GLP-1受体激动剂艾塞那肽缓解ob/ob小鼠骨骼肌脂质沉积的作用不依赖于体重的下降*
2020-12-03郭婉蓉陈宗兰曹欢易邓洪容蔡梦茵梁华徐芬
郭婉蓉, 陈宗兰, 曹欢易, 邓洪容, 蔡梦茵, 梁华, 徐芬
·论著·
GLP-1受体激动剂艾塞那肽缓解/小鼠骨骼肌脂质沉积的作用不依赖于体重的下降*
郭婉蓉, 陈宗兰, 曹欢易, 邓洪容, 蔡梦茵, 梁华, 徐芬△
(中山大学附属第三医院,广东省糖尿病防治重点实验室,广东 广州 510630)
探讨降糖药物胰高血糖素样肽1 (GLP-1)受体激动剂艾塞那肽(Exe)对肥胖的/小鼠骨骼肌脂质沉积的作用及相关机制。将8周龄雄性/小鼠随机分为生理盐水对照组(/组)和给药组(/+Exe组),另以野生型(WT)小鼠为WT对照组(WT组)。对/+Exe组小鼠腹腔注射Exe (24 nmol·kg-1·d-1) 4周,而对WT组及/组小鼠腹腔注射等体积生理盐水4周,定期监测干预后小鼠的体重、空腹血糖(FBG)及体脂含量。用油红O染色观察骨骼肌脂质沉积情况;用ELISA进行血清中甘油三酯(TG)、游离脂肪酸(FFA)和总胆固醇及骨骼肌TG定量检测; Western blot检测腺苷酸活化蛋白激酶(AMPK)及脂代谢相关蛋白的表达情况。采用小鼠C2C12成肌细胞进行体外细胞实验,棕榈酸钠(300 μmol/L)或Exe (20 nmol/L)干预24 h后,通过油红O染色及细胞内TG定量观察细胞内脂质沉积情况; Western blot法观察AMPK及脂代谢相关蛋白的表达情况;通过葡萄糖摄取实验观察细胞的葡萄糖摄取能力。与/组相比, Exe治疗对小鼠的体重、FBG、体脂含量及能量摄入无显著影响(>0.05),但可显著降低血清中FFA含量(<0.05)。油红O染色及TG定量结果显示, Exe明显缓解/小鼠骨骼肌中的脂质沉积(<0.05)。Western blot结果显示, Exe可降低/小鼠骨骼肌中脂质合成相关蛋白的表达水平,增加磷酸化AMPK (p-AMPK)和脂质分解相关蛋白的水平(<0.05)。Exe显著缓解棕榈酸钠诱导的C2C12细胞脂质沉积(<0.05),显著升高p-AMPK、脂质分解相关蛋白和葡萄糖转运蛋白4的水平,降低脂质合成相关蛋白的水平(<0.05),并且增强细胞的葡萄糖摄取能力(<0.05)。GLP-1受体激动剂Exe可以缓解/小鼠骨骼肌中的脂质沉积,其作用可能与抑制脂质合成和促进脂质分解相关,且该作用不依赖于体重的下降。
胰高血糖素样肽1;艾塞那肽;骨骼肌;脂质;体重
胰高血糖素样肽1 (glucagon-like peptide-1, GLP-1)主要由肠道L细胞分泌,作用于胰腺上的GLP-1受体(GLP-1 receptor, GLP-1R),促进胰岛素分泌并且减少胰高血糖素的分泌,从而达到降低血糖效果,其作用具有葡萄糖依赖性[1]。GLP-1R激动剂(GLP-1R agonist, GLP-1RA)是一类已被广泛应用于临床的降糖药物[2],除了具有降糖作用以外,近年来的临床研究还显示了其显著的减重作用[3-4]。
本课题组前期研究表明,作为最早批准应用于临床治疗的GLP-1RA,艾塞那肽(exenatide, Exe;又称exendin-4)可以减轻高脂饮食所致小鼠的肥胖、糖耐量受损、胰岛素抵抗、肝脏脂质沉积及白色脂肪增生、肥大[5-7]。除了肝脏及白色脂肪,骨骼肌也是胰岛素作用的重要靶器官之一,在机体糖脂代谢稳态中发挥着重要作用。骨骼肌脂质沉积与胰岛素抵抗以及糖代谢异常有着密切联系,骨骼肌脂质沉积的改善可以提高胰岛素敏感性[8-10]。虽然Exe减重作用确定,而本课题组前期的研究也证实肝脏和白色脂肪为Exe减轻高脂饮食所致小鼠肥胖的靶器官,但Exe对骨骼肌脂质沉积的作用及其与体重减轻的关系仍未明确。因此,本研究在瘦素(leptin)基因突变的/肥胖小鼠模型和C2C12小鼠成肌细胞模型上观察Exe对骨骼肌脂质沉积的作用及其与体重的关系,并探讨可能的分子机制。
材料和方法
1 实验动物和材料
7周龄雄性ob/ob小鼠12只及其野生型(wild-type, WT)小鼠6只(南京大学模式动物研究所,动物合格证号为1107272011000847)。
2 方法
2.1动物实验实验获中山大学动物实验伦理委员会批准。小鼠适应性喂养1周后随机分为WT对照组(WT组)、/小鼠生理盐水对照组(/组)及/小鼠给药组(/+Exe组),每组6只。每组小鼠给予普通饲料(质量百分比碳水化合物占58%、蛋白质占18%、脂肪占4%),自由饮水。随机分组后,/+Exe组每天腹腔注射Exe (24 nmol/kg), WT组和ob/ob组给予等体积生理盐水,持续4周。每周监测小鼠体重、空腹血糖及能量摄入,并在结束前进行体脂含量测定。实验结束后,用异氟烷麻醉小鼠后摘除眼球取血,并颈椎脱臼处死小鼠。取小鼠腓肠肌标本两份,一份在-80℃冰箱保存用于Western blot实验,另一份保存用4%多聚甲醛固定用于形态学实验。
2.2C2C12细胞诱导分化及干预用含10%胎牛血清的高糖(4.5 g/L) DMEM培养基进行细胞培养,待细胞长至80%时,换为含2%马血清的高糖DMEM培养基进行诱导分化,分化成功后进行后续实验。用无血清高糖DMEM培养基进行饥饿4~6 h后分为3组,分别用棕榈酸钠(300 μmol/L)、棕榈酸钠联合Exe (20 nmol/L)及牛血清白蛋白(bovine serum albumin, BSA;作为实验对照)干预24 h。
2.3血脂测定血清中甘油三酯(triglyceride, TG)、游离脂肪酸(free fatty acids, FFA)及总胆固醇(total cholesterol, TC)水平的测定均严格按照BioVision相应试剂盒进行测定。
2.4骨骼肌及细胞TG的测定(1)骨骼肌TG的萃取:剪取20 mg腓肠肌标本并加入200 μL 5% NP-40溶液,进行匀浆;匀浆完全后,沸水加热5 min后冷却至室温再重复加热1次;以14 000 r/min室温离心2 min后取上清,即骨骼肌中的TG。(2) C2C12细胞中的TG通过5% NP-40进行裂解获得。后续严格按照BioVision相关试剂盒说明书进行实验。
2.5油红O染色(1)骨骼肌:小鼠腓肠肌于4%多聚甲醛中浸泡过夜,分别用20%及30%蔗糖溶液进行过夜脱水,脱水后经OCT胶包埋进行切片,切片厚度10 μm,得骨骼肌冰冻切片;称取0.15 g油红O粉末,溶于30 mL异丙醇中,混匀得油红储存液,避光长期4℃保存,以油红储存液∶双蒸水=3∶2配制油红工作液,现配现用;骨骼肌冰冻切片于油红工作液中避光染色75 min,双蒸水轻柔冲洗20 min; 20%苏木精染细胞核1 min后双蒸水漂洗返蓝, 1%盐酸乙醇分色5 s后在此双蒸水漂洗;最后以10%甘油封片;封片后用倒置显微镜进行拍照。(2) C2C12细胞:干预结束后,用1× PBS洗2次,加入4%多聚甲醛进行室温固定15 min;再次用1× PBS洗2次后, 60%异丙醇预处理20 s;加入油红工作液室温避光染色30 min后, 1× PBS洗2次,并用60%异丙醇分色5 s,再次1× PBS洗2次;最后用倒置显微镜进行拍照,整个过程不超过2 h。
2.6Western blot实验取小鼠腓肠肌30 mg至150 μL裂解液中,匀浆后14 000 r/min、4℃离心20 min,取中间清液层得总蛋白。C2C12细胞总蛋白提取同样使用上述裂解液,裂解结束后利用超声破碎仪进行细胞破碎,离心步骤同上。利用BCA试剂盒进行蛋白浓度并配平后取40 μg总蛋白进行电泳,恒压90 V电泳30 min后再恒压110 V电泳60 min,再以恒流300 mA转膜90 min。室温下5%脱脂奶粉封闭1 h后,TBST洗膜3次。根据目标蛋白分子量进行切膜,并分别加入相应的Ⅰ抗稀释液进行过夜4℃孵育。孵育结束后,回收Ⅰ抗稀释液并再次进行洗膜,并以相应的Ⅱ抗稀释液(LI-COR)进行室温避光孵育1 h,随后再次进行洗膜,用Odyssey红外荧光成像系统扫描,保存图片后利用Image-Pro Plus软件进行灰度分析。抗腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)、磷酸化AMPK (phosphorylated AMPK, p-AMPK)、固醇调节元件结合蛋白1c(sterol regulatory element binding protein 1c, SREBP1c)、磷酸化SREBP1c (phosphorylated SREBP1c, p-SREBP1c)、脂肪甘油三酯脂肪酶(adipose triglyceride lipase, ATGL)及葡萄糖转运蛋白4(glucose transporter 4, GLUT4)抗体均购自CST;抗脂蛋白脂肪酶(lipoprotein lipase, LPL)抗体购自Santa Cruz。每组实验重复次数≥3。
2.7葡萄糖摄取实验C2C12细胞干预结束后再次饥饿2 h,随后换为含胰岛素(100 nmol/L)的PBS干预30 min。胰岛素干预结束后,更换为含同位素的缓冲液(140 mmol/L NaCl、20 mmol/L HEPES-Na、5 mmol/L KCl、0.5 mCi/L 2-deoxy-D-[3H]glucose、2.5 mmol/L MgSO4和1.0 mmol/L CaCl2, pH 7.4)室温孵育5 min,用预冷的PBS中止反应。加入NaOH(1 mol/L)裂解细胞并收集至含闪烁液的管子中,使用液体闪烁计数仪进行检测,并用蛋白浓度进行校正。
3 统计学处理
利用SPSS 20.0软件进行统计分析。计量资料以均数±标准误(mean±SEM)表示,多组计量资料用单因素方差分析并用Bonferroni校正的检验进行两两比较。以<0.05为差异有统计学意义。
结果
1 Exe对ob/ob小鼠体重、空腹血糖和能量摄入的影响
/小鼠的体重、空腹血糖、能量摄入及体脂含量均显著高于WT小鼠(<0.05);而Exe干预4周后,/小鼠的体重、空腹血糖、能量摄入及体脂含量均无明显下降(>0.05),见表1。
表1 艾塞那肽对ob/ob小鼠表型的影响
†<0.05WT group.
2 Exe对ob/ob小鼠血脂的影响
/小鼠血清中的TG、FFA及TC均显著高于WT小鼠;而Exe干预4周后,/小鼠血清中的FFA显著下降(<0.05),见表2。
3 Exe对ob/ob小鼠骨骼肌形态学的影响
油红O染色结果显示,/小鼠较WT小鼠有更为明显的骨骼肌脂质沉积;而Exe干预4周后,/小鼠骨骼肌的脂质沉积明显减少,见图1。骨骼肌甘油三酯定量结果同样证明Exe具有减少/小鼠骨骼肌中脂质沉积的作用(<0.05),见表2。
Figure 1. The oil red O staining of skeletal muscle in ob/ob mice after exenatide (Exe) treatment (×200).
表2 艾塞那肽对ob/ob小鼠血脂谱及骨骼肌中甘油三酯含量的影响
†<0.05WT group;‡<0.05/group.
4 Exe对ob/ob小鼠骨骼肌中脂代谢相关蛋白的影响
与WT小鼠相比,/小鼠骨骼肌中p-AMPK及脂质分解相关蛋白ATGL和LPL水平均显著降低(<0.05),脂质合成相关蛋白p-SREBP1c和FAS水平显著升高(<0.05);在Exe干预4周后, p-AMPK、ATGL和LPL蛋白水平显著升高(<0.05),而p-SREBP1c和FAS蛋白水平显著降低(<0.05),见图2。
Figure 2. The effects of exenatide (Exe) on the expression levels of AMPK and lipid metabolism-related proteins in the skeletal muscle of ob/ob mice. Mean±SEM. n=3. †P<0.05 vs WT group; ‡P<0.05 vsob/ob group.
5 Exe对棕榈酸钠诱导的C2C12细胞脂质沉积的影响
油红O染色结果显示, Exe干预后,棕榈酸钠所致的C2C12细胞脂质沉积显著减轻(图3A),并且TG定量结果同样显示C2C12细胞内的TG含量有所降低(图3B)。Western blot结果显示, Exe可以显著增加p-AMPK及脂质分解相关蛋白ATGL和LPL的水平,同时显著减少脂质合成相关蛋白p-SREBP1c及FAS的水平(<0.05),见图3C。此外,葡萄糖摄取实验结果显示, Exe显著增强C2C12细胞的葡萄糖摄取能力,见图3D; Western blot结果也同样显示, Exe显著上调C2C12细胞GLUT4蛋白的表达(<0.05),见图3C。
Figure 3. The effects of exenatide (Exe) on the lipid accumulation, the ability of glucose uptake, the expression levels of AMPK and lipid metabolism-related proteins in the C2C12 cells induced by sodium palmate, a sodium salt of palmitic acid (PA). A: oil red O staining was used to detected the lipid accumulation (×200); B: TG content in the C2C12 cells was detected; C: Western blot was used to detected the protein levels; D: glucose uptake was detected. Mean±SEM. n=3. †P<0.05 vs BSA group; ‡P<0.05 vs PA group.
讨论
GLP-1RA是治疗糖尿病的常用药物之一,除了其降糖作用以外,近年来越来越多临床研究发现GLP-1RA在减重上的显著效果[3-4, 11-12]。有研究表明,在饮食和生活方式干预的基础上给予肥胖患者皮下注射GLP-1RA治疗56周后,与安慰剂组相比,GLP-1RA治疗组有更加显著的降低体重、空腹血糖、糖化血红蛋白、空腹胰岛素水平以及减少血脂(TC、TG及FFA)的作用[4]。Exe作为经典的GLP-1RA,早期多项研究表明其可以减少肝脏脂质沉积[6-7, 12-14],抑制白色脂肪增生和肥大[5, 15]。骨骼肌作为机体胰岛素作用重要的靶器官之一,同时是体内葡萄糖利用的重要场所之一,其脂质沉积对机体胰岛素敏感性及葡萄糖代谢均有负面影响[8-10]。本课题组前期研究的结果表明, Exe可以降低体重并减少高脂饮食所致C57BL/6小鼠的骨骼肌脂质沉积,其作用可能与促进骨骼肌中脂解作用及抑制脂质合成有关[16]。
从本研究的结果可见, 4周的Exe干预可以缓解瘦素基因突变所致肥胖小鼠骨骼肌中的脂质沉积,说明Exe对骨骼肌脂质沉积的缓解作用并不完全依赖于瘦素的作用。但与本课题组前期在高脂饮食所致的肥胖C57BL/6小鼠模型上的研究[5, 7, 16]相比, Exe干预对/小鼠减重和改善糖代谢的作用显著削弱。本课题组前期的研究表明,给予高脂饮食诱导的肥胖C57BL/6小鼠4周Exe干预后,小鼠的体重显著下降[5, 7, 16]。在本研究中,给予/小鼠4周等剂量的Exe干预后,未能观察到明显的体重下降。摄食量结果显示, 4周Exe干预并不减少/小鼠的摄食量,但能明显减少C57BL/6小鼠的摄食量。Williams等[17]的研究表明, GLP-1RA并不能降低瘦素受体缺乏的Koletsky大鼠的摄食量和体重,与我们的观察结果一致。因此, 4周的Exe干预在不同模型上对摄食量及体重产生不一样的效果可能与瘦素相关。此外, Ding等[13]的研究表明,给予/小鼠60 d的Exe干预可以减轻小鼠的体重。本研究中,给予更短时间(4周)的Exe干预并未显著降低/小鼠的体重,但能明显减轻小鼠骨骼肌脂质沉积,除了干预时间不同可能会导致以上差异外,也提示Exe减轻骨骼肌脂质沉积是直接作用而并不单纯是减重的伴随结果,其对骨骼肌的直接作用可能参与到减重的机制当中。在C2C12细胞模型中,我们同样观察到Exe可以缓解棕榈酸钠所致的细胞脂质沉积,与Choung等[18]的研究结果一致,说明Exe对骨骼肌的确存在直接的作用,而不依赖于瘦素的作用。
动物及体外细胞研究表明,Exe可以上调肝脏中p-AMPK的蛋白水平[6, 19-20]。AMPK作为机体的能量感受器,在维持机体能量平衡中具有重要的作用。p-AMPK为AMPK的激活状态,其上调可以抑制脂质合成关键酶的表达[21]。Li等[22]的研究表明,激活小鼠肝脏AMPK可以明显抑制核中脂质合成关键蛋白SREBP1和SREBP2的表达,从而抑制脂质合成并达到减轻肝脏脂质沉积的效果。ATGL是脂肪组织中重要的脂质分解相关蛋白。脂肪组织特异性敲除的小鼠表现为棕色脂肪白色化和白色脂肪增生肥大, AMPK可以促进脂肪组织中ATGL的磷酸化并增强ATGL的脂质分解能力,从而促进脂代谢的平衡[23-24]。LPL是一种水解酶,同样在脂质的分解中起着重要的作用[25-26],亦有报道指出LPL的活性可能也受到AMPK的调节[27]。本研究发现, Exe能上调/小鼠骨骼肌中能量感受器p-AMPK蛋白水平,并且下调脂质合成蛋白p-SREBP1c和FAS蛋白水平和上调脂质分解相关蛋白ATGL和LPL的表达。Exe缓解/小鼠骨骼肌的脂质沉积可能与其直接上调骨骼肌中p-AMPK的表达,从而抑制脂质合成和促进脂质分解有关。在C2C12细胞模型中,我们观察到Exe对上述蛋白的调控作用与动物实验一致。
此外,我们在C2C12细胞模型中观察到Exe可以显著增强细胞的葡萄糖摄取能力。一方面,骨骼肌的脂质沉积可以损伤骨骼肌的葡萄糖摄取能力[10],临床研究也表明骨骼肌的脂质沉积可以导致机体糖耐量受损[9];另一方面,有研究表明激活骨骼肌中的AMPK可以促进骨骼肌的葡萄糖摄取能力[28]。本研究也同样观察到Exe显著增加C2C12细胞中p-AMPK的蛋白水平。因此, Exe通过缓解C2C12细胞的脂质沉积及激活AMPK而增强细胞的葡萄糖摄取能力,提示骨骼肌是改善糖代谢的靶器官之一。
综上所述, GLP-1RA艾塞那肽可以减轻瘦素基因突变(/)所致肥胖小鼠骨骼肌的脂质沉积,其机制可能与促进脂质分解和抑制脂质合成有关,并且不依赖于体重的下降。
[1] Holst JJ. The physiology of glucagon-like peptide 1[J]. Physiol Rev, 2007, 87(4):1409-1439.
[2] Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the ADA and the EASD[J]. Diabetes Care, 2020, 2(43):487-493.
[3] Abreu M, Tumyan A, Elhassan A, et al. A randomized trial comparing the efficacy and safety of treating patients with type 2 diabetes and highly elevated HbA1c levels with basal‐bolus insulin or a glucagon‐like peptide‐1 receptor agonist plus basal insulin: the SIMPLE study[J]. Diabetes Obes Metab, 2019, 21(9):2133-2141.
[4] Pi-Sunyer X, Astrup A, Fujioka K, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management[J]. N Engl J Med, 2015, 373(1):11-22.
[5] Xu F, Lin B, Zheng X, et al. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1[J]. Diabetologia, 2016, 59(5):1059-1069.
[6] Xu F, Li Z, Zheng X, et al. SIRT1 mediates the effect of GLP-1 receptor agonist exenatide on ameliorating hepatic steatosis[J]. Diabetes, 2014, 11(63):3637-3646.
[7] Zheng X, Xu F, Liang H, et al. SIRT1/HSF1/HSP pathway is essential for exenatide-alleviated, lipid-induced hepatic endoplasmic reticulum stress[J]. Hepatology, 2017, 66(3):809-824.
[8] Anderwald C, Bernroider E, Krssák M, et al. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle[J]. Diabetes, 2002, 51(10):3025-3032.
[9] Kautzky-Willer A, Krssak M, Winzer C, et al. Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes[J]. Diabetes, 2003, 52(2):244-251.
[10] Szendroedi J, Roden M. Ectopic lipids and organ function[J]. Curr Opin Lipidol, 2009, 20(1):50-56.
[11] Yan J, Yao B, Kuang H, et al. Liraglutide, sitagliptin, and insulin glargine added to metformin: the effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease[J]. Hepatology, 2019, 6(69):2414-2426.
[12] Dutour A, Abdesselam I, Ancel P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy[J]. Diabetes Obes Metab, 2016, 18(9):882-891.
[13] Ding X, Saxena NK, Lin S, et al. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in/mice[J]. Hepatology, 2006, 43(1):173-181.
[14] Gupta NA, Mells J, Dunham RM, et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway[J]. Hepatology, 2010, 51(5):1584-1592.
[15] Tanaka K. Exenatide improves hepatic steatosis by enhancing lipid use in adipose tissue in nondiabetic rats[J]. World J Gastroenterol, 2014, 20(10):2653-2663.
[16] 曹欢易,徐芬,陈宗兰,等. 艾塞那肽对高脂饮食诱导的肥胖小鼠骨骼肌脂质沉积的作用及机制探讨[J]. 中华医学杂志, 2017, 97(2):131-136.
Cao HY, Xu F, Chen ZL, et al. Effect of exendin-4 on lipid deposition in skeletal muscle of diet-induced obese mice and its underlying mechanism[J]. Natl Med J China, 2017, 97(2):131-136.
[17] Williams DL, Baskin DG, Schwartz MW. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation[J]. Diabetes, 2006, 55(12):3387-3393.
[18] Choung J, Lee Y, Jun H. Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells[J]. J Mol Endocrinol, 2017, 2(58):79-90.
[19] Svegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidationand restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. Liver Int, 2011, 9(31):1285-1297.
[20] Jinmi L, Seok-Woo H, Wan CS, et al. Exenatide improves hepatic steatosis by enhancing lipid use in adipose tissue in nondiabetic rats[J]. PLoS One, 2012, 2(7):e31394.
[21] Carling D, Mayer FV, Sanders MJ, et al. AMP-activated protein kinase: nature's energy sensor[J]. Nat Chem Biol, 2011, 7(8):512-518.
[22] Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J]. Cell Metab, 2011, 13(4):376-388.
[23] Ahmadian M, Abbott MJ, Tang T, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype[J]. Cell Metab, 2011, 13(6):739-748.
[24] Kim S, Tang T, Abbott M, et al. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue[J]. Mol Cell Biol, 2016, 36(14):1961-1976.
[25] Jansen H, Breedveld B, Schoonderwoerd K. Role of lipoprotein lipases in postprandial lipid metabolism[J]. Atherosclerosis, 1998, 141:S31-S34.
[26] Wang H, Astarita G, Taussig MD, et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity[J]. Cell Metab, 2011, 13(1):105-113..
[27] An D, Pulinilkunnil T, Qi D, et al. The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase[J]. Am J Physiol Endocrinol Metab, 2005,288(1):E246-E253.
[28] Musi N, Hirshman MF, Nygren J, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes[J]. Diabetes, 2002, 51(7):2074-2081.
Alleviating effect of exenatide on ectopic lipid accumulation in skeletal muscle of/mice is independent on reducing body weight
GUO Wan-rong, CHEN Zong-lan, CAO Huan-yi, DENG Hong-rong, CAI Meng-yin, LIANG Hua, XU Fen
(,,510630,)
To investigate the alleviating effect of exenatide (Exe), a glucagon-like peptide-1 (GLP-1) receptor agonist, on the ectopic lipid accumulation in skeletal muscle of/mice and its mechanism.Eight-week-old male/mice and their wild-type (WT) littermates were randomly divided into 3 groups,/group,/+Exe group and WT group, and treated with Exe at 24 nmol/kg or the same volume of saline intraperitoneally once daily for 4 weeks. The body weight, fasting blood glucose (FBG) and fat content were measured after the 4-week treatment. The oil red O staining and the quantification of triglyceride (TG) were performed on the skeletal muscle. The serum levels of TG, total cholesterol and free fatty acid (FFA) were also measured by ELISA. The expression levels of AMP-activated protein kinase (AMPK) and lipid metabolism-related proteins were determined by Western blot. Mouse myoblast C2C12 cells were used as anmodel to further investigate the effects of Exe.As compared with the/mice treated with saline, 4-week Exe treatment did not reduce body weight, FBG, food intake and fat content in/mice (>0.05). However, serum FFA was decreased (<0.05). Oil red O staining and the quantification of TG showed that 4-week Exe treatment significantly attenuated the ectopic lipid accumulation in the skeletal muscle of/mice (<0.05). The results of Western blot showed that the levels of phosphorylated AMPK (p-AMPK) and lipolysis-related proteins were up-regulated, while the lipid synthesis-related proteins were down-regulated by Exe (<0.05). Treatment with Exe alleviated the lipid accumulation in the C2C12 cells induced by sodium palmate (<0.05), and the effects of Exe on the levels of p-AMPK and lipid metabolism-related proteins in the C2C12 cells were consistent with those in the/mice (<0.05). Treatment with Exe also up-regulated the protein expression of glucose transporter 4 and improved the ability of glucose uptake in the C2C12 cells (<0.05).Short-term Exe treatment attenuates the ectopic lipid accumulation in skeletal muscle of/mice by up-regulating lipolysis-related proteins and down-regulating lipid synthesis-related proteins, which is independent on body weight loss.
Glucagon-like peptide-1; Exenatide; Skeletal muscle; Lipids; Body weight
R 587.1; R363.2
A
10.3969/j.issn.1000-4718.2020.11.001
1000-4718(2020)11-1921-07
2020-03-05
2020-07-01
国家自然科学基金资助项目(No.81970741; No.81670782);国家自然科学基金青年科学基金资助项目(No. 81300705);“广东特支计划”科技青年拔尖人才(No.2016TQ03R590);广州市科技计划珠江新星专项(No.201610010175);中央高校基本业务费青年教师重点培育项目(No.16ykzd12)
Tel: 020-85252073; E-mail: xufen3@mail.sysu.edu.cn
(责任编辑:余小慧,罗森)