关于智能变电站继电保护系统的可靠性分析
2020-11-20郝怡丹薛真
郝怡丹 薛真
摘要:近年来,随着社会经济的飞速发展,全社会范围内的用电量急剧增加,传统的变电站在运行过程中对继电保护系统的检测不足,常常导致供电的持续性和稳定性无法得到有效的保障。智能变电站具有较强的自动化作业功能,能够有效检测出继电保護系统的运行故障,为后续的检修、维护提供有益的指导。智能化技术在变电站中的有效使用,给继电保护工作的开展指明了方向、思路,以及路径。对传统变电站继电保护系统的试验方法与智能变电站继电保护系统的检测方法进行了对比阐述,希望能够给相关的工作人员提供参考启示,推动我国智能变电站继电保护检测工作的进一步发展。
关键词:智能变电站;继电保护系统;可靠性分析
引言
近年来,随着电网快速建设,越来越多的智能变电站投入运行。区别于传统变电站中的保护装置,智能站的继电保护装置有着很大改变,其运行维护手段也不能一概而论。目前,将状态检修应用于一次设备方面的研究和实践成果颇丰。在借鉴此经验的基础上,提出了智能站继电保护装置的状态检修策略,可以为智能变电站继电保护装置状态检修工作的开展提供了理论支持和实践基础。
1智能变电站概述
智能变电站是现代科学技术与电力事业有效融合的体现,所以从定义角度进行分析,智能变电站是采用先进、可靠、集成和环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和检测等基本功能,同时,具备支持电网实时自动控制、智能调节、在线分析决策和协同互动等高级功能的变电站,所以相比于传统变电站来说,智能变电站的功能更加全面,工作优势明显,以下将从三个角度入手进行分析:a.结构优势,在传统变电站当中,虽然具有网络结构,但由于其特点并不明显,在一次和二次设备之间多数以采用电缆的硬接点、后台的通信方式为主要采集和传输信息的手段,所以工作效率较低,而反观智能变电站,由于每个设备之间都与网络结构相互连通,所以各层均使用网络方式对信息进行收集和传输,所以信息的共享效果较好,能够极大程度的提高电网的智能化水平。b.二次设备的布置方式,在传统变电站当中,二次设备的布置方式主要是通过微机保护,将交流的输入组件、A/D转换组件、保护逻辑CPU、开入/开出等组件集成到一起,而智能变电站的二次设备布置方式仅需要对一次设备和二次设备重新进行定位,将保护装置交流的出入组件与A/D转换组件结合成为一个合并单元,并将其放在就地的TA和TV周围。c.保护接口,传统变电站的保护接口兼容度较低,从实际情况来看,多数传统变电站仅能够支持5A或100V类模拟量接口,所以相对具有一定局限性,而智能变电站的保护接口除却能够支持点对点模式外,还能够支持GOOSE模式下SV和GOOSE模式下接口,所以工作相对灵活高效。
2智能变电站继电保护系统的可靠性
2.1确定智能站继电保护状态检修策略
建立状态指标集可以发现其中包含了众多指标,且不同指标之间关联性不强。目前,应用较多的多状态指标模型主要为比例失效模型和模糊评价模型,二者之间各有各的优劣,从下面四个指标上选取最优模型。(1)模型计算精度:模糊评价模型主要使用了模糊数学理论,在判断中会受到经验导向的作用,主观性较强,极其容易接收专家经验的不良影响,结果有时会出现较大偏差。但是,比例失效模型是基于统计学原理的模型,模型中使用了大量的历史客观数据。基于这些历史数据的数据分析产生的结果具有较强的客观性和可靠性,不像模糊评价模型一样受到专家经验的不良影响,精度较高。(2)模型计算速度:模糊评价模型的计算方法运用到了权重集理论,即层次分析法和主成分分析法。计算中各类关系矩阵较为麻烦,且建立状态指标的隶属函数需要使用专家经验,计算速度较慢。而比例失效模型的计算过程中,运用到了极大似然估算法,在初值不太好的情况下可能出现不收敛的情况。虽然计算方法相较于模糊评价模型较快,但是出现不收敛的情况势必会影响计算结果。(3)模型计算结果:模糊评价模型运用的计算方法会导致其计算结果是一串离散阈值,没有时间性,与现场的实际情况不符。而比例失效模型由于其计算方法,可以得到一个随着时间不断变化的动态阈值,于现场实际情况极其吻合,满足设备状态随着时间不断恶化的这一特性。
2.2加强继电保护设备管理力度
由于设备对于继电保护系统发挥功能具有决定性作用,所以电力企业则应当从影响设备的主要因素入手加强管理意识。在继电保护设备的应用当中,首先应当把控设备采购质量,确保设备能够达到行业标准,并符合本变电站工作需求,在设备安装完毕后,应当通过多次调试,验证设备的稳定性和工作水平,由于设备长期处于外界环境工作,所以还应当结合当地气候条件等因素,建设防护措施,降低风险,管理人员可以通过监控系统的布置和应用,提高对设备故障的发现能力和解决速度,并且在设备的使用周期当中,应当有针对性的制定维修和养护计划,对设备所存在的隐患排查和处理,提高设备的工作效率和使用寿命。
2.3优化智能变电站继电保护系统设计
在智能变电站继电保护系统的设计工作当中,应当选取更加具有可行性和针对性的保护模式,在间隔型保护模式中,可以选择直采直跳,而如果是多间隔型保护,则可以通过SV或GOOSE模式。在电压限定延时的情况下,则需要确保系统能够在过负荷的情况下发出警报,以便于维修工作及时展开。此外,在继电保护系统中的间隔层和站控层中,除却需要通过断路器实现自动开断外,还应当开启后备的保护系统,避免由于开关失灵导致保护工作缺乏有效性和及时性。针对继电保护系统所进行的故障检测工作,需要工作人员能够对科技设备良好的应用,通过设备的可视化功能,更加直观的发现故障情况,以便于制定针对性的解决方案。
结语
建立了智能变电站继电保护装置状态指标集,提出了智能站继电保护装置的状态检修策略,为智能变电站继电保护装置状态检修工作的开展提供了理论支持和实践基础。
参考文献:
[1]曲鸿春,刘邦,蒋冬,等.继电保护全过程技术监督系统的构建[J].电工技术,2019(15):93-94+99.
[2]赵亚丽.智能变电站继电保护系统所面临的若干问题[J].中小企业管理与科技(中旬刊),2018(11):140-141.
[3]徐丽彬.电厂继电保护安全管理运行的探讨[J].南方农机,2018,49(20):180.