基于Light Fidelity在智慧环境的运用
2020-11-30陈虹旭于川岳李晓坤刘清源孙怡然董潍赫
陈虹旭 于川岳 李晓坤 刘清源 孙怡然 董潍赫
摘 要: 智慧环境,作为互联网技术与环境信息化技术的结合体,显然需要多种多样的信息与数据传输手段,将智慧环境与Light Fidelity技术相结合,更利于环境信息化管理。针对Light Fidelity在智慧环境运用过程中存在的“阴影效应”问题进行探讨与研究,提出基于Haar小波的DWT-OFDM的调制解决方案。同时,分析Polar Code在基于OOK技术的Light Fight通信运用中存在的优势,建立Light Fidelity在智慧环境中的通信系统模型,分析在总衰减系数不同的情况下,Light Fidelity的接收光功率与通信距离的变化关系,并采用加权系数法,优化Light Fidelity路径损耗的计算以及Light Fidelity在智慧环境中的通信性能。
关键词: Light Fidelity;智慧环境;Haar DWT-OFDM;Polar Code
中图分类号: TN929.12 文献标识码: A DOI:10.3969/j.issn.1003-6970.2020.09.037
本文著录格式:陈虹旭, 于川岳, 李晓坤, 等. 基于Light Fidelity在智慧环境的运用[J]. 软件,2020,41(09):137140+144
【Abstract】: Smart environment, as a combination of Internet technology and environmental information technology, obviously needs various means of information and data transmission. The combination of smart environment and Light Fidelity technology is more conducive to environmental information management. Having discussed and studied the “Shadow Effect” of Light Fidelity in the smart environments applications, and the modulation solution of DWT-OFDM based on Haar wavelet is proposed. Meanwhile, the advantages of Polar Code in Light Fidelity communication application based on OOK technology are analyzed, and having built the model of Light Fidelity in the smart environment of the communication system and analysis in total attenuation coefficient of different cases, the Light Fidelity receiving optical power and the change of the communication distance, and weighted coefficient method is adopted to optimize Light Fidelity path loss calculation and the performance in which Light Fidelity in the smart environment of communication.
【Key words】: Light Fidelity; Smart environment; Haar DWT-OFDM; Polar Code
0 引言
隨着IEEE协会在2014年发布802.11ax标准将Wireless Fidelity(无线保真技术,Wi-Fi)推向新的发展浪潮[1-2],但因Wi-Fi以电磁波为信息载体,从而存在一些痛点——易发生电磁波干扰、频带资源有限等等[3]。光保真技术(Light Fidelity,Li-Fi)利用LED灯作为通信发射源,在LED灯中安装微型芯片,采用开关键控(On Off Keying,OOK)技术控制LED灯明灭闪烁,实现信息传输目的[4-6],这意味着Li-Fi不仅建设成本低,而且在无线 通信领域将弥补Wi-Fi等技术的不足。将Li-Fi与智慧环境相结合打造环境信息化,更利于践行“绿水青山就是金山银山”的发展理念[7]。本文针对Li-Fi在智慧环境的运用过程中遇到的难点进行研究与探讨,并给出相关可行性方案。
1 Haar DWT-OFDM
Li-Fi通信的可见光波长范围一般为380 nm~ 780 nm[8]。通常情况下,物体的尺寸远大于此范围,衍射效果不明显,光只能沿直线传播[9]。当物体进入可见光的通信信道时,光线被阻挡,形成所谓的“阴影效应”[10-12],即光线被阻挡导致接收器无法接收到光信号。针对上述问题,可以采用多发射源的方式来解决,如图1所示。
采用多发射源就会存在一个问题:将单一信道变成多个子信道(多载波信号),会导致多信号传输时各个子信号之间相互重叠,发生串扰[13-15]。
正交频分复用(OFDM)可提高LED的窄带调制带宽、Li-Fi频谱效率以及通信速率[16]。然而,由于时域信号的叠加效应,系统的峰均比过高,双极性复数
OFDM时域信号不能应用于可见光通信系统强度调制的直接检测中。这时,可以利用基于离散小波变换的OFDM(DWT-OFDM)进行多载波调制,来抑制系统的峰均比。DWT-OFDM可见光通信系统如图2所示。
由于OFDM系统对正交性要求很高,因此选择了正交性、紧支撑性均良好的小波基Haar小波,其定义式如式(1):
其中,C为常数。图3为OFDM信号的幅度分布,图4为时域的DWT-OFDM信号。
2 Polar Code
Li-Fi通信系统链路易受到噪声的影响,通常采用前向纠错(FEC)来提高系统的可靠性,传统的FEC码[17],如RS(Reed-Solomon)码、LDPC(low-density parity check)码和极化码(Polar Code),前两种FEC码会导致Li-Fi通信系统结构变复杂,传输效率低[18],而Polar Code能够验证香农容量,可以避免这些问题,其简单的编码结构和更好的纠错性能[19],可应用于OOK技术中,由于极化码是基于信道而构造的,限制其不能应用于频率衰减的信道中,为了减少由于频率衰减而引起的损耗,提出了一种结合极化码的编码器与副载波映射的方法[20-22],如图5所示。
在发送端,假定对于一个码字x,其长度为N(N=2n,n为正整数),某信息的二进制序列长度为K,因此,编码率为:
2×2极化核的n倍Kronecker积。图6为Polar Code与二进制相移键控(BPSK)的对比图。
3 系统模型
在智慧环境中,可以建立数据采集系统[23],如图7为Li-Fi通信系统模型。
此外,可见光在某些智慧环境中传输信号会有路径损耗(Path Loss),其包括衰减损耗(Attenuation Loss)和几何损耗(Geometrical Loss)[24-26]。
衰减损耗(PAL)一般用Beer-Lambert定律来定义:
其中,c(λ)为总衰减系数,x为通信距离。衰减损耗的前提——首先,光源发射器和信号接收器是完全对准的;其次,即便在实际情况中一些散射光子在多次散射之后仍可以到达接收器,但是所接收到的散射光子仍会消失[27-29]。为了解决该问题,提出了两个指数的加权函数(PML):
其中,u1、u2、v1、v2均为加权参数(the weighting parameters,TWP),都通过最小均方算法(LMS)对统计模拟方法(Monte Carlo Method)得到的仿真数据进行计算而得出。
而几何损耗,是由于光在环境中发生折射和散射所造成的,这会导致光信号大量损耗,几何损耗可表示为:
其中S为光电探测器面积,φ是辐射角度,m为朗伯(Lambertian)辐射阶数,其表达式为:
其中φ1/2为光源发射半角。
而光斑的扩展也会限制无线光信号的传输[30]。光斑扩展特性受光源发散角、光源设备的发射半径、光学天线设备的接收半径以及通信距离的影响。光信号的传输不仅受光斑扩展的影响,还受固有光学特性的影响。图8为Li-Fi通信光斑几何模型。
4 实验与分析
根据第3节式(12)-(15),用Matlab对路径损耗(P)进行绘图,实验参数如表1。
图9为有无加权参数(TWP)情况下的路径损耗(P)与通信距离的关系。
由此可见,在有加权参数的情况下,路径损耗的绝对值比没有加权参数的要小,而且路径损耗也随着通信距离的增加而增大。
根据第3节式(16)—(19),用Matlab对接收光功率进行绘图,实验参数如表2所示。
图10为总衰减系数不同的情况下,接收光功率与通信距离的关系。
由此可见,接收光功率受通信距离与总衰减系数影响,总衰减系数越大,接收光功率衰减越快,通信距离越远,接收光功率越小,这也从侧面证明了Li-Fi适用于短距離传输信息。
5 结语
本文介绍了在基于Li-Fi技术于智慧环境的运用过程中,主要存在的痛点及解决方案。为克服“阴影效应”问题,提出了一种基于Haar小波的DWT-OFDM调制技术的可行性方案,并探讨了Polar Code在Li-Fi通信的OOK技术中的应用。同时,建立了Li-Fi在智慧环境中的通信系统模型,分析了在基于该模型的Li-Fi通信运用中产生的问题,并提出相关解决方案。通过实验可以看出,路径损耗主要受通信距离的影响,用指数加权函数优化路径损耗计算方法从而得到的数据比传统模式下的计算方法要小,并且随着通信距离的增加,这样的优势越发明显,而接收光功率不仅受通信距离的影响,还受总衰减系数的影响,这表明Li-Fi受环境因素制约的同时也受通信距离的限制,因此,Li-Fi更适用于短距离通信,这样的性质使得Li-Fi在智慧环境中一些要求高速通信、安全性高、通信距离短的领域中得到更好地运用,并在智慧环境中,可以有效弥补其他无线通信的不足。
参考文献
[1]Der-Jiunn Deng, Kwang-Cheng Chen, et al. IEEE 802. 11ax: Next generation wireless local area networks[J]. QSHINE, 2014 10th International Conference on, 2014: 77-79.
[2]Li Qishan, Hu Zhiqun, et al. On-line learning algorithm for dynamic sensitivity control in IEEE 802. 11ax network[J]. The Journal of China Universities of Posts and Telecommunications, 2018: 67-68.
[3]Ali Tufail, Mike Fraser, et al. An empirical study to analyze the feasibility of WIFI for VANETs[J]. IEEE Conference on Computer Communications, 2008: 553-554.
[4]Vasu Dev Mukkua, Sebastian Langa, et al. Integration of LiFi Technology in an Industry 4. 0 Learning Factory[J]. Procedia Manufacturing, 2019: 224.
[5]Rashed Islam, M. Rubaiyat Hossain Mondal, et al. Hybrid DCO-OFDM, ACO-OFDM and PAM-DMT for dimmable LiFi[J]. Optik, 2019: 939-940.
[6]Mithun Mukherjee, Jaime Lloret, et al. Leveraging light-fidelity for internet of light: State-of-the-art and research challenges[J]. Internet Technology Letters, 2018: 1-2.
[7]Xue-xuan Xu, Tong-jun Ju, et al. Sediment sources of Yan'gou watershed in the Loess Hilly region China under a certain rainstorm event[J]. SpringerOpen, 2013: 2-3.
[8]Gonzalez-Camejo, Viruela, et al. Dataset to assess the shadow effect of an outdoor microalgae culture[J]. Data in brief, 2019: 1-25.
[9]Januszkiewicz, Lukasz. Analysis of human body shadowing effect on wireless sensor networks operating in the 2. 4 GHz band[J]. Sensors, 2018: 1-2.
[10]Ali, Hatam H., Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-2.
[11]Hatam H. Ali, Mohd Shahrizal Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-3.
[12]Park, Cheol Young, et al. Effects of surface treatment of ITO anode layer patterned with shadow mask technology on characteristics of organic light-emitting diodes[J]. Organic Electronics, 2013: 1-2.
[13]Nihat Daldal, et al. Classification of multi-carrier digital modulation signals using NCM clustering based feature- weighting method[J]. Computers in Industry, 2019: 45-46.
[14]Zhang Xing, et al. Blind interference detection and recognition for the multi-carrier signal[J]. The Journal of China Universities of Posts and Telecommunications, 2017: 48-50.
[15]Sasan Mahmoodi. Discontinuity preserving method for noise removal of multi-carrier signals[J]. Signal Processing, 2017: 8-9.
[16]Jia Kejun, et al. Modeling of Multipath Channel and Performance Analysis of MIMO-DCO-OFDM System in Visible Light Communications[J]. Chinese Journal of Electronics, 2019: 630-631.
[17]Haochuan Song, et al. Polar-coded forward error correction for MLC NAND flash memory[J]. Science China Information Sciences, 2018: 1-16.
[18]I. Tal, et al. How to construct polar codes[J]. IEEE Trans. Inf. Theory, 2013: 6562-6582.
[19]T. Koike-Akino, et al. Bit-interleaved polar-coded OFDM for low-latency M2M wireless communications[J]. Proc. IEEE Int. Conf. Commun., 2017: 1-7.
[20]HE Jing, et al. An Efficient Encoder-Subcarrier Mapping Method Combined With Polar Code for Visible Light Communication[J]. IEEE Access, 2019: 69120-69121.
[21]I. Tal, A. Vardy. List decoding of polar codes[J]. Proc. IEEE Int. Symp. Inf. Theory, 2011: 1-5.
[22]L. Liu, et al. High performance and cost effective CO-OFDM system aided by polar code[J]. Opt. Express, 2017: 2763-2770.
[23]Irina Stefan, Hany Elgala, Harald Haas. Study of dimming and LED nonlinearity for ACO-OFDM based VLC systems[J]. IEEE Wireless Communications and Networking Conference, 2012: 990-991.
[24]Farshad Miramirkhani, Murat Uysal. Visible Light Communication Channel Modelingfor Underwater Environments WithBlocking and Shadowing[J]. IEEE Access, 2017: 1084- 1085.
[25]N. Lourenc, et al. Visible light communication system for outdoor applications[J]. Proc. 8th Int. Symp Commun Syst, Netw Digit Signal Process, 2012: 1-6.
[26]T. Komine, M. Nakagawa. “Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Trans Consum Electron, 2004: 100-107.
[27]L. Liu, et al. Performance evaluation of high-speed polar coded CO-OFDM system with nonlinear and linear impairments[J]. IEEE Photon, 2017, Art. no. 7202909.
[28]J. He, et al. An ISFA-combined pilotaided channel estimation scheme in multiband orthogonal frequency division multiplexing ultra-wideband over fiber system[J]. Proc. IEEE Symp. Comput. Commun. (ISCC), 2015: 913-917.
[29]K. Niu, et al. Polar codes: Primary concepts and practical decoding algorithms[J]. IEEE Commun. Mag., 2014: 192-203.
[30]Yan Zhou, et al. Beam spreading, kurtosis parameter and Strehl ratio of partially coherent cosh-Airy beams in atmospheric turbulence[J]. Optik, 2019: 656-657.