UV-B辐射对植物生长发育的影响及其应用价值
2020-12-10刘一诺关义新
刘一诺,敖 曼,李 波,关义新
(1.中国科学院 东北地理与农业生态研究所,吉林 长春 130102;2.中国科学院大学,北京 100049)
0 引 言
太阳光中波长为100~400 nm的电磁辐射称为紫外线(UV)。根据纳米波长可以将其分为三类:长波紫外线(UV-A),波长范围400~320 nm;中波紫外线(UV-B),波长范围320~280 nm;短波紫外线(UV-C),波长范围280~180 nm[1]。UV-C几乎完全被臭氧吸收,很少到达地面;UV-A仅有很少一部分被臭氧层吸收,但没有明显的生物学效应;UV-B透过臭氧层时,虽然仅残留10%左右,但对植物的生长发育有着重要影响[2]。随着大气臭氧层的逐渐稀薄导致UV-B辐射日益增加,UV-B增强对动植物以及整个生态系统造成的影响,已逐渐成为国内外学者研究热点[3]。
UV-B属于环境中对植物产生重要影响的有效辐射。植物的许多组分都能吸收UV-B波段的辐射,如DNA、RNA和蛋白质等。UV-B增强引发的植物内部结构和功能变化会造成植株形态改变,并且植物体含氧活性因子会逐渐积累,从而引起一系列生理生化改变,诱发不同的适应性或防御性机制[4],包括紫外线吸收物质积累,酶促和非酶促抗氧化物质产生以及遗传物质改变,都将间接影响人类生活[5-6]。因此,揭示UV-B辐射变化对植物的影响尤为重要。
植物自身拥有强大的调节机制。UV-B辐射同其他胁迫一样可以刺激植物对环境改变做出响应,从而激发一系列对自身有益的调节反馈机制,使植物在一定条件下逐渐适应胁迫环境。在生产实践中,UV-B辐射在调节植物形态发育和生命代谢的基础上,具有增强植物抵抗生物胁迫、改善植物品质和提高保鲜能力的作用,并且在辐射诱变育种上也具有较大的应用前景。本文从UV-B辐射对植物的影响着手,简要总结了国内外研究现状及动态,重点聚焦UV-B辐照在植物生产中的实际应用价值,并展望UV-B辐射在植物培育中的应用前景。
1 UV-B辐射对植物的影响
1.1 UV-B辐射对植物形态发育和光合作用的影响
株高在植物形态发育观察中是最为关注的性状之一。UV-B辐射增强会抑制蚕豆、大豆、小麦等作物生长,导致植株矮小[7-10],引起植株节间长度不同程度缩短,并显著抑制整体株高和鲜重的增加[11-13]。UV-B辐射下植物株高降低是植物自身保护机制的一种体现,植物生长会受到一系列植物激素的调节,在UV-B辐射影响下生长素易分解转化成多种光氧化产物,这些氧化产物能抑制茎的伸长,从而使株高降低[14]。
植物叶片是对UV-B辐射后反应最明显的器官。叶片暴露在空气中,成为UV-B辐射的直接靶标,在自然环境中最先受到UV-B辐射的影响[15]。增强UV-B辐射后,植物叶面积显著降低,同时叶片厚度会增加起到保护植株叶肉组织的作用[16-17]。较高强度的UV-B辐射还会损伤植株叶片内部结构[18-19],严重时会出现萎黄、褐变、坏死等现象[20-21]。
经过UV-B辐射后,植物除株高、叶面积发生变化外,光合系统也会发生改变。叶片受损,光合系统便随之受损,植物的光合能力也随之下降,进而影响植物生长发育[22]。在UV-B辐射增强后,玉米和大豆等植物的叶片会出现光合能力减弱以及代谢产物减少的现象[23-26]。丙二醛(MDA)是膜脂过氧化最重要的产物之一,是测定膜系统受损程度以及植物抗逆性的一个常用指标。UV-B辐射增强会使MDA含量上升,叶绿体膜超微结构损伤,由光系统II(PSII)介导的光合电子传输受阻,进而影响整个光合作用[27-28]。由于PSII在非生物胁迫下最容易受到伤害,与其他环境胁迫一致,UV-B辐射同样通过扰乱光合作用中的电子传递链、光合磷酸化以及破坏膜结构来影响光合速率[29-32]。
1.2 UV-B辐射对次生代谢和抗氧化系统的影响
植物为了适应环境,会调节自身次生代谢机制,产生一定量抵抗或吸收紫外光的物质。增强UV辐射对防御相关次生代谢产物的生物合成具有显著影响[33]。许多研究表明,吸收紫外线的苯丙烷类化合物在叶表皮细胞中积累,防止叶表皮下叶肉组织的损伤,其中最常见的是类黄酮化合物[34-41]。类黄酮化合物能够有效的抵御紫外辐射,在植物抗逆生理生化调节中起着非常重要的作用[42],主要是通过吸收或消除自由基避免活性氧的积累来减少UV-B的伤害[43-44]。也有证据表明,黄酮类物质可以直接吸收植物体内的UV-B辐射物质[45-46]。此外,植物在叶片表面还会产生蜡质和木质素吸收UV-B辐射来保护叶片,它们同样具有自由基清除能力,且是植株最直接的UV-B辐射保护机制[47-51]。
植物在UV-B辐射后为了将损害降至最低,还会激活酶和非酶抗氧化防御系统[52]。植物体内的活性氧(ROS)会随着环境而变化,ROS的累积会对细胞膜结构完整性造成破坏,对植物有一定毒害作用,但同时它又可以刺激植物体内多种抗氧化酶的活性,对植物进行保护,从而维持体系的正常运转[53-55]。常见的抗氧化酶包括过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、抗坏血酸过氧化物酶(APX)等[56]。UV-B辐射增强后多种抗氧化酶活性均升高,同时也有少部分酶活会有降低,均为达到平衡过氧化水平的作用,有助于保持细胞结构完整性,使植物抵抗UV-B的负面影响进而可以正常生长[57-59]。大部分植物短时间内抗氧化酶活性呈上升趋势,但长时间辐射后大部分酶的活性会下降[60-61]。
非酶防御系统主要是低分子量的抗氧化物质,例如脯氨酸、抗坏血酸、谷胱甘肽、α-生育酚和类胡萝卜素等[62-66]。在UV-B辐射增强时,非酶抗氧化物质往往也会随之增加,同酶系统一样,大多数非酶物质都是通过平衡过氧化对植物产生相应的保护机制[67-68]。不同植物、不同品种对UV-B的响应均有较大的差异,可能由于不同植物的遗传特性不同的原因[69-70]。
以DTBP-甲苯溶液作为样品(典型的n级反应),用一阶系统描述热电偶动态响应特性,炉体响应特性及样品向炉体散热过程,建立集中参数模型,如式(5)所示。由文献[13]可知DTBP的反应热力学和动力学参数,如表1所示,其他参数设置如表2所示。
1.3 UV-B辐射对植物遗传物质的影响
作为环境胁迫因子,UV-B辐射不仅会抑制植物的生长发育和代谢,还会使植物发生染色体畸变(包括游离染色体、落后染色体、染色体断裂、染色体桥和微核等)[71-76]。强UV-B(10.08 kJ·m-2·d-1)辐射后的小麦体细胞染色体会发生“分束分裂(Partition-bundle division)”现象[77]。通过染色体和微管细胞共标记的方式发现,不均等分束现象不依赖于微管细胞,从而推断出UV-B辐射可能通过影响其他有关细胞极性的因子导致染色体畸变[78]。
DNA作为遗传物质在植物体内成为UV-B辐射最主要的目标分子。植物体内DNA会受到UV-B辐射的伤害形成嘧啶二聚体,其中包括环丁烷嘧啶二聚体(CPD)和6-4光产物,使得DNA与RNA聚合酶无法识别DNA分子中的二聚体结构,导致DNA复制和转录不能正常进行[79-80]。UV-B作为光源的一种,辐射胁迫后引起的DNA损伤主要通过光致复活作用(Photoreactivation)进行修复。当DNA受UV-B辐射而形成嘧啶二聚体后,光复活酶在蓝光或近紫外光的照射下,使二聚体变为单体,恢复成非聚合状态,使损伤的DNA恢复正常[81]。DNA修复能力增加是植物适应UV-B辐射很重要的内在因素[82]。不同植物DNA修复能力不同导致其抗UV-B的能力也存在很大的差异。UV-B辐射增强后植物从DNA到染色体都会受到损伤,随机产生的畸变也有很多种,但损伤机制尚不清晰,有关UV-B辐射造成染色体畸变和DNA损伤的机制有待深入研究。
2 UV-B辐照在植物生产中的应用
只有UV-B辐射超过一定阈值时,植物才会表现出受害症状。实际上,在合适的剂量范围内UV-B照射作为辅助光源,对植物生长发育也存在正向效应,在作物生产实践中具有十分可观的应用前景。
2.1 UV-B辐照对植物形态发育的调节
UV-B辐照对植物生长发育可以起到调节的作用,如控制植株徒长、增厚叶片、使植株节间缩短和增多分枝等[83-84]。对生长初期的不结球白菜进行UV-B辐射(强度为40~60 μW·cm-2,时间为2 h·d-1)处理,可有效的控制植株徒长,且不会造成产量显著下降[85]。对冬季大棚番茄进行UV-B辐射补充,可以在番茄苗期有效控制株高,且番茄的维生素C和类胡萝卜素都有显著提高,但长时间辐照会对生长产生抑制[86]。Giuseppe和Gianini[87-88]都曾用UV-B辐射来调节温室番茄高度,并认为这是一种有效控制徒长的手段。
在许多园艺作物上如甘薯(Ipomoeabatatas)[89]和番茄(Solanumlycopersicum)[90]都被观察到叶片表面起泡或愈伤组织样的肿胀损伤,这种损伤是由非生物胁迫引起的生理疾病。在受环境限制的温室中,一些砧木类幼苗常发生这种肿胀损伤,严重的还会造成叶片组织坏死,叶片脱落和枯萎,从而导致作物生长受损以及美学价值降低[91]。近几年有文献报道,这种损伤与防紫外线的聚酯薄膜或单一光源的照明条件有关[92-93]。先前的研究也表明,光质是调节番茄和甘薯等作物膨胀发育的主要因素[91,94-95]。Chieri等人发现紫外线辐射,尤其是UV-B辐射可以有效防止上述肿胀损伤[96]。
由此看来,UV-B或许是一种作物生长不可或缺的光源。在生产实践中,UV-B辐照已成为现代设施农业中一种常用的环境光源,用以调节设施植物的生长发育。
2.2 UV-B辐射改善植物产品品质
UV-B辐照会造成植物体内糖含量的变化,糖既可以为花青苷等次生代谢产物提供糖苷,也是影响果蔬口感的一个重要因素,所以,UV-B对代谢产物的影响逐渐受到人们的关注。UV-B照射蓝莓可以提高其果实中可溶性糖的含量[97],但高强度下会降低葡萄果实还原糖含量,使其果实变小,产量下降[98]。表明UV-B具有改善品质的应用价值,同时仍然反映出辐照剂量的重要性。
UV-B剂量的选取是控制植物代谢产物多少的关键,寻找合适的剂量使得植物可以产生更多的经济价值和药用价值物质是目前研究的重点,在生产实践中具有十分可观的应用前景。
2.3 UV-B辐射增强保鲜能力
可鲜食植物采后腐烂变质不仅会造成经济损失,且已变质的果实对人体健康有相当大的危害。虽然使用合成防腐剂能有效抑制果蔬腐烂,但防腐剂残留会给环境和食用者带来潜在威胁。辐照技术现已成为一种公认的无化学变化的非热处理保鲜技术。
目前辐照保鲜主要有γ射线辐照与UV辐照[108]。γ射线虽然已成功应用于保鲜技术,但由于其安全隐患大、装置成本高,在应用上受到很大限制。UV辐照分UV-B和UV-C两种,目前UV-C辐照应用较多[109-110]。虽然UV-B杀菌能力相比UV-C较弱,但伤害远低于UV-C,可大大降低安全防护成本,且UV-B辐照保鲜不仅仅是对果蔬表面微生物的灭杀作用,更是由于UV-B辐照引起的“毒物兴奋效应”增强了果蔬自身的防御能力,从而延缓品质下降[111]。
在番茄果实保鲜研究中发现,UV-B的最佳照射剂量是20或40 kJ·m-2,低剂量(10 kJ·m-2)也有一定作用,但高剂量会对番茄果实硬度、颜色和抗氧化能力有负作用。同时,20 kJ·m-2的UV-B照射可以有效降低冷藏番茄的冷害指数和推迟乙烯峰的出现[112]。Castagna等对番茄果实进行UV-B处理,证实通过UV-B处理可抑制番茄果实营养物质含量降低,维持品质,延缓果实软化[113]。低剂量UV-B处理采后柠檬,可以有效改善植物在储运期的品质,使其体内的抗氧化物质保持在一个较高水平,并发现其对绿霉病的抗性显著提升[114]。
作为一种非化学手段,UV-B保鲜技术已获得越来越多人的认可,且在保持采后果蔬品质和提高抗氧化能力方面具有很大的应用前景,在生产实践中可实现提高保鲜能力及增强耐贮性的作用。
2.4 UV-B辐射增强植物抵抗生物胁迫的能力
光质对植物免受害虫或病原体伤害具有重要影响[115]。对于许多农作物而言,控制温室中的光照条件已成为种植者用来提高植物生长性能或控制光形态发生的常用技术[116]。其中,UV-B增强作物对害虫和病原体的防御已得到越来越多的关注[117]。植物能够响应UV-B辐射并发出特定的光形态信号[118-119]。在大多数情况下,UV-B介导的生理变化导致植物的防御能力增强。植物结构、生理学、化学变化还可改变作物害虫的性能和喜好[120-121]。
UV-B辐照促进了西兰花幼苗地上部黄酮类物质山奈酚、槲皮素以及谷胱甘肽的积累,并且抵抗生物胁迫能力有所增强[122]。据报道,UV-B介导的大豆(Glycinemax)豆荚中异黄酮苷和黄豆苷的含量与虫蛀种子百分比呈负相关[123]。多项研究表明,增加UV-B后保护性次生代谢产物含量增加和植物细胞壁增厚均可达到阻止害虫定殖的作用[124-127]。Merdeiyn[128]喂食棉铃虫UV-B辐射后水稻叶片中提取的黄酮类和酚类物质,棉铃虫的生长、发育和繁殖都受到了影响,进一步说明UV-B辐照后产生的黄酮类或其他酚类物质具有抗虫性。Gu等[129]利用HPLC指纹图谱鉴定UV-B辐射诱导的桑叶(MorusalbaL.),发现五种显著差异的色谱峰,并鉴定出两种活性化合物,一种是查库霉素(chalcomoracin)—具有抗菌活性的天然物质;另一种是chalcomoracin的前体。Dhakaly[130]也认为抗生物胁迫能力的增强,是由于UV-B诱导植物自身产生了相应的抗毒素,加强了植物抵抗外界病原侵染的能力。UV-B对植物的保鲜作用,也有一部分原因是UV-B诱导植物产生抵抗生物胁迫的能力。
UV-B辐射升高对植物的影响已广为人知,但对害虫和致病性病原体的影响了解甚少。虽然已有研究表明UV-B辐射可促使植物产生抗毒素和抗菌素等抵抗生物胁迫的物质,增强植物抗虫和抗病菌能力,但有关UV-B对宿主植物与病虫互作的研究十分有限。需要更准确的了解UV-B对病虫的影响,才能准确的预测UV-B对植物生态系统的影响,合理利用UV-B的调节作用,实现UV-B作为辅助光源培育抗虫抗菌性强的作物。
2.5 UV-B辐照诱变育种
物理诱变是诱变育种常用的手段之一,其中最主要的方法是辐射诱变。目前,已有试验证明紫外辐照可作为一种有效的物理诱变剂[131]。紫外线和4℃低温共同处理下有花蕾形成的植株比紫外线处理下有花蕾形成的植株多出3.1%,且UV-B处理后花蕾形成的时间推迟。甘蓝型油菜双单倍体植株在UV-B照射下可促进小孢子再生,其饱和脂肪酸含量也发生变化[132]。采用紫外诱变和体外筛选相结合的方法,对耐寒性增强的突变体进行鉴定,对突变株系进行冷冻试验和田间试验,确定其耐寒性水平,从诱变株系中筛选出多个耐寒品系,其中一个品系进入产量试验[133]。
紫外诱变在微生物领域研究较为清晰,应用十分广泛。但在植物上,紫外诱变理论研究多于实践应用,未来需要重点关注的是如何将紫外诱变技术完善并应用于育种实践中。
3 讨论与展望
随着大气污染严重,臭氧层变薄,UV-B辐射增强对动植物造成了越来越严重的影响,对UV-B辐射影响研究也逐步深入。UV-B辐射对植物的影响包括植物形态发育、光合呼吸、生理代谢以及遗传特性等,并且在各个方面均已有相关研究。然而,UV-B辐射的研究多倾向于植物生长发育以及形态生理等方面的研究,且相关研究大多停留在室内模拟实验阶段,受到环境条件制约,自然条件下的研究相对较少,同时大多研究集中在植物幼苗阶段,相应的试验结论则具有片面性。增强UV-B辐射对植物会造成一定程度的物理伤害,而对其伤害的阻挡和修复应是研究的重点。植物自身的修复机制大多涉及到分子层面,现有研究在UV-B辐射对植物的遗传响应及分子生物学的影响方面尚不深入。因此植物对UV-B损伤修复的分子机制研究需要逐渐完善。随着修复机制进一步揭示,与其他因子复合作用,以及通过其他分子物质减缓UV-B损伤的研究也将随之增多。
植物自身拥有强大的调节机制,在一定胁迫条件下可以逐渐适应环境,得以生存。通过UV-B辐照植物会产生多种保护机制来做出响应,许多研究从这些保护机制入手研究UV-B辐照后植物产生的对自身有益的反应。在调节植物形态发育、增强植物抵抗生物胁迫能力、改善植物品质和保鲜能力以及辐射诱变育种技术上都有所进展,但大多数应用技术都处于实验室研究阶段,实现产业化流程化应用还有很长的路。未来,更重要的是开展UV-B辐照在有效调节作物生长、保持果蔬品质、提高抗氧化能力、减轻病虫害发生等方面的深层机制研究,并将研究移向现实生产中,理论与实践相结合才能使其在未来设施农业上发挥更客观的应用价值。
UV-B辐照的具体应用方法还需要不断完善。特别是UV-B辐照剂量的探索和选取是植物对UV-B辐照产生不同生理响应的重要因素。在目前UV-B辐照研究中,对UV-B辐照剂量的选择存在较大争议,辐射剂量单位选取以及高低划分还没有完全统一的标准。植物对UV-B辐照响应的许多深层机制也尚不清晰,有待进一步阐明。尤其是UV-B辐照诱变育种技术,目前研究较少,还处于方法以及剂量等条件的摸索状态中,诱变机制还需要更深层次的研究。但UV-B辐照作为一种设备简单、操作方便、安全无污染的非化学强诱变手段,为植物诱变育种提供了一种有效的途径,在植物育种中具有较大的潜力,并将不断完善最终走向生产实践。