拔节期阶段性干旱对小麦茎蘖成穗与结实的影响
2020-11-16李萍尚云秋林祥刘帅康王森胡鑫慧王东
李萍,尚云秋,林祥,刘帅康,王森,胡鑫慧,王东,2
(1山东农业大学/作物生物学国家重点实验室,山东泰安 271018; 2淄博禾丰种业科技股份有限公司, 山东临淄 255000)
0 引言
【研究意义】黄淮海地区是中国小麦主产区,其小麦生产对保障国家粮食安全具有重要作用。然而受全球气候变化的影响,该地区干旱频繁发生,特别是近年来随着气候变暖趋势的加剧,冬春两季干旱发生频率和危害程度逐渐加强,对小麦分蘖成穗和结实产生诸多不利影响,成为该地区小麦生产的重要限制因素[1-2]。拔节期是小麦分蘖两极分化和穗花分化的重要时期。探索拔节期不同水分条件对小麦茎蘖成穗和结实的调节作用及其生理基础,对春季麦田合理灌溉技术的研发具有重要参考价值和生产指导作用。【前人研究进展】分蘖是小麦等禾本科作物的重要农艺性状。小麦在生长进程中发生无效分蘖,造成一定的“生长冗余”[3]。在资源受限的情况下,这种生长冗余会对小麦生产造成不利的影响[4]。国内外学者对分蘖成穗特性做了大量研究[5-7]。越来越多的学者认为,小麦产量的进一步增加主要依赖于控制无效分蘖的数量,增加动摇分蘖的成穗率,使茎蘖成穗率和群体质量提高[8-10]。小麦分蘖消亡和开花结实受多基因加性效应的控制,且易受幼穗分化过程中栽培因素和环境的影响[11-12]。小麦拔节期不同程度干旱均影响已发生分蘖的生长发育,最终影响分蘖的成穗与结实[13-15]。将灌溉时间由主茎基部第一节间伸长期(拔节期)推迟到第四节间伸长期(旗叶抽出期),即拔节期适度干旱虽然显著降低成穗数,但增加了穗粒数、而且延缓了开花后叶片衰老、显著提高叶片净光合速率、籽粒灌浆速率、千粒重、籽粒产量和水分利用效率[16]。然而拔节期过度干旱则会降低小麦有效穗数和穗粒数,严重干旱条件下小麦千粒重、单株和单位面积籽粒产量亦显著降低[17-18]。小麦主茎与不同蘖位分蘖间穗花分化存在明显的时间差,主茎穗花分化明显早于分蘖,低位蘖又早于高位蘖,这种时间差造成不同茎蘖的生长条件和营养条件不同,最终导致不同茎蘖经济产量存在明显的差异[19]。【本研究切入点】前人关于干旱胁迫时段或胁迫程度对小麦成穗和结实影响的研究,多采用主茎或随机采集的茎蘖,而关于主茎和不同蘖位分蘖对拔节期干旱响应差异的研究鲜有报道。【拟解决的关键问题】本试验在盆栽条件下,设置拔节后不同干旱程度及干旱持续时间处理,探索拔节期短时间干旱对主茎和不同蘖位分蘖成穗与结实特性、单茎生产力及单位面积籽粒产量的影响,以期为黄淮海地区冬小麦节水栽培提供理论依据和技术支持。
1 材料与方法
1.1 试验设计
试验于2017—2019年小麦生长季,在山东省泰安市岱岳区道朗镇试验基地遮雨棚内进行。试验点位于 116°54′E,36°12′N,属于温带大陆性气候,年平均气温 13.0—13.6℃。选用冬小麦品种山农 29(具有10 500 kg·hm-2高产潜力)和衡 0628(具有 9 000 kg·hm-2高产潜力)为试验材料。采用盆栽方式,试验用土取自本地高产田0—20 cm耕层土,土壤类型为粉壤土。2017—2018年度试验土壤养分含量为有机质15.5 g·kg-1,全氮 0.8 g·kg-1,碱解氮 85 mg·kg-1,有效磷 33.3 mg·kg-1,速效钾 126 mg·kg-1;2018—2019 年度试验土壤养分含量为有机质 15.7 g·kg-1,全氮 0.8 g·kg-1,碱解氮 88 mg·kg-1,有效磷 33.0 mg·kg-1,速效钾 124 mg·kg-1。土壤过 5 mm筛后,称取10 kg装入高26 cm、盆口直径30 cm、盆底直径20 cm的棕色聚乙烯塑料盆内,统一压实后测定土壤最大持水量,两年度分别为28.5%和27.8%。每盆施用N、P2O5和K2O含量均为15%的三元复合肥4.5 g,平铺于距盆口10 cm深处,其上覆土10 cm。播种时挑选饱满、无损、发育良好、大小一致的种子,播种深度为3 cm,每盆播9穴,每穴播2粒,三叶一心期定苗至1株/穴(180 株/m2)。拔节期追施尿素(N含量为46%)1.5 g,追肥时用水将尿素溶解后均匀浇灌于盆内。
试验采用随机区组设计,共5个处理,每个处理种植60盆。设置拔节后0—5 d轻度干旱(T1,保持土壤相对含水量为 65%—70%,土壤有效含水量为33.4—37.8 mm)、拔节后0—5 d重度干旱(T2,保持土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1 mm)、拔节后 0—10 d 轻度干旱(T3,保持土壤相对含水量为65%—70%,土壤有效含水量为33.4—37.8 mm)、拔节后 0—10 d 重度干旱(T4,保持土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1 mm)4个干旱处理,以全生育期充分供水处理为对照(CK,保持土壤相对含水量为75%—80%,土壤有效含水量为42.2—46.7 mm)。拔节前5 d开始控水,达到目标含水量时进行相应时间的处理,干旱处理结束后再将土壤含水量恢复至对照水平。采用称重法控制土壤水分,每2 d称重一次,以相邻2次重量的差值确定补灌水量,以保证各盆内土壤有效含水量和土壤相对含水量控制在设定的范围内。其他管理措施尽量保持一致[19-20]。
2017—2018年度,试验于2017年10月16日播种,于2018年3月21日开始控水,使土壤含水量逐渐下降,T1和T2处理于3月26日至3月31日正式实施干旱处理,3月31日干旱处理结束后恢复至CK水平;T3和T4于3月26日至4月5日正式实施干旱处理,4月5日干旱处理结束后恢复至CK水平;收获时间为2018年6月12日。2018—2019年度,试验于2018年10月8日播种,于2019年3月29日开始控水,使土壤含水量逐渐下降,T1和T2处理于4月2日至4月7日正式实施干旱处理,4月7日干旱处理结束后恢复至CK水平;T3和T4于4月2日至4月12日正式实施干旱处理,4月12日干旱处理结束后恢复至CK水平。
1.2 测定项目与方法
1.2.1 标记主茎和不同蘖位分蘖 自小麦第一个分蘖出现开始,用不同颜色的回形针标记主茎和新出现的分蘖。用O代表主茎,用Ⅰ、Ⅱ、Ⅲ、Ⅳ分别代表由主茎的第1、2、3、4叶的叶腋中长出的分蘖,用Ⅰp和Ⅰ1分别代表由分蘖Ⅰ上长出的第一和第二个分蘖,用Ⅱp代表由分蘖Ⅱ上长出的第一个分蘖[20]。
表1 小麦幼穗发育时期Table 1 Spike developmental score of wheat
1.2.2 茎蘖成穗和结实性状的调查 成熟期按蘖位分样,每处理取6盆(6次重复),调查主茎及不同蘖位分蘖的成穗和结实情况,计算每盆有效穗数、每穗总小穗数、每穗结实小穗数、每穗穗粒数、单粒重、单穗产量。每处理取10盆,全部收获脱粒后晾晒至含水量达12.5%左右时称重,计算单位面积籽粒产量。
成穗率=每盆主茎或各蘖位分蘖成穗数/对应每盆主茎或各蘖位分蘖最高发生数×100%。
1.2.3 茎蘖幼穗发育进程的调查 拔节期0 d开始,每隔5 d观察一次,共观察3次。每次取有代表性的植株3—5株在体视显微镜下解剖,观察其幼穗发育状态,确定其幼穗发育阶段。小麦幼穗发育时期(表1)参照 WADDINGTION的划分方法[21],发育阶段用W表示。
1.3 数据分析
采用 Microsoft Excel 2013 和 DPS 软件进行数据处理,采用LSD最小显著差异比较法进行差异显著性检验。
2 结果
2.1 主茎及不同蘖位分蘖幼穗发育进程对拔节期阶段性干旱的响应
衡0628茎蘖幼穗发育进程与山农29相近,部分分蘖稍有滞后;分蘖幼穗发育进程滞后于主茎;随蘖位的升高,主茎与分蘖幼穗发育进程差异逐渐拉大(表2)。2017—2018年度,拔节后0—5 d干旱,主茎穗分化进程处于 W5—W6阶段,Ⅰ和Ⅱ多处于 W4.25—W5.5阶段或W4—W4.5阶段,Ⅲ、Ⅰp和Ⅳ多处于W4—W5或W4—W4.25阶段,高位蘖(Ⅱp和Ⅰ1)多处于W3.5—W4.25或W3—W4阶段;拔节后10 d,O和Ⅰ蘖穗分化进入W7期,Ⅱ、Ⅲ和Ⅰp蘖多处于W6.5期,IV和Ⅱp多处于W6期,I1蘖多处于W5.5期。2018—2019年度,拔节后干旱处理期间,主茎和各蘖位分蘖穗分化所处的阶段与前一年度相近,趋势基本一致。与充分供水相比,轻度干旱对茎蘖穗分化发育进程无显著影响,重度干旱条件下,低位蘖(Ⅲ、Ⅰp)和高位蘖(Ⅳ)幼穗发育进程有所延缓。
表2 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖幼穗所处的发育进程阶段的影响Table 2 Effects of staged drought at jointing on development process of young spike of main stem and tillers at different positions of wheat
2.2 主茎及不同蘖位分蘖成穗率对拔节期阶段性干旱的响应
山农29茎蘖成穗率较衡0628高;主茎与不同蘖位分蘖间比较,其成穗率2个品种均表现为O≥Ⅰ≥Ⅱ>Ⅲ>Ⅰp>Ⅳ>Ⅱp>Ⅰ1(表3)。拔节期不同程度干旱对2个小麦品种茎蘖成穗率的影响在2个年度表现一致,拔节期阶段性干旱对主茎成穗率的影响较小,各处理主茎成穗率均为 100%,但对分蘖成穗率的影响较大,随着干旱程度的加剧和干旱时间的延长,低位蘖(Ⅲ和Ⅰp)和高位蘖(Ⅳ)成穗率迅速下降,高位蘖(Ⅱp和Ⅰ1)成穗率呈先增加后降低的趋势。与CK相比,T1和T2处理低位蘖(Ⅰ和Ⅱ)成穗率降低,高位蘖成穗率有所增加;T3处理的低位蘖成穗率显著降低,高位蘖成穗率保持不变;T4处理除 O和Ⅰ蘖外,其余分蘖成穗率均显著下降。品种之间比较,低位蘖成穗率在拔节期各干旱条件下的平均降幅表现为衡0628(下降6.45个百分点)>山农29(下降5.19个百分点),高位蘖的平均增幅表现为衡0628(增加0.14个百分点)<山农29(增加3.79个百分点)。上述结果说明山农29对拔节期阶段性干旱的抗性高于衡0628,拔节后0—5 d轻度干旱处理可增加高位蘖成穗率,提高单位面积穗数。
表3 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖的成穗率的影响Table 3 Effects of staged drought at jointing on percentage of ear bearing main stem and tillers at different positions of wheat (%)
2.3 主茎及不同蘖位分蘖可见总小穗数对拔节期阶段性干旱的响应
衡0628茎蘖可见总小穗数高于山农29;随蘖位的升高,可见小穗数呈明显的下降趋势,相邻蘖位之间差异不显著(表4)。拔节期不同程度干旱对2个小麦品种茎蘖可见总小穗数的影响在2个年度表现一致,与CK相比,T1和T2处理茎蘖可见总小穗数和平均单茎可见总小穗数呈降低趋势,且2个处理间差异不显著;T3和T4处理各蘖位分蘖小穗数显著降低,主茎小穗数未受显著影响,单茎平均可见小穗数显著降低,2个处理间差异不显著。山农29的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1的可见总小穗数在 T3和 T4处理下,平均降低幅度为5.64%、6.63%、6.07%、5.79%、5.57%、6.40%、5.18%和1.93%,单茎平均小穗数降低了5.03%,衡0628的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1的可见总小穗数在T3和T4处理下,平均降低幅度为6.51%、7.27%、7.17%、7.20%、6.76%、6.46%、6.05%和1.88%,单茎平均小穗数降低了5.77%。上述结果说明,与全生育期充分供水相比,拔节后0—5 d轻度和重度干旱对 2个小麦品种茎蘖小穗数无显著影响,拔节后 0—10 d干旱显著降低各成穗分蘖的小穗数,且以低位蘖(Ⅲ和Ⅰp)和高位蘖(Ⅳ)降低幅度较大。2个品种之间比较,山农29各干旱处理茎蘖小穗数平均降幅(3.66%)小于衡0628(4.44%)。
表4 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖可见小穗数的影响Table 4 Effects of staged drought at jointing on spikelet number of main stem and tillers at different positions of wheat(spikelets/spike)
2.4 主茎及不同蘖位分蘖结实小穗数对拔节期阶段性干旱的响应
衡0628茎蘖的结实小穗数高于山农29;随蘖位的升高,结实小穗数呈降低趋势。山农29的Ⅲ和Ⅰp之间差异显著,其余相邻蘖位之间差异不显著;衡0628的O和Ⅰ之间、Ⅰ和Ⅱ之间差异显著,其余相邻蘖位之间差异不显著。拔节期不同程度干旱对2个小麦品种各茎蘖结实小穗数的影响表现一致,其中对主茎的影响较小,对分蘖的影响较大(表 5)。与 CK相比,T1处理对茎蘖结实小穗数和平均单茎结实小穗数无显著影响;T2处理显著降低除Ⅰ之外的低位蘖结实小穗数,对主茎与高位蘖结实小穗数无显著影响;T3和T4处理显著降低茎蘖结实小穗数和单茎平均结实小穗数,2个处理间无显著差异。山农29的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1结实小穗数在T3和T4处理下,较CK平均降幅为6.47%、7.76%、10.76%、9.36%、9.20%、8.44%、9.70%和9.32%,平均单茎结实小穗数降低7.94%;衡0628的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1结实小穗数在T3和T4处理下,较CK平均降幅为6.66%、9.31%、11.21%、10.56%、11.04%、11.18%、10.82%和10.42%,平均单茎结实小穗数降低8.62%。上述结果说明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对茎蘖的结实小穗数无显著影响,短期重度干旱显著降低中位蘖的结实小穗数;拔节后0—10 d轻度干旱和重度干旱处理均显著降低了主茎和分蘖的结实小穗数,且低位蘖(Ⅲ和Ⅰp)和高位蘖(Ⅳ)较其他分蘖大。品种之间比较,山农29各干旱处理茎蘖结实小穗数平均降幅(5.95%)小于衡0628(6.95%)。
2.5 主茎及不同蘖位分蘖穗粒数对拔节期阶段性干旱的响应
衡0628主茎穗和分蘖穗的穗粒数多于山农29,主茎穗粒数多于分蘖。拔节期不同程度干旱对2个小麦品种茎蘖穗粒数均有明显的影响,2年结果趋势一致,均表现为随干旱程度增强和干旱时间延长,穗粒数呈逐渐降低的趋势(表6)。与CK相比,T1处理各茎蘖穗粒数无显著变化;T2处理主茎和高位蘖穗粒数无显著变化,低位蘖穗粒数显著降低;T3和T4处理主茎和各成穗分蘖的穗粒数均显著降低。T1与 T2处理间无显著差异,T2与T3处理间无显著差异,但均显著大于 T4处理。各茎蘖之间比较,2个品种在T2、T3和 T4处理下均表现为主茎穗粒数平均降幅(7.02%)<高位蘖平均降幅(8.52%)<低位蘖平均降幅(9.77%)。上述结果表明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对各茎蘖穗粒数无显著影响,但重度干旱减少低位蘖和中位蘖穗粒数;拔节后0—10 d轻度和重度干旱均显著降低主茎和分蘖的穗粒数,且中位蘖降低幅度较大。品种之间比较,各干旱处理下山农 29主茎穗和分蘖穗穗粒数平均降幅(6.73%)小于衡0628(7.93%)。
表5 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖结实小穗数的影响Table 5 Effects of staged drought at jointing on fruiting spikelet number of main stem and tillers at different positions of wheat(spikelets/spike)
表6 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖穗粒数的影响Table 6 Effects of staged drought at jointing on grain number of main stem and tillers at different positions of wheat (kernels/spike)
2.6 拔节期阶段性干旱对主茎及不同蘖位分蘖单粒重的影响
山农29主茎穗和分蘖穗平均单粒重高于衡0628;随蘖位的升高,单粒重呈逐渐降低趋势,相邻蘖位之间差异不显著。拔节期不同程度干旱对2个小麦品种茎蘖单粒重的影响在2个年度表现一致(表7)。与CK相比,T1处理主茎穗和分蘖穗的平均单粒重无显著变化;T2处理下,山农29主茎穗和分蘖穗单粒重无显著变化,而衡0628各蘖位分蘖单粒重显著降低;T3和T4处理主茎和各蘖位分蘖单粒重均显著降低。T2与T3处理间无显著差异,T3与T4处理间无显著差异,T2处理显著大于T4处理。山农29的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1结实小穗数在T3和T4处理下,较CK平均降幅为5.96、6.73%、8.05%、9.13%、8.84%、8.49%、7.78%和7.04%;衡0628的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1单粒重在T3和T4处理下,较CK平均降幅为6.07%、7.79%、8.94%、9.99%、9.29%、8.90%、8.56%和 8.26%。上述结果表明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对2个小麦品种茎蘖单粒重无显著影响;拔节后 0—10 d干旱显著降低主茎穗和各蘖位分蘖穗的单粒重,且以Ⅲ、Ⅰp和Ⅳ蘖单粒重下降幅度较大。2个品种之间比较,山农29各干旱处理茎蘖单粒重平均降幅(5.55%)小于衡0628(7.71%)。
表7 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖单粒重的影响Table 7 Effects of staged drought at jointing on single-kernel weight of main stem and tillers at different positions of wheat (mg/kernel)
2.7 拔节期阶段性干旱对主茎及不同蘖位分蘖单穗产量的影响
山农29主茎穗和分蘖穗的单穗产量高于衡0628;随蘖位的升高,单穗产量呈逐渐降低趋势,相邻蘖位之间差异显著。拔节期不同程度干旱对2个小麦品种主茎穗和分蘖穗的单穗产量的影响2年结果趋势一致(表8)。与CK相比,T1处理主茎穗和分蘖穗的单穗产量无显著变化;T2处理主茎穗和高位蘖穗的单穗产量无显著变化,低位蘖穗的单穗产量显著降低,平均单穗产量显著降低;T3和T4处理的主茎穗和分蘖穗单穗产量均显著降低,T3处理显著大于T4处理,但与T2处理无显著差异。T2、T3和T4处理分别与CK相比,山农29平均单穗产量下降幅度分别为5.14%—5.46%、8.53%—8.55%和13.36%—16.68%,衡0628平均单穗产量下降幅度分别为5.45%—6.24%、9.20%—9.69%和12.72%—19.25%。上述结果说明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对2个小麦品种主茎穗和分蘖穗的单穗产量无显著影响,重度干旱降低低位蘖和中位蘖穗的单穗产量;拔节后0—10 d轻度和重度干旱均显著降低主茎穗和分蘖穗单穗产量,且以Ⅲ、Ⅰp和Ⅳ蘖穗单穗产量下降幅度最大。2个品种比较,山农29各干旱处理主茎穗和分蘖穗单穗产量平均降幅(8.09%)小于衡 0628(12.37%)。
2.8 拔节期阶段性干旱对单位面积籽粒产量及其构成因素的影响
山农29单位面积产量较衡0628高。拔节期不同程度干旱对2个小麦品种单位面积籽粒产量及其构成因素的影响2个年度表现一致,随干旱程度加剧和干旱时间延长,穗数、穗粒数和千粒重呈逐渐降低的趋势(表9)。与CK相比,T1处理单位面积产量无显著变化,T2、T3和T4处理单位面积产量均显著降低。T2处理与CK相比,山农29穗粒数显著降低,衡0628穗粒数和千粒重均显著降低。T3和T4处理与CK相比,穗数、穗粒数和千粒重均显著降低,以 T4处理降低幅度最大。上述结果表明,与充分供水相比,拔节后0—5 d轻度干旱对2个小麦品种单位面积籽粒产量及其构成因素无显著影响,重度干旱显著降低2个小麦品种单位面积籽粒产量;拔节后0—10 d轻度和重度干旱,2个小麦品种穗数、穗粒数、千粒重和单位面积籽粒产量均显著降低。2个品种间比较,山农29各干旱处理单位面积籽粒产量平均降幅(12.52%)小于衡0628(17.62%)。
表8 拔节期阶段性干旱对小麦主茎及不同蘖位分蘖单穗产量的影响Table 8 Effects of staged drought at jointing on grain yield of main stem and tillers at different positions of wheat (g/stem)
表9 拔节期阶段性干旱对单位面积籽粒产量及其构成因素的影响Table 9 Effects of staged drought at jointing on yield and its component factors of wheat
3 讨论
3.1 小麦产量构成三因素对拔节期干旱的响应
小麦拔节期是穗、叶、茎等器官同时并进,分蘖迅速向有效和无效两极分化的时期。有研究表明该时期任何程度的干旱均表现出减产效应,穗数和穗粒数显著降低,轻度干旱对千粒重无显著影响,重度干旱亦会导致千粒重显著降低[15]。另有研究则表明拔节期轻度干旱条件下,穗数显著降低,穗粒数和千粒显著增加,产量显著增加,重度干旱条件下,穗数、穗粒数和千粒重均显著降低,产量显著降低[22]。上述研究均说明,拔节期的水分条件不仅影响小麦的群体发育和成穗数,对穗粒数甚至粒重亦有显著影响,也反映出旺长小麦通过拔节期适度干旱可在一定程度上优化群体结构,使穗数维持在适宜的范围内,进而通过提高穗粒数和粒重增加籽粒产量。本研究结果表明,拔节后0—5 d期间轻度干旱对2个品种穗数、穗粒数、千粒重和籽粒产量均无显著影响,而拔节后 0—10 d期间轻度或重度干旱均导致2个品种产量构成三因素显著降低。说明小麦拔节期短期的轻度干旱并不会对小麦产量构成带来明显的负面影响。进一步分析发现,在拔节后0—10 d内,不同程度干旱对主茎的成穗率无明显影响,但是随着干旱程度的加大和干旱时间的延长,Ⅲ和Ⅰp蘖成穗率迅速下降,而Ⅱp和Ⅰ1蘖成穗率则呈先升高后下降趋势,说明Ⅲ和Ⅰp蘖对该阶段的干旱胁迫相对敏感。Ⅱp和Ⅰ1蘖成穗率的升高在一定程度上可弥补Ⅲ和Ⅰp蘖成穗率下降对单位面积成穗数的影响,这可能是拔节后0—5 d期间轻度干旱条件下,2个品种单位面积穗数无明显变化的原因。
3.2 茎蘖幼穗发育与成穗的关系及其对拔节期干旱的响应
分蘖是否成穗与分蘖自身生长速度、叶龄及幼穗发育程度有关[23-24]。有研究认为分蘖与主茎的幼穗分化起步差距不能太大,与主茎穗分化起步差距多于两期的分蘖均为无效分蘖,在水分胁迫条件下,与主茎穗分化起步差距超过一期者大多数为无效分蘖[25]。还有研究表明小花分化期是决定分蘖是否成穗的关键时期,各成穗分蘖进入小花原基分化期的时间相差较小,而无效分蘖进入小花分化期的时间滞后,与成穗分蘖的差距较大[26]。高翔等[27]的研究也证明能成穗的Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅰ1蘖与主茎在小花分化期同步,无效分蘖的穗分化在雌雄蕊分化期或更早阶段停止。唐勇金[28]的研究则表明拔节期幼穗处于小花分化期至雌雄蕊分化期的分蘖均能成穗,主茎出现第6片可见叶时,分蘖叶龄在2.5以上且穗分化处于小花分化期者能成穗;拔节期叶龄在 3.0以上且穗分化在小花分化期的二级分蘖少数能成穗。本研究结果表明,主茎O和分蘖I在拔节后0 d时处于W4.25(雌蕊原基分化期)至 W5(三心皮包围胚珠期)或 W4.25(雌蕊原基分化期)至W4.5(心皮原基分化期),在拔节10 d后二者仍保持一致,成穗率无显著差异;分蘖穗分化在拔节后0 d时与主茎差距大于0.5期者成穗率显著低于主茎;虽然Ⅱ蘖之后发生的相邻分蘖,穗分化差异较小,但是成穗率彼此间存在显著差异;在拔节期重度干旱条件下,分蘖Ⅲ和 Ip的幼穗发育进程迟缓,成穗率迅速下降。
3.3 茎蘖幼穗发育与结实的关系及其对拔节期干旱的响应
二棱期至顶端小穗形成是小穗发育的关键时期,在该阶段,随干旱胁迫程度的增加,不孕小穗率呈升高趋势[14]。自顶端小穗形成到开花期是小花发育的关键时期,在该阶段,花粉发育早期尤其是小孢子母细胞减数分裂期易受干旱胁迫的影响,从而导致可育小花数显著降低[29-31]。研究表明小麦在花粉减数分裂期遭受干旱胁迫,叶片水势从-0.8 MPa下降到-2.3 MPa,小花退化数量在70%以上,穗粒数显著降低[32]。与充分灌水处理相比,水分胁迫程度每增加 0.2 MPa,每穗粒数减少12.4%—58.7%,且主要集中在穗顶端和基部位置[33]。本研究在小麦拔节初期设置阶段性干旱处理,结果表明在拔节后0—10 d内,小麦主茎和不同蘖位分蘖幼穗分化正处于颖片原基分化期(W3)至柱头分支在柱头上分化为肿胀的细胞时期(W7)。在此阶段,主茎和不同蘖位分蘖幼穗发育受干旱胁迫影响的程度存在明显差异。拔节后0—5 d,主茎幼穗处于三心皮包围胚珠期(W5)至花柱作为一个狭窄的开口、两个短的圆形花柱原基期(W6),无论轻度还是重度干旱,穗粒数均无明显变化;分蘖I和II多处于雌蕊原基分化期(W4.25)至花柱管关闭、子房腔仅顶部保持开放状态期(W5.5)或处于雄蕊原基分化期(W4)至心皮原基分化期(W4.5),在轻度干旱条件下穗粒数无显著变化,重度干旱条件下穗粒数显著降低;分蘖III、Ip和IV多处于雄蕊原基分化期(W4)至三心皮包围胚珠期(W5)或处于雄蕊原基分化期(W4)至雌蕊原基分化期(W4.25),在轻度干旱条件下穗粒数无显著变化,重度干旱条件下穗粒数大幅度减少;分蘖IIp和I1蘖多处于小花原基分化期(W3.5)至雌蕊原基分化期(W4.25)或处于颖片原基分化期(W3)至雄蕊原基分化期(W4),无论轻度还是重度干旱,穗粒数均无明显变化。上述结果说明在小麦拔节初期主茎和各蘖位分蘖受干旱胁迫影响的程度与其幼穗发育所处的时期有关,在小麦幼穗分化的雄蕊原基分化期至三心皮包围胚珠期遭受严重干旱会显著降低其结实性,减少穗粒数,而在该阶段遭受轻度干旱,或在颖片原基分化期之前、三心皮包围胚珠期之后遭受短期(5 d)干旱对其结实性影响较小。
4 结论
小麦主茎和不同蘖位分蘖对拔节期干旱的响应存在明显差异,Ⅲ、Ⅰp和Ⅳ蘖成穗率对该阶段干旱相对敏感,下降幅度较大,这可能与干旱期间主茎和不同蘖位分蘖幼穗分化所处的时期不同有关,在小花原基分化期至雌雄蕊原基分化期受胁迫影响最大。在小麦幼穗分化的雄蕊原基分化期至三心皮包围胚珠期遭受阶段性重度干旱(土壤相对含水量为45%—50%,土壤有效含水量为 15.6—20.1 mm)对穗粒数有显著影响,而在该阶段遭受轻度干旱(土壤相对含水量65%—70%,土壤有效水含量33.4—37.8 mm)或在颖片原基分化期之前或在三心皮包围胚珠期之后遭受短期(5 d)的重度干旱对穗粒数影响都较小。在群体层面上,拔节后短时间轻度干旱对小麦成穗数和结实特性无显著影响,这与Ⅱp和Ⅰ1蘖成穗率升高在一定程度上弥补了Ⅲ、Ⅰp和Ⅳ蘖成穗率下降对单位面积穗数的影响有关;但干旱时间过长、程度过大会大幅度降低Ⅲ、Ⅰp和Ⅳ蘖成穗率、总小穗数、结实小穗数、穗粒数、单粒重和单穗产量,导致单位面积籽粒产量显著下降。山农29对拔节期阶段性干旱的抗性高于衡0628。