3):442-455. Qian D L,Guan Z Y,2019.Impacts of tropical Indian Ocean sea surface temperature anomalies on the variation of western Pacific subtropical high in the summer:Dependent and independent of ENSO[J].Acta Meteorol Sin,77(3):442-455.(in Chinese).

Rayner N A,2003.Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century[J].J Geophys Res,108(D14):4407.

Saji N H,Goswami B N,Vinayachandran P N,et al.,1999.A dipole mode in the tropical Indian Ocean[J].Nature,401(6751):360-363.

Schneider U,Becker A,Finger P,et al.,2011.GPCC full data reanalysis version 6.0 at 0.5:monthly land-surface precipitation from rain-gauges built on GTS-based and historic data[R].GPCC Data Rep.

滕代高,刘宣飞,张增信,等,2005.澳大利亚高压的年际变化及其对应的亚澳季风[J].大气科学学报,28(1):86-92. Teng D G,Liu X F,Zhang Z X,et al.,2005.Interannual variation of Australian high and its effect on Asia-Australia monsoon circulation system in summer[J].Trans Atmos Sci,28(1):86-92.(in Chinese).

Wang B,Ding Q H,2006.Changes in global monsoon precipitation over the past 56 years[J].Geophys Res Lett,33(6):L06711.

王國栋,金大超,陈君芝,等,2019.两广地区前、后汛期降水异常反位相现象及可能机理[J].大气科学学报,42(6):855-863. Wang G D,Jin D C,Chen J Z,et al.,2019.Anti-phase relationship between first and second rainy season precipitation anomaly in Guangdong-Guangxi region and its possible mechanism[J].Trans Atmos Sci,42(6):855-863.(in Chinese).

Xi J Y,Zhou L,Murtugudde R,et al.,2015.Impacts of intraseasonal SST anomalies on precipitation during Indian summer monsoon[J].J Climate,28(11):4561-4575.

Xie S P,Philander S G H,1994.A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific[J].Tellus A:Dyn Meteorol Oceanogr,46(4):340-350.

Xu Q,Guan Z Y,Jin D C,et al.,2019.Regional characteristics of interannual variability of summer rainfall in the maritime continent and their related anomalous circulation patterns[J].J Climate,32(14):4179-4192.

Yang J L,Liu Q Y,Xie S P,et al.,2007.Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J].Geophys Res Lett,34(2):L02708.

Yang S,Lau K M,Kim K M,2002.Variations of the east Asian jet stream and Asian-Pacific-American winter climate anomalies[J].J Climate,15(3):306-325.

尹志聪,王亚非,袁东敏,2011.梅雨准双周振荡的年际变化及其前期强信号分析[J].大气科学学报,34(3):297-304. Yin Z C,Wang Y F,Yuan D M,2011.Analysis of the interannual variability of the Meiyu quasi-biweekly oscillation and its previous strong influence signal[J].Trans Atmos Sci,34(3):297-304.(in Chinese).

Zhou T J,Wu B,Wang B,2009.How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon?[J].J Climate,22(5):1159-1173.

Complementary relationships between the East Asian summer monsoon and the Australian winter monsoon have a significant impact on the climate anomalies in the Northern and Southern Hemispheres.Using the National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) reanalysis data,the Hadley Centre Global Sea Surface Temperature dataset,and the CPC Merged Analysis of Precipitation (CMAP) data,based on the joint index of East Asian-Australian monsoon,this paper investigated the reverse variation characteristics of the East Asian summer monsoon and Australian winter monsoon intensities.Results show that when the East Asian summer monsoon is stronger and the Australian winter monsoon is weaker,complex anomalous circulation systems appear in the middle and low latitudes of the Northern and Southern Hemispheres.In the lower troposphere of the tropical region,the anomalous anticyclonic circulation system in the northwestern Pacific is intensified,which is coupled with the anomalous anticyclonic circulation in the South Pacific Convergence Zone(SPCZ),forming an anomalous easterlies near the equator,while there are two anomalous cyclonic circulation systems in the northern and southern Indian Ocean.In the marine continental area between the two pairs of anomalous circulations,the anticyclonic circulation is located in the south of the equator and the cyclonic circulation in the north of the equator.In the East Asian monsoon region,there is an anticyclone anomaly on the east side of the southeast coast of China,and southeastern China is affected by the southeast wind on the southwest side of the anomalous anticyclone.In addition,the northern Australia is affected by the anomalous westerly wind.As a result,the East Asian summer monsoon is stronger and the Australian winter monsoon is weaker,which leads to a complementary relationship between them.When the East Asian summer monsoon is weaker and the Australian winter monsoon is stronger,the circulation characteristics of the Northern and Southern Hemispheres are opposite to the above.On the whole,when the East Asian summer monsoon is stronger and the Australian winter monsoon is weaker,different climate anomaly distribution characteristics appear in the Northern and Southern Hemispheres of the East Asian-Australian monsoon area,that is,the precipitation is less in the north(east) but more in the south(west) and the temperature is higher in the north(west) and lower in the south(east) in the Northern(Southern) Hemisphere.

East Asian summer monsoon;Australian winter monsoon;complementary relationship;circulation characteristics;boreal summer

doi:10.13878/j.cnki.dqkxxb.20200616001

(責任编辑:张福颖)