生物炭与硝化抑制剂对菜地综合温室效应的影响
2020-12-09李佳邓钧尹周伟孙丽英
李佳 邓钧尹 周伟 孙丽英
摘要:采用静态暗箱-气相色谱法评估氮肥分别配施生物炭和硝化抑制剂对菜地生态系统综合温室效应(GWP)和温室气体排放强度(GHGI)的影响。共设置3个田间处理:尿素(U)、尿素配施生物炭(UB)和尿素配施硝化抑制剂双氰胺(UDCD)。结果表明:与U处理相比,UDCD处理分别显著降低了N2O排放通量和GWP的27.1%(P<0.05)和29.1%(P<0.05),而对CH4排放通量、蔬菜产量以及GHGI并没有显著影响。与U处理相比,UB处理对N2O排放通量、GWP和GHGI并无显著影响。与UB处理相比,UDCD处理分别显著降低了N2O排放通量和GWP的28.3%(P<0.05)和29.1%(P<0.05)。综合对比3种施肥方式的GWP和GHGI,发现氮肥配施硝化抑制剂DCD可以显著减少氮肥对环境的影响,因此在菜地可推荐使用尿素配施硝化抑制剂双氰胺(UDCD)施肥方案。
关键字:生物炭;硝化抑制剂;CH4;N2O;菜地;综合温室效应
中图分类号:S181文献标识码:A文章编号:1000-4440(2020)05-1205-07
Abstract:Static opaque chamber-gas chromatography method was used to study the effects of nitrogen fertilizer combined with biochar and nitrification inhibitor respectively, on the global warming potential (GWP) and greenhouse gas intensity (GHGI) of ecosystem in vegetable field. Three following field treatments were set up: urea (U), urea combined with biochar (UB) and urea combined with nitrification inhibitor dicyandiamide (UDCD). The results showed that compared with U treatment, UDCD treatment significantly decreased the N2O emission flux and GWP by 27.1% (P<0.05) and 29.1% (P<0.05) respectively, but there were no significant effects on CH4 emission flux, vegetable yield and GHGI. Compared with U treatment, UB treatment had no significant effects on N2O emission flux, GWP and GHGI. Compared with UB treatment, UDCD treatment significantly decreased N2O emission flux and GWP by 28.3% (P<0.05) and 29.1% (P<0.05), respectively. The nitrogen fertilizer combined with DCD is recommended for reducing the effect of nitrogen fertilizer on environment significantly by comprehensive comparison of GWP and GHGI under three fertilization modes. Therefore, the UDCD fertilizing scheme is recommend in vegetable field.
Key words:biochar;nitrification inhibitor;methane;nitrous oxide;vegetable field;global warming potential
蔬菜地是一種特殊的农业生态系统,与其他大田作物相比,蔬菜生产集约化程度高、复种指数高、氮肥用量远超于推荐施肥量,导致氮肥利用率越来越低,N2O和CH4大量排放[1]。而N2O和CH4是两种重要的农业源温室气体。据联合国气候变化政府间专家委员会(IPCC)报告,在过去的200年里,大气N2O和CH4质量浓度分别由西方工业化之前的270.9 μg/L和0.73 mg/L,增加到2005年的325.1 μg/L和1.82 mg/L,预计今后仍将呈线性增长[2]。在100年时间尺度上,N2O和CH4的增温潜势分别是CO2的298和34倍。据Wang等估算,中国菜地施肥引起的直接N2O排放量为66.95 Gg N,约占中国农田总直接N2O排放量的21.4%[3]。因此,寻找切实可行的减排措施减缓菜地温室气体的排放具有重要的意义且十分迫切。
近年来,大量研究结果表明生物炭和硝化抑制剂对农业增产减排的效果显著[4-5]。生物炭是指生物质在限氧条件下通过热裂解方法制备而成的一种富含孔隙结构、含碳量高、碳稳定性强的一种非纯净碳的混合物。生物炭施入到土壤中能改善土壤质量,降低土壤温室气体排放,提高作物产量[6-7]。据Cayuela等报道,生物炭的施用可以平均降低54%的农业生态系统N2O的排放。因此,农田施用生物炭可以作为农业增产减排的一个新途径[8]。硝化抑制剂能抑制土壤中的硝化作用,从而减少氮肥的损失,提高氮肥利用率而增加作物产量,同时能减缓温室气体的排放[9]。目前,国内外对蔬菜地温室气体排放的研究较多,通常认为添加生物炭与硝化抑制剂能减缓N2O的排放[10-12]。因此,生物炭和硝化抑制剂都是目前农业上广泛使用的用来增加作物产量、固碳减排的有效措施。但是,同时对比研究生物炭与硝化抑制剂对菜地温室效应的影响的研究较少。因此,本研究将探讨氮肥分别配施生物炭和硝化抑制剂条件下菜地N2O、CH4的排放特征以及对蔬菜产量的影响。以期为菜地生态系统增产减排提供理论依据。
1材料与方法
1.1试验设计
田间试验于2018年6月在江苏省南京市浦口区浦浩生态园(32°14′N,118°41′E)进行,该区域属于典型的亚热带季风气候。该地块已有5年多的集约化蔬菜种植历史。表层土壤(0~15 cm)的基本性质为:pH 6.5,总氮含量1.4 g/kg,土壤有机碳含量24.1 g/kg。试验中所用的生物炭由水稻秸秆在550~650 ℃裂解而成,基本性质为:总碳含量462.2 g/kg,总氮含量7.2 g/kg,碳氮比64.2,pH 6.5,表面积11.5 m2/g。双氰胺(DCD),作为一种硝化抑制剂,与氮肥混合施用能降低农田温室气体的排放并提高氮肥利用率,因此广泛应用于农业生产中。
试验共设置3个处理,每个处理3个重复。3个处理分别为仅施尿素(U)、尿素配施生物炭(UB)、尿素配施硝化抑制剂双氰胺(UDCD)。所有处理中施肥水平一致,根据当地常规施肥水平确定,即氮肥(以N计)施入量为200 kg/hm2,磷肥(以P2O5计)施入量为200 kg /hm2,钾肥(以K2O计)施入量为200 kg/hm2。生物炭的施用量为30 t/hm2。硝化抑制剂DCD按常规施氮量5%的比例与尿素混匀。在播种之前,将氮肥、磷肥、钾肥和生物炭施入到土壤中,并翻耕使其混合均匀。试验期间共种植一茬不结球白菜,于2018年6月10日播种,2018年7月21日收获,蔬菜生长期间不追肥。在整个试验期间,其他管理措施都按照当地常规进行。
1.2样品采集与分析
采用静态暗箱-气相色谱法测定菜地土壤N2O和CH4的排放通量。采样箱和采样底座均由PVC材料制成,采样箱长、宽、高分别为45 cm、45 cm、50 cm。在试验开始之前,将方形的采样箱底座安装在各个小区中,采样时,将采样箱扣在采样箱底座上,用水密封。采样时间为上午8∶00-10∶00,扣上采样箱之后,于0 min、10 min、20 min、30 min分别用20 ml的针筒收集4针气体样品,然后将样品带回实验室,在12 h之内用气相色谱仪(安捷伦7890 B)分析N2O和CH4浓度。采样频率一般为每7 d 1次,施肥之后每隔1 d收集1次样品,持续7 d。气相色谱仪测定样品中N2O和CH4的检测器分别为电子捕获检测器(ECD)和氢火焰离子化检测器(FID)。
每次采集气体样品时,同时采集耕层土壤(0~15 cm)样品,储存于-4 ℃冰箱,用来测定土壤铵态氮(NH+4-N)、硝态氮(NO-3-N)含量。NH+4-N和NO-3-N含量分別采用靛酚蓝比色法和双波长紫外分光光度计法测定。蔬菜收获之后,直接称量新鲜的地上部分,获得每个小区的蔬菜产量。
1.3数据处理与分析方法
N2O、CH4排放通量计算公式如下:F=ρ×V/A×dC/dt×273/(273+T)。式中,F为N2O-N或CH4-C排放通量,单位为μg/(m2·h)或mg/(m2·h);ρ为标准状态下N2O-N和CH4-C的质量浓度,分别为1.25 g/L和0.54 g/L;V为采样箱体积,m3;A为采样箱底面积,m2;dC/dt为N2O或CH4的排放速率,单位为nl/(L·h)或μl/(L·h);T为采样时箱内平均温度,℃。用每个处理的3个重复的平均值表示N2O和CH4的排放通量。
利用菜地N2O和CH4的增温潜势之和来计算菜地的综合温室效应(GWP,t/hm2,以CO2计)。在100年时间尺度上,N2O和CH4的增温潜势分别是CO2的298和34倍[2],GWP(t/hm2)计算公式如下:GWP=298×GWP(N2O)+34×GWP(CH4)。温室气体排放强度(GHGI,t/t,以CO2计)是指单位产量的综合温室效应。计算公式如下:GHGI=GWP/产量,式中产量单位为t/hm2。
采用Microsoft Excel 2013和OriginPro 8.5软件进行图表制作。采用JMP 9.0软件进行多重比较分析(Students)。采用Pearsons法分析无机态氮(NH+4-N和NO-3-N)与N2O和CH4排放通量之间的相关性。
2结果与分析
2.1生物炭与硝化抑制剂DCD对N2O排放的影响
由图1可知,在整个蔬菜生长季,各处理的N2O排放通量的变化趋势一致。所有处理都在施肥后第5 d出现N2O排放通量最大峰值,然后快速下降,之后各处理N2O排放通量均保持在较低水平。UB、U、UDCD处理的N2O排放通量的最大峰值由高到低分别为2 781.66 μg/(m2·h)、2 447.89 μg/(m2·h)、1 751.04 μg/(m2·h)。
整个蔬菜生长期,UB、U、UDCD处理的N2O累积排放量分别为4.64 kg/hm2、4.56 kg/hm2、3.33 kg/hm2(表1)。与U处理相比,UB处理增加了1.9%的N2O累积排放量(P>0.05),而UDCD处理显著降低了27.0%的N2O累积排放量(P<0.05)。与UB处理相比,UDCD处理显著降低了28.3%的N2O累积排放量(P<0.05)。
2.2生物炭与硝化抑制剂DCD对CH4排放的影响
由图2可知,整个观测期间,CH4的排放通量变化较平稳。UB处理在施肥第7 d出现CH4排放峰,峰值为0.14 μg/(m2·h),其他处理则无明显CH4排放峰。而UB处理的CH4平均排放通量高于其他两个处理。U、UDCD处理的CH4排放总量均为0.13 kg/hm2,而UB处理高达0.45 kg/hm2。UB处理的CH4排放通量高于U、UDCD处理CH4排放量,但无显著差异(P>0.05)。
2.3菜地CH4排放与土壤NH+4-N、NO-3-N含量的相关性
参考文献:
[1]纪梦梦,吴晓刚,吴欣欣,等. 过量施肥对设施菜田土壤菌群结构及N2O产生的影响[J]. 微生物学通报, 2018, 45(6): 1452-1459.
[2]Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: the physical science basis[R]. Cambridge: Cambridge University Press, 2013.
[3]WANG J Y, XIONG Z Q, YAN X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J]. Atmospheric Environment, 2011, 45: 6923-6929.
[4]李博,李巧玲,范長华,等. 施用生物炭与硝化抑制剂对菜地综合温室效应的影响[J]. 应用生态学报, 2014, 25(9): 2651-2657.
[5]易琼,逄玉万,张木,等. 不同施肥模式下硝化抑制剂DCD与生物炭对菜地N2O排放和土壤特性的影响[J]. 生态环境学报, 2017, 26(8):1336-1341.
[6]ZHANG A F, CHENG G, QAISER H, et al. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China [J]. Field Crops Research, 2017, 205: 45-54.
[7]陈晨,许欣,毕智超,等.生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J]. 环境科学学报, 2017, 37(5): 1912-1920.
[8]CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochars role in mitigating soil nitrous oxide emissions: a review and meta-analysis [J]. Agriculture Ecosystems and Environment, 2014, 191: 5-16.
[9]GUO Y J, DI H J, CAMERON K C, et al. Effect of 7-year application of a nitrification inhibitor, dicyandiamide (DCD), on soil microbial biomass, protease and deaminase activities, and the abundance of bacteria and archaea in pasture soils[J]. Journal of Soils and Sediments, 2013, 13(4): 753-759.
[10]DI T, ZHANG Y Y, ZHOU Y Z, et al. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain [J]. Science of the Total Environment, 2017, 598: 87-96.
[11]HUSSAIN M, FAROOQ M, NAWAZ A, et al. Biochar for crop production: potential benefits and risks [J]. Journal of Soils and Sediments, 2017, 17(3): 685-716.
[12]KONG X, ERIKSEN J, PETERSEN S. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for mitigating soil N2O emissions after grassland cultivation [J]. Agriculture Ecosystems and Environment, 2018, 259: 174-183.
[13]MAUCIERI C, ZhANG Y, MCDANIEL M D, et al. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting [J]. Geoderma, 2017, 307: 267-276.
[14]ZHANG A, CUI L, PAN G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice Paddy from Tai Lake Plain, China [J]. Agriculture Ecosystems and Environment, 2010, 139: 469-475.
[15]CASE S D C, MCNAMARA N P, REAY D S, et al. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? [J]. GCB Bioenergy, 2014, 6: 76-89.
[16]熊舞,夏永秋,周伟,等. 菜地氮肥用量与N2O排放的关系及硝化抑制剂效果[J]. 土壤学报, 2013, 50(4):743-751.
[17]FRIEDL J, SCHEER C, ROWLINGS D W, et al. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia [J]. Soil Biology Biochemistry, 2017, 108:55-64.
[18]ASING J, SAGGAR S, SINGH J, et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions [J]. Soil Research, 2008, 46(7): 535-541.
[19]KHAN S, WANG N, REID B J, et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar [J]. Environmental Pollution, 2013, 175: 64-68.
[20]李露,周自強,潘晓健,等.氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响[J].植物营养与肥料学报, 2015, 21(5): 1095-1103.
[21]WEISKE A, BENCKISER G, HERBERT T, et al. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dyciandiamide (DCD) on nitrous oxide, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments [J]. Biology and Fertility of Soils, 2001, 34: 109-117.
[22]LI B, BI Z C, XIONG Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China [J]. GCB Bioenergy,2016, 9: 400-413.
[23]ZHANG D, PAN G, WU G, et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol [J]. Chemosphere, 2016, 142: 106-113.
[24]张洋,李雅颖,郑宁国,等. 生物硝化抑制剂的抑制原理及其研究进展[J]. 江苏农业科学,2019,47(1):21-26.
[25]FAN C, LI B, XIONG Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China [J]. Science of the Total Environment, 2018, 612: 480-489.
[26]ABALOS D, JEFFRY S, SANZ-CORBINA A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency [J]. Agriculture Ecosystems and Environment, 2014, 189:136-144.
(责任编辑:张震林)