藏南林周盆地设兴组砂岩及其中玄武岩夹层的地球化学与成因*
2020-10-24邢莉圆赵志丹齐宁远唐演刘栋佟鑫王青朱弟成
邢莉圆 赵志丹 齐宁远 唐演 刘栋 佟鑫 王青 朱弟成
地质过程与矿产资源国家重点实验室,中国地质大学地球科学与资源学院,北京 100083
印度与亚欧大陆的汇聚过程受控于新特提斯洋的俯冲消减,经历了较长的时间间隔(Kappetal.,2005;王二七,2017)。近30年研究成果认为印度-亚欧大陆初始碰撞时间最早为65~63Ma,普遍认识集中于65~55Ma(丁林等,2017)。主碰撞带印度-雅鲁藏布缝合带两侧在碰撞前后的构造-岩浆-沉积活动对于研究碰撞过程及壳幔物质演化具有重要意义,该碰撞带以北著名的冈底斯岩浆带是青藏高原岩浆岩分布最广泛的地区,主要的岩浆活动发生在中-新生代(Yin and Harrison,2000;潘桂棠等,2006;Zhuetal.,2013)。主碰撞带北侧与其距离最近的是南部拉萨地块,大面积分布于该地块上的林子宗火山岩与下伏地层之间的接触关系为区域不整合,该不整合因与新特提斯洋壳的最后俯冲及印度-亚欧大陆的碰撞有密切关系而备受关注(莫宣学等,2009)。林子宗火山岩下不整合接触的主要层位是上白垩统设兴组碎屑沉积岩,其层位特殊性同样对碰撞前新特提斯洋演化与洋壳俯冲具有重要意义。
前人对上白垩统设兴组沉积岩的研究区多位于南部拉萨地块的堆龙德庆县马乡及林周盆地,研究内容多为沉积岩的年代学、沉积物来源及沉积构造背景。Leieretal.(2007a)研究得到设兴组最年轻的碎屑锆石年龄为105±2Ma,用以限制最老的沉积年龄;井天景(2014)对马乡设兴组砂岩的研究得到最年轻的锆石年龄集中在88~81Ma,因此沉积上限为81Ma,研究结果也表明设兴组的源岩形成于活动大陆边缘;陈贝贝(2017)研究得到林周盆地上白垩统强烈变形的时代为78~72Ma,砂岩物源主要来自南部的冈底斯岛弧及早期沉积的变质沉积岩。Weietal.(2020)根据林周盆地中生代碎屑沉积岩的年代学研究提出了碰撞前拉萨地体南缘地壳生长的弧盆演化过程。随着设兴组红层中火山岩夹层的发现,部分学者通过火山岩夹层的年代学研究,对设兴组的沉积时代进行了更精确的限定。李晓雄等(2015)通过对出露于林周盆地典中村设兴组顶部红层中的玄武岩夹层的研究,得到玄武岩斜长石Ar-Ar年龄为90±2Ma,暗示该时期设兴组仍未结束沉积。Caoetal.(2017)对设兴组红层中玄武岩夹层的年代学研究结果表明,K-Ar年龄在75~68Ma范围内,暗示设兴组发生强烈褶皱变形的时代应在68Ma之后。不同学者对设兴组沉积岩的年代学研究结果存在差异可能是由于样品分布的区域较广或者研究区部分地层已经发生了倒转。
本文对藏南林周盆地那玛村南部小路旁设兴组砂岩及那嘎寺南部剖面设兴组中的玄武岩夹层开展了岩石学、地球化学及年代学研究,试图限制晚白垩纪设兴组砂岩的沉积物物质来源、构造背景及沉积上限年龄,判别设兴组玄武岩夹层的岩浆性质及形成的构造环境,反演林周盆地乃至南部拉萨地块在印度-亚欧大陆碰撞前的构造、岩浆活动,提供俯冲时期的演化证据。
1 地质背景与样品
青藏高原从南到北可划分为喜马拉雅、拉萨、羌塘和松潘-甘孜四个构造单元(图1a;朱弟成等,2012),划分的界线分别是印度河-雅鲁藏布缝合带(IYSZ)、班公湖-怒江缝合带(BNSZ)和金沙江缝合带(JSSZ)。许多学者研究得到拉萨地块是从冈瓦纳大陆分离出来的构造块体,它与北部的羌塘地体在白垩纪早期的碰撞致使班公湖-怒江特提斯洋闭合(Deweyetal.,1988;Kappetal.,2005;Zhuetal.,2011a,2013,2016),后来拉萨地块与向北漂移的印度大陆的碰撞又导致新生代早期新特提斯洋的闭合(Moetal.,2008;Jietal.,2009)。拉萨地块从南到北划分为南部拉萨地体(SL)、中部拉萨地体(CL)和北部拉萨地体(NL)三个小构造单元,之间的界线分别为洛巴堆-米拉山断裂(LMF)、狮泉河-纳木错蛇绿岩带(SNMZ)。
北部拉萨地体具有新生地壳的特征,存在从中三叠统到白垩系的沉积盖层,有丰富的早白垩世火山岩和同期花岗岩类(朱弟成等,2006;Zhuetal.,2013);中部拉萨地体含有元古代和太古代结晶基底,是一个古老的微陆块(Zhuetal.,2011b);南部拉萨地体包含新生地壳和少量前寒武纪结晶基底,主要地层(或地体)为部分侏罗纪-晚白垩纪沉积地层、白垩纪-古近纪冈底斯岩基和古新世-始新世林子宗火山岩,主要是中生代岛弧侧向加积作用增生到具有基底的拉萨地块之上形成的(朱弟成等,2009),南部拉萨地块分布广泛的岩浆、沉积活动很好地记录了由新特提斯洋壳北向俯冲过渡到印度-亚欧大陆碰撞的过程(Houetal.,2004;Chungetal.,2005;Moetal.,2005;Zhaoetal.,2009)。
本文研究区位于拉萨北部的林周盆地(图1b,c),采样剖面分别位于林周县那玛村小路旁(图2a)和那嘎寺南坡(图2d)。设兴组沉积岩样品为紫红色杂砂岩和灰绿色含砾杂砂岩,发育有交错层理及次生黄铁矿。在那嘎寺以南剖面设兴组砂岩的近顶部,有厚度不均一的呈多层韵律分布的玄武岩夹层,沿倾向存在尖灭,出露面积有限,野外考察仅见到玄武岩夹层与设兴组红层的下接触面存在烘烤边、冷凝边,据此判断该玄武岩是随时代自然喷发而不是后期侵入的,即非岩脉。玄武岩样品蚀变较为严重,气孔不发育,可见较少杏仁体。
图1 研究区地质图(a)青藏高原构造划分图(据朱弟成等,2012),IYSZ-印度河-雅鲁藏布缝合带;BNSZ-班公湖-怒江缝合带;JSSZ-金沙江缝合带;LMF-洛巴堆-米拉山断裂;SNMZ-狮泉河-纳木错蛇绿岩带;(b)南部拉萨地体中生代岩浆、沉积活动分布简图,其中标注的年龄据Meng et al.(2014) 及其中的文献;(c)研究区地质简图(据谢尧武等,2007(1)谢尧武等.2007.1:25万拉萨幅区域地质调查报告),K1l-林布宗组;K1c-楚木龙组;K1t-塔克那组;K2s-设兴组;E1d-典中组;E2n-年波组;E2p-帕那组Fig.1 Geological maps of the study area
镜下观察到砂岩碎屑颗粒以石英和长石为主(图2b,c),碎屑颗粒的分选和磨圆程度均较差,杂基支撑,杂基成分多为火山碎屑;镜下观察到玄武岩碳酸盐化较为严重(图2e,f),辉石斑晶为粒状或短柱状,呈星散状分布,已发生绿泥石化、方解石化,部分界限模糊不清或消失,蚀变矿物绿泥石围绕斜长石呈残斑状分布,长石斑晶多呈粒状或板状,部分已发生绢云母化,斜长石微晶和辉石微晶构成主要的基质成分,间隐结构,副矿物为磁铁矿等。本文研究的样品情况见表1。
图2 林周盆地样品野外及镜下照片(a)那玛村小路旁采样剖面;(b、c)砂岩镜下照片;(d)那嘎寺南部采样剖面;(e、f)玄武岩夹层镜下照片Fig.2 Field and microscopic photos of Linzhou samples(a) roadside sampling section of Nama village;(b,c) sandstone mirror images;(d) sampling section south of Nagar temple;(e,f) mirror images of basaltic interlayers
表1 林周盆地样品采样位置及岩石类型汇总表Table 1 Summary table of sampling locations and rock types in Linzhou basin
2 测试方法
本文年龄样品在北京锆年领航科技有限公司进行锆石制靶、透反射图像与阴极发光(CL)图像的拍摄。在中国地质大学(北京)地质过程与矿产资源国家重点实验室利用LA-ICP-MS进行锆石U-Pb同位素定年和微量元素含量分析,用NewWave 193UC型ArF准分子激光器进行剥蚀取样,Agilent 7900四级杆型等离子质谱仪测试离子信号强度,实验过程中元素含量外标采用NIST 610,U-Pb同位素比值外标采用锆石91500(Wiedenbecketal.,2004),锆石GJ-1(Jacksonetal.,2004)和Plesovice(Slámaetal.,2008)作为未知样品的数据质量监控标进行分析。实验数据使用ICPMSDataCal9.7软件离线处理,处理流程包括选择样品信号和空白信号、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算(Liuetal.,2008,2010a,b;Huetal.,2012),普通铅采用Andersen (2002)程序进行校正,利用Isoplot插件(Ludwig,2001)进行碎屑锆石年龄图谱的绘制。在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室采用多接收等离子体质谱实验仪完成锆石原位Hf同位素测试,MC-ICP-MS仪器型号为Neptune Plus,激光剥蚀系统型号为AnalyteG2,激光斑束直径为60μm,具体的分析流程和数据校正方法见Wuetal.(2006)。
3 分析结果
3.1 设兴组砂岩的元素地球化学
表2 设兴组砂岩及玄武岩夹层的主量(wt%)和微量(×10-6)元素数据表Table 2 Whole-rock major elements (wt%) and trace elements (×10-6) composition of sandstones and basaltic interlayers from Shexing Formation
图3 设兴组砂岩Lg(Na2O/K2O)-Lg(SiO2/Al2O3) 图解(底图据魏友卿,2017修改)文献数据引自唐演未发表数据及魏友卿(2017),图4、图11、图12同Fig.3 Lg(Na2O/K2O) vs.Lg(SiO2/Al2O3) diagram of sandstones in Shexing Formation (base map modified after Wei,2017)References data from Tang (unpublished) and Wei (2017),also in Fig.4,Fig.11 and Fig.12
微量元素方面,设兴组砂岩的∑LREE值为76.02×10-6~98.27×10-6,平均值为87.15×10-6;∑HREE值为29.81×10-6~37.45×10-6,平均值为33.63×10-6;∑REE为105.8×10-6~135.7×10-6,平均值为120.8×10-6。研究表明,上地壳来源的稀土元素特征为富集轻稀土、亏损重稀土((Dy/Yb)N=1.06)、负Eu异常等(Eu/Eu*=0.65)(Taylor and McLennan,1985)。从样品的球粒陨石标准化稀土元素配分模式图中可以看出(图4a),设兴组砂岩表现为较高的LREE/HREE值(2.55~2.62)和较高的(La/Yb)N值(7.00~7.68,上地壳(La/Yb)N=9.78),轻重稀土元素存在明显的分馏,同时样品具有弱的Eu负异常(Eu/Eu*=0.84~0.86),显示与上地壳稀土元素含量相似的特征,因此初步推断设兴组沉积岩的母岩为上地壳岩石。
图4 设兴组砂岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b) (标准化值据Sun and McDonough,1989;上地壳数值来自Rollinson,1993)Fig.4 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace-element spidergrams (b) of sandstones from Shexing Formation (normalizing data after Sun and McDonough,1989;the upper crust data from Rollison,1993)
3.2 设兴组玄武岩的元素地球化学
设兴组玄武岩夹层的主量、微量元素数据见表2。样品烧失量在8.39%~11.81%之间,CaO含量较高(7.51%~11.85%),符合薄片镜下观察到的样品碳酸盐化严重的现象。将本文4件样品进行扣除LOI的计算,结果显示除LZ1707的SiO2为58%,属于玄武安山岩外,剩余样品的SiO2在49%~53%的范围内,均属于玄武岩。火山弧岩浆的含水量较高,容易导致熔体解聚从而产生氧化条件,使这种环境下的Fe-Ti氧化物比其他构造环境的岩浆更早结晶,这样形成的铁镁质岩石受到Fe-Ti氧化物堆晶作用的影响,不能真实地反映源区特征,为避免这种影响,本文利用Th-Co分类图判别岩石类型,在图5a中玄武岩夹层属于高钾钙碱性的玄武岩-玄武安山岩系列;在Zr/TiO2-Nb/Y图(图5b)中,本文火山岩样品属于碱性-亚碱性玄武岩系列。
图5 设兴组玄武岩夹层分类图解(a) Th-Co分类图(据Hastie et al.,2007);(b) Zr/TiO2-Nb/Y分类图(据Winchester and Floyd,1977);文献数据引自李晓雄(2014)及唐演未发表数据,典型安第斯玄武岩数据据Kelemen et al.(2007),图6、图17同Fig.5 Classification diagrams of basaltic interlayers in Shexing Formation(a) Th vs.Co classification diagram (after Hastie et al.,2007);(b) Zr/TiO2 vs.Nb/Y classification diagram (after Winchester and Floyd,1977);references data from Li (2014) and Tang (unpublished),data of typical Andean basalt from Kelemen et al.(2007),also in Fig.6 and Fig.17
玄武岩样品具有较高的稀土元素总量且变化范围较大(∑REE=149.6×10-6~327.1×10-6,平均值为271.5×10-6)。从样品的球粒陨石标准化稀土元素配分模式图可以看出(图6a)曲线整体右倾((La/Yb)N=22.29~35.84),其中玄武安山岩样品(LZ1707)的稀土元素含量整体较低。本文玄武岩轻稀土元素富集,重稀土元素严重亏损,具有弱的Eu负异常(Eu/Eu*=0.89~0.93)。从样品原始地幔标准化微量元素蛛网图(图6b)可以看出,本文玄武岩显著亏损Nb、Ta等高场强元素,富集Ba、Th、U、Pb等大离子亲石元素。Nb、Ta、Ti一般标志着岩石与弧火山岩有亲缘性(朱弟成等,2006)。本文的玄武岩、玄武安山岩与典型的安第斯弧玄武岩具有相似的微量元素特征(图6),初步推断其具有弧岩浆类似成因。
图6 玄武岩夹层球粒陨石标准化稀土元素配分模式图(a,标准化值据Boynton,1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough,1989)OIB、E-MORB、N-MORB数据据Sun and McDonough (1989)Fig.6 Chondrite-normalized REE patterns (a,normalizing data after Boynton,1984) and primitive mantle-normalized trace-element spidergrams (b,normalizing data after Sun and McDonough,1989) of basaltic interlayers in Shexing FormationOIB,E-MORB,N-MORB data after Sun and McDonough (1989)
3.3 设兴组砂岩和玄武岩锆石U-Pb年代学、Hf同位素
本文对设兴组砂岩和玄武岩各2件样品进行了锆石U-Pb定年,年龄数据见电子版附表1。挑选锆石测点时忽略大小、形态和结构的差异,随机挑选,得到的碎屑锆石年龄具有统计意义。年龄结果中大于1000Ma的锆石采用207Pb/206Pb年龄,小于1000Ma的采用206Pb/238U年龄。据前文判断,玄武岩为顺层喷发至设兴组砂岩中的夹层,镜下也观察到玄武岩与砂岩中的锆石具有相似特征:明显的震荡环带、形态和大小各异,又由于基性的玄武岩形成环境下较少有锆石结晶,因此本文认为玄武岩中没有代表结晶年龄的锆石,均为岩浆上升时从砂岩中捕获的锆石,因此将玄武岩中的锆石同碎屑锆石一并讨论。锆石颗粒粒径在75~300μm之间,形状主要为长柱状,长宽比为1:1~3:1,自形程度高。大部分锆石保留了指示岩浆成因的清晰的震荡环带。多样的形态和复杂的磨圆程度暗示碎屑锆石复杂的来源。锆石Th含量的平均值为173.3×10-6,U含量平均值为306.6×10-6,Th/U比值为0.57(>0.4),表现出岩浆锆石的典型特征(Belousovaetal.,2002)。部分锆石阴极发光照片见图7。
图7 设兴组砂岩及玄武岩夹层部分锆石的CL图像、U-Pb定年点位及Hf同位素测试点位红色线圈为砂岩中锆石测试点位,黄色线圈为玄武岩中锆石测试点位;实线圈为U-Pb年龄测试点位,虚线圈为Hf同位素测试点位Fig.7 Zircon CL images,U-Pb dating points and Hf isotope test points of sandstones and basaltic interlayers from Shexing FormationThe red circle is the zircon test point in sandstone,the yellow circle is the zircon test point in basalt;the solid circle is the U-Pb age test point and the dashed circle is the zircon Hf isotope test point
在设兴组砂岩样品中共获得229颗碎屑锆石的有效年龄,包括54颗中生代锆石、32颗古生代锆石及143颗前寒武纪锆石。其中中生代锆石存在99Ma、104Ma、135Ma、142Ma、169Ma的几个峰值,其中最年轻的锆石年龄为98Ma,另外,有5颗获得99Ma、100Ma、101Ma的相近年龄的锆石。古生代锆石具有366Ma、450Ma、511Ma左右的几个峰值,前寒武纪锆石年龄分布较为分散,在910Ma、1171Ma处出现小峰值。从本文碎屑锆石的年龄分布频率直方图(图8)可以看出,碎屑锆石年龄分布范围较广(98~3082Ma),其中<200Ma的锆石存在较多峰值,>200Ma的频率分布曲线也显示出多个连续的峰形。设兴组碎屑锆石最年轻的年龄为98Ma,该年龄可以约束最老的沉积年龄,表明沉积至少发生在98Ma之后。玄武岩样品共获得了44个有效锆石年龄,包含12颗中生代锆石,7颗古生代锆石和25颗前寒武纪锆石,玄武岩中最年轻的锆石年龄为110Ma,如前所述,它不代表岩浆本身形成的时代,但是可以帮助限制玄武岩喷发是在110Ma之后发生的。
图8 设兴组碎屑锆石年龄频率分布直方图Fig.8 Age frequency distributions of detrital zircons from Shexing Formation
本文对参与定年实验的砂岩及玄武岩样品各1件进行了锆石原位Hf同位素分析,数据见电子版附表2。获得有效数据点92个,锆石测点的176Lu/177Hf比值在0.0002~0.0033之间,均小于0.1002,说明锆石形成后几乎没有放射性成因的Hf积累,初始176Hf/177Hf可以代表锆石形成时的176Hf/177Hf,用于地球化学示踪(吴福元等,2007)。在砂岩样品的68个有效测点中,初始176Hf/177Hf为0.281007~0.282963,εHf(t)值为-60.0~22.2,其中45个测点的εHf(t)为负值,23个测点的εHf(t)为正值,中生代锆石中年龄为98Ma、120Ma、142Ma、181Ma、194Ma的锆石显示正的εHf(t)值。Hf同位素地壳模式年龄tDMC为591~3953Ma,地幔模式年龄为tDM=404~3101Ma。玄武岩样品的24个有效测点中,初始176Hf/177Hf为0.281296~0.282768,εHf(t)值为-38.8~28.6,其中17个测点的εHf(t)为负值,7个测点的εHf(t)为正值,tDMC为680~2661Ma,tDM=530~3909Ma。本文砂岩和玄武岩一致的Hf同位素测试结果进一步表明玄武岩锆石的捕获成因,另外,跨度较大的εHf(t)值暗示设兴组锆石复杂的物质来源。
4 讨论
4.1 设兴组时代
早期的研究根据不同剖面所产化石结合所处层位,得出整个设兴组是在晚白垩世沉积的,晚白垩世晚期时沉积结束(王乃文等,1983)。之后的研究都将设兴组的时代定于晚白垩世(72~100Ma)(井天景,2014;陈贝贝,2017)。设兴组顶部砂岩中顺层产出的火山岩夹层的年龄信息可以很好地帮助限制设兴组的沉积时代(李晓雄,2014;李晓雄等,2015;曹勇,2015;陈贝贝,2017)。
本文设兴组砂岩的碎屑锆石中最年轻的U-Pb年龄为98Ma,表明设兴组的沉积年龄上限是98Ma,玄武岩中最年轻的锆石年龄为110Ma,说明玄武岩的喷发发生在110Ma之后。分布广泛的碎屑锆石年龄指示物源区的复杂性和沉积的连续性,年龄分布特别集中的98~200Ma说明该段时间内碎屑锆石源区发育了比较连续的岩浆活动,产物被剥蚀成林周盆地的源区,例如99Ma、104Ma、135Ma、142Ma、169Ma等几个峰值均可在附近地区找到潜在物源(Chuetal.,2006;Guynnetal.,2006;耿全如等,2006;张宏飞等,2007a;Zhuetal.,2008;姜昕等,2010),因为拉萨地体晚白垩世岩浆作用规模巨大,其中南部拉萨地块集中在100~137Ma,中部拉萨地块集中于95~145Ma(朱弟成等,2008)。年龄在300~500Ma之间的锆石为古生代基底锆石,具有更古老年龄的物质来自再循环造山带,如1100Ma左右的锆石年龄与冈底斯带上念青唐古拉群变质原岩的年龄相当(许荣华等,1986)。
通过设兴组样品碎屑锆石U-Pb年龄密度曲线与拉萨地块已有曲线特征的对比,可以推断研究区可能的物源区(图9)。本文设兴组>500Ma的年龄分布峰形与日喀则弧前盆地中碎屑岩的峰形不同,两者存在物源差异,符合二者构造背景不同的特征。根据不同地块>500Ma的碎屑锆石年龄分布图谱的对比,设兴组与拉萨地块具有基本相同的峰值,说明设兴组与拉萨地块有较强的亲缘性,在更大的范围内,设兴组物源区与澳大利亚陆块具有相似特征,暗示拉萨地块与澳大利亚陆块的亲缘性(Zhuetal.,2011a)。
图9 设兴组与邻近地区>500Ma的碎屑锆石年龄图谱对比(据Zhu et al.,2011a)Fig.9 Ages of detrital zircons earlier than 500Ma from Shexing Formation and those from neighboring areas (after Zhu et al.,2011a)
4.2 设兴组沉积物物质来源
在U-Pb定年的基础上,Hf同位素可以区分给定年龄的锆石形成的源区性质。直接或间接来自幔源岩石的锆石εHf(t)为正值,Hf同位素模式年龄与其结晶年龄相近;古老地壳通过深熔作用形成的岩石中锆石的εHf(t)通常为负值,Hf同位素模式年龄远大于其形成年龄。研究显示,冈底斯岩浆带包含大量三叠纪到早第三纪花岗岩,高176Hf/177Hf比值、正εHf(t)值、年轻的地幔模式年龄是该岩基锆石的Hf同位素特征,具有新生地壳来源的特征(Chuetal.,2006;张宏飞等,2007a;Wenetal.,2008);冈底斯岩基北部的中、北部拉萨地块深成带中的中生代花岗岩的176Hf/177Hf比值较低、具有负的εHf(t)值和古老的锆石Hf同位素地壳模式年龄(tDMC=1.1~2.5Ga),表明其来自古老地壳物质的重熔(Chuetal.,2006;和钟铧等,2006;张宏飞等,2007b;Lietal.,2009)。在本文中大部分中生代锆石记录了负的εHf(t)值,在图10a中投入拉萨地块区域,在图10b中投入中部拉萨地块区域,大部分锆石负的εHf(t)值和古老的地壳模式年龄,指示物源区主要为中部拉萨地块。朱弟成等(2009)的研究显示中冈底斯带早白垩世岩浆作用持续时间长(143~102Ma),在110Ma左右存在岩浆大爆发现象,据年龄与Hf同位素特征推断本文砂岩物源就是中部拉萨地块该时期的岩浆作用产物。除此之外有小部分中生代锆石显示正的εHf(t)值,这些点落入冈底斯岩基及周围区域,例如峰值为99Ma的碎屑锆石显示正的εHf(t)值,为南部拉萨地体晚白垩世弧火山岩风化剥蚀后近源沉积的产物。年龄>500Ma的锆石多具有负的εHf(t)值,结合年代学研究认为该部分锆石来源于再循环造山带。综合上面的讨论,南部拉萨地块上白垩统设兴组的物源区有三处:中部拉萨地块的花岗岩、南部冈底斯岩浆弧以及拉萨地块早期沉积岩石的再循环,其中中部拉萨地块是主要物源区。
图10 林周盆地样品不同年龄阶段的碎屑锆石 εHf(t)对U-Pb年龄图(底图据Wu et al.,2010)日喀则弧前盆地数据据Wu et al.(2010),马乡设兴组砂岩数据据魏友卿(2017)Fig.10 εHf(t) vs.U-Pb age diagrams of detrital zircons at different ages from Linzhou basin samples (base map after Wu et al.,2010)Data of Xigaze fore-arc basin after Wu et al.(2010),sandstone data of Shexing Formation in Maxiang after Wei (2017)
4.3 设兴组沉积的物源类型及构造环境
沉积物在风化、剥蚀、搬运、成岩的过程中,不同主、微量元素的含量会因其本身稳定性不同而发生变化,导致不同元素选择性地赋存于不同矿物中,有研究总结了沉积物从风化剥蚀到成岩过程中的元素特性(Bhatia and Crook,1986),例如Al、Fe、Ti、Mg、Sc、V、Co等元素通常赋存在岩屑、辉石和绿帘石中,稀土元素、高电价离子(如Th、U、Nb和Zr)和大半径离子(如Rb和Pb)元素通常赋存在云母和重矿物中。碎屑沉积岩的分选作用会导致主要矿物(如石英)和部分副矿物(如锆石、磷灰石、独居石、榍石等)的富集,从而使全岩部分主量元素(如P2O5、TiO2)与微量元素(如REE、Th、U、Zr、Hf和Nb)含量发生变化(Feng and Kerrich,1990;McLennanetal.,1990;Fralick and Kronberg,1997)。部分富Ti和V的暗色矿物如辉石、角闪石和不透明氧化物在沉积物的循环中容易被分解,而锆石、磷灰石、独居石等富Zr,Th,La的副矿物对风化作用有较强的抗性,在沉积循环中容易保留和富集,因此Zr/TiO2和La/V的比值对沉积过程和岩屑的性质具有重要指示意义(Roser and Korsch,1986;Roseretal.,1996;Dingle and Lavelle,1998)。相比长石类、暗色矿物和岩屑类物质,石英在沉积物的风化和分选中更容易被保留下来,所以高的SiO2/Al2O3比值被认为是沉积岩成分成熟的体现,未蚀变的火成岩从基性到酸性具有的SiO2/Al2O3比值为3~5,而碎屑沉积岩通常会因为石英的富集而大于此值,通常大于5(Zhangetal.,2004),设兴组砂岩样品具有较高的SiO2/Al2O3比值(4.1、5.0),是相对成熟的沉积岩。
虽然碎屑物质在成岩过程中因受到改造而使全岩主、微量元素含量发生变化,但包括稀土元素在内的稳定元素的比值(如Th/Sc、La/Sc、Zr/Sc、La/Co等)却较少受到以上过程的影响(Bhatia and Crook,1986),这些元素的特征仍受控于物源区母岩类型、风化、分选、成岩作用和元素在溶液中的化学性质等多种因素,因此对设兴组砂岩进行地球化学成分特别是不活泼微量元素的分析研究,可有效地判断其源区岩性特征、构造背景及演化、盆地性质等。
研究发现,不同构造环境下沉积的物源类型不同(Bhatia and Crook,1986),洋内弧和大陆弧代表汇聚板块边缘,这种构造背景下沉积岩的母岩通常为具有不成熟岛弧特征的火山岩,活动大陆边缘如安第斯型大陆边缘,相关的沉积盆地均具有较厚且隆起的陆壳,沉积物通常为具有成熟岩浆弧特征的火山岩,被动大陆边缘则沉积有再循环造山带及克拉通内部的古老基底和变质沉积岩等物质。不同构造环境下沉积物的母岩,可以通过微量元素地球化学方法进行识别。如前所述,La、Th、Co、Ta、Zr、Ti等元素的比值不易受到风化作用的影响,在沉积物再循环过程中也基本保持稳定,可以用来示踪母岩特征(Wronkiewicz and Condie,1987)。Bhatia and Crook (1986)提出通过La-Th-Sc、Th-Zr-Co和Th-Sc-Zr三元图来判别源区的沉积环境,间接反映母岩性质。在图11a,c中本文样品均落入大陆弧范围内,其母岩为具有岩浆弧性质的火山岩,虽然样品在图11b中的投点靠近洋内弧环境,但因为林周盆地的位置、地层的连续性和镜下观察的证据,本文样品不太可能沉积于大洋环境,而是接受了不成熟岩浆弧中基性火山岩碎屑的原地堆积。除此之外Bhatia and Crook (1986)还建立了砂岩物源区和构造环境的Ti/Zr-La/Sc地球化学判别图解,该图解划分了大陆弧、大洋岛弧、活动陆缘和被动陆缘四种砂岩形成的构造环境,在图12a中本文砂岩主要具有大陆弧物源区的特点,与主量元素展示的物源区构造背景吻合。
图11 设兴组砂岩构造背景判别三元图(据Bhatia and Crook,1986)Fig.11 Ternary diagrams for distinguishing the sandstones’ tectonic background of Shexing Formation (after Bhatia and Crook,1986)
图12 设兴组砂岩构造背景及源区性质判别图(a) Ti/Zr-La/Sc判别图(据Bhatia and Crook,1986);(b) La/Yb-∑REE判别图(据Allegre and Minster,1978)Fig.12 Diagrams for distinguishing sandstones’ tectonic background and fragments source of Shexing Formation(a) Ti/Zr vs.La/Sc diagram (after Bhatia and Crook,1986);(b) La/Yb vs.∑REE diagram (after Allegre and Minster,1978)
基性岩具有较低的LREE/HREE值且无Eu异常,长英质岩石通常具有较高的LREE/HREE和Eu负异常。本文研究的砂岩样品具有高的LREE/HREE值(2.55~2.62)且存在Eu负异常(Eu/Eu*=0.84~0.86),推测本文砂岩来源于长英质源区,在La/Yb-∑REE图(图12b)中设兴组砂岩均落入花岗岩区范围内。从另一角度看,研究表明中性斜长岩一般有Eu正异常(1.01 除全岩主微量元素外,沉积岩中的碎屑锆石微量元素也可以用来识别锆石母岩类型和成因,区分岩浆、变质、成矿等深部作用过程(赵志丹等,2018),示踪沉积物源区,进行古地理重建。如前所述,玄武岩中的锆石均为捕获锆石,同砂岩中的锆石一并讨论。锆石微量元素数据见电子版附表3。4个定年样品锆石的球粒陨石标准化稀土元素配分模式图(图13a-f)中亏损轻稀土,极度富集重稀土,存在正Ce异常和负Eu异常,具有岩浆锆石的典型特征。Wangetal.(2012)研究总结了典型的I、S、A型花岗岩的微量元素特征,其中I型花岗岩中的锆石以低Pb含量(<25×10-6),高(Nb/Pb)N(1.4~17.8)为特征;S型花岗岩中的锆石具有高Pb含量(4×10-6~161×10-6)和低(Nb/Pb)N(0.4~8.6),同时高度负Eu异常(0.03~0.3);A型花岗岩中的锆石具有二者的过渡特征。本文设兴组的碎屑锆石Pb含量为2.6×10-6~220×10-6,(Nb/Pb)N为0.02~26.8,但大部分小于7.4,比较接近S型花岗岩的特征,球粒陨石标准化稀土元素配分图以及Th-Pb、(Nb/Pb)N-Eu/Eu*图(图14)均可以看出本文碎屑锆石与Wangetal.(2012)研究中的S型花岗岩锆石特征相似,小部分也显示I型花岗岩锆石的特征。 图13 林周盆地样品锆石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough,1989)I、S、A型花岗岩稀土元素数据据Wang et al.(2012)Fig.13 Chondrite-normalized REE patterns of samples from Linzhou basin (normalizing data after Sun and McDonough,1989)Data of trace elements in I,S,A type granite after Wang et al.(2012) 图14 I、S、A型花岗岩锆石微量元素成分差异图解(底图据Wang et al.,2012)Fig.14 Diagrams of trace element composition differences of I,S,A type granite zircons (base map after Wang et al.,2012) Schulzetal.(2006)分析并总结了产出于板内、火山弧、洋中脊等不同构造背景的玄武岩锆石的微量元素特征。在Th/U-Y、Lu/Hf-Y图中(图15a,b),本文玄武岩中的锆石大部分落入或靠近火山弧的范围,小部分为板内构造背景。Grimesetal.(2007)给出了判别大陆锆石和洋壳锆石的 U/Yb-Hf、U/Yb-Y图解,设兴组碎屑锆石几乎全部落入大陆地壳锆石的范围内(图15c-d),说明这些锆石起源于大陆地壳,特别地在U/Yb-Hf中大部分锆石落入了岛弧锆石范围内(图15c),进一步说明这部分锆石具有岛弧成因。综上分析,设兴组源岩形成于大陆环境并与弧岩浆作用有关,形成于活动大陆边缘。 图15 不同构造背景锆石微量元素判别图解玄武岩锆石Th/U-Y (a)和Lu/Hf-Y (b)判别图(据Schulz et al.,2006);碎屑锆石U/Yb-Hf (c)和U/Yb-Y (d)判别图(据Grimes et al.,2007)Fig.15 Discriminant diagrams of trace elements in zircon from different tectonic backgroundsTh/U vs.Y (a) and Lu/Hf vs.Y (b) discriminant diagrams of zircons from basalts (after Schulz et al.,2006);U/Yb vs.Hf (c) and U/Yb vs.Y (d) discriminant diagrams of detrital zircons (after Grimes et al.,2007) 晚白垩世,拉萨地体内部发育有一系列的由新特提斯洋北向俯冲引发的弧后盆地(Zhangetal.,2004,2012;Mengetal.,2014;Maetal.,2015),这些盆地的发展始于晚侏罗世-早白垩世,一直到印度-亚欧大陆碰撞前,南部拉萨地体发育连续的沉积地层,包括上侏罗统-下白垩统林布宗组、下白垩统楚木龙组和塔克那组、上白垩统设兴组。据前人研究,早白垩世拉萨地体可能因与羌塘地体的软碰撞(Zhuetal.,2013,2016)而整体呈现出北高南低但较为平缓的地形地貌,来自北部的河流贯穿拉萨地体流向南部(Leieretal.,2007b),先后经由弧后盆地、弧前盆地汇入新特提斯洋,并从中北部携带了具有负εHf(t)特征的锆石沉积于弧后盆地;到晚白垩世,新特提斯洋板片发生洋脊俯冲(Zhangetal.,2010),大量幔源物质加入致使拉萨地体南侧迅速隆升,地壳加厚,古水流方向变为由南向北,弧后盆地由风化强烈的低缓物源区转变为南侧快速隆升的以物理风化为主、化学风化较弱的物源区,北侧的物源被南侧的隆升阻断,快速的隆升伴随着剥蚀速率的加快;到晚白垩世晚期,拉萨地体南侧的岩浆弧基本被剥蚀殆尽,具有负εHf(t)特征的中生代碎屑物质重新加入。设兴组处于冈底斯弧的弧后盆地,存在早期河流携带来的中部拉萨地体的古老地壳再循环锆石,后来南部冈底斯岩基快速隆升、剥蚀,沉积于弧后盆地,在冈底斯岩浆弧快要剥蚀殆尽时,北部拉萨地体的物源重新加入,形成本文设兴组砂岩。中部拉萨地体物源为主,南部拉萨物源较少,说明本文设兴组的沉积晚于南部冈底斯岩浆弧的隆升,在年代学上本文也没有获得类似前人研究得到的比较年轻的来源于冈底斯岩浆弧的峰值为88Ma的锆石年龄,进一步说明了主要物源不是冈底斯岩基。 Wuetal.(2010)在日喀则弧前盆地沉积岩的研究中发现和以上类似的沉积过程,早期自北向南的河流切穿冈底斯山脉流入弧前盆地,带来中北拉萨的古老地壳再循环物质,南部冈底斯岩浆弧隆升阶段,北侧的物源被南部的隆升阻断,日喀则弧前盆地完全失去εHf(t)<0的中生代锆石信息,晚期岩浆弧被剥蚀殆尽,具有负εHf(t)特征的中生代碎屑锆石重新出现在日喀则弧前盆地中。 通过物源区性质及沉积作用条件和过程的综合分析,结合全岩主、微量元素及各类图解结果,设兴组顶部的岩性为杂砂岩,其母岩为上地壳长英质酸性岩源区,形成的构造背景为活动大陆边缘的大陆弧,是拉萨地体南部冈底斯岩浆弧隆升后期将要剥蚀殆尽时,北部拉萨地体的物质重新加入,经历沉积、成岩形成的,次要物源区为南部拉萨地体的冈底斯岩浆弧。 4件玄武岩样品的MgO含量为4.98%~8.33%,平均值为6.33%,与前人提出的原始玄武岩浆的MgO≥8%(McKenzie and Bickle,1988)相比较小;Cr含量为115×10-6~395×10-6,平均值279.3×10-6;Ni含量为115×10-6~369×10-6,平均值235.8×10-6,与Hess (2013)提出的原生玄武质岩浆(Cr:300×10-6~500×10-6;Ni:300×10-6~400×10-6)相比变化范围大。本文玄武岩与原生玄武质岩浆的元素含量差别暗示本文玄武岩岩浆可能经历了后期演化作用,如分离结晶等。研究表明,与下地壳部分熔融有关的岩浆产物的Mg#一般小于40(Atherton and Petford,1993),本文样品的Mg#变化于63~70之间,平均值为67,据此推断它们不太可能是由下地壳铁镁质岩石部分熔融产生的。样品具有较高的Th丰度(5.29×10-6~8.44×10-6,平均值7.25×10-6),暗示它们很可能与中上地壳物质(Th分别为6.5×10-6,10.5×10-6)的同化混染有关(Rudnicketal.,2003)。 设兴组玄武岩喷发于海相环境,已遭受不同程度的蚀变,烧失量较高,因此活泼的大离子亲石元素如Rb、Ba、Na、K的带入带出导致这些元素不能用于岩石系列判别,抗蚀变的高场强元素和不活泼元素如Ti、Zr、Y、Nb、Ce、Ga、Sc在不同岩浆系列和构造背景中富集程度不同,在复杂的后期变质过程中通常可以保持原有的丰度(Pearce and Norry,1979),因此可以用来识别岩石成分。Cann (1970)提出了一个较有效的检验蚀变岩石元素稳定性的方法,即将一个稳定元素作为横轴,被检验元素作为纵轴,若两个元素是高度不相容且稳定的,则同源样品在二元图中可以给出一个接近统一的趋势。Zr作为风化蚀变过程中极其稳定的元素,通常被用来检验其他不相容元素的移动性(Rollandetal.,2009),本文也用Zr作检验元素,样品数据显示Zr和Th、La、Yb、Sm之间存在线性关系(图16),说明后期蚀变作用对这些元素的影响可忽略不计,可有效地用来解释和判断玄武岩成因。 图16 元素在蚀变过程中的稳定性检验图文献数据引自李晓雄(2014)Fig.16 Diagrams that verifies the stability of an element during alterationReferences data from Li (2014) 地幔岩的部分熔融程度和玄武质岩浆的分离结晶程度不会使Nb/Y、Zr/Y比值发生变化,因此Nb/Y、Zr/Y比值能够为示踪源区特征提供有效证据,Fittonetal.(1998)提出了基于Nb/Y、Zr/Y比值的岩浆源区判别公式:δNb=log(Nb/Y)+1.74-1.92×log(Zr/Y),δNb>0则说明岩浆与地幔柱源区有关,δNb<0说明岩浆源区与亏损地幔有关,本文玄武岩δNb<0的计算结果说明岩浆源区与亏损地幔有关。 基性岩浆作用表现出的地球化学特征对构造背景极为敏感,因此可以根据基性岩的某些地球化学参数揭示岩石产出的构造背景。Ti、Zr为高场强元素,离子位能较低,一般不会随着岩石的风化、蚀变及变质作用发生迁移,同时岩浆的分离结晶和同化混染作用对Ti、Zr的影响不明显(Pearce,1982),本文玄武岩样品在TiO2-Zr构造背景划分图中全部落入火山弧玄武岩区域(图17a),在(Hf/Sm)PM-(Ta/La)PM图解(图17b)中(La Flècheetal.,1998)落入被含水流体交代的地幔源区弧玄武岩的范围内,说明源岩来自地幔,结合林周盆地所处的特殊地理位置与晚白垩世的喷发时限,是印度大陆向亚欧大陆下俯冲时期岩石圈地幔被俯冲流体交代后部分熔融产生的弧玄武岩。 图17 玄武岩构造背景分类图解(a) TiO2-Zr分类图解(据Pearce,1982);(b) (Hf/Sm)PM-(Ta/La)PM图解(据La Flèche et al.,1998);(c) Th/Yb-Ta/Yb图解(据Perfit et al.,1980);(d) Th/Yb-Nb/Yb图解(据Pearce and Peate,1995)Fig.17 Diagrams of basalt tectonic background classification(a) TiO2 vs.Zr classification diagram (after Pearce,1982);(b) (Hf/Sm)PM vs.(Ta/La)PM diagram (after La Flèche et al.,1998);(c) Th/Yb vs.Ta/Yb diagram (after Perfit et al.,1980);(d) Th/Yb vs.Nb/Yb diagram (after Pearce and Peate,1995) 岛弧岩浆一般通过如下过程产生:洋壳俯冲到一定深度时脱水形成的俯冲带流体进入地幔楔,导致地幔岩石部分熔融形成岛弧岩浆。Ti、Nb、Ta的亏损是岛弧构造环境的重要标志之一,原因有如下几种:(1)俯冲流体上升交代地幔楔时,在流体中溶解度很低的Ti、Nb、Ta等高场强元素进入角闪石,使角闪石发生沉淀,使得流体更加亏损Nb、Ta,由此形成的岛弧岩浆亏损Nb、Ta,即源区存在角闪石残留或经过角闪石的分离结晶会导致派生岩浆的Nb/Ta比值降低;(2)地幔岩中的Ti、Nb、Ta的主要矿物是金红石,实验资料显示,金红石在80~100km以上的深度范围是稳定的,因而在岛弧岩浆形成的温压条件下,Ti、Nb、Ta保留在残余相金红石等矿物中,很少进入熔体,致使岛弧岩浆亏损Ti、Nb、Ta;(3)地幔源区在形成岛弧玄武岩之前曾发生部分熔融形成高Nb/Ta比值的熔体,残余地幔组分的Nb/Ta比值就变得亏损。研究区附近出露的堆晶成因的角闪辉长岩(泽当岩体)具有非常低的Nb/Ta比值(6.6~7.1;Zhangetal.,2014),说明角闪石并非控制该地区玄武岩Nb/Ta比值低的主要因素,本文玄武岩高场强元素亏损的原因可能是后两者。如上所述,俯冲带系统中玄武岩与Nb、Ta有关的比值就可以在一定程度上代表地幔亏损的程度(Egginsetal.,1997;Elliottetal.,1997;Leatetal.,2003)。 在俯冲环境中Ta、Yb会被保留在板片中,另一些元素会被流体和/或熔融物转移到地幔楔中(Pearce and Peate,1995),因此这两个元素相关的比值可以作为鉴别火山岩源区的特征数据。在Th/Yb-Ta/Yb图中(Perfitetal.,1980)(图17c),玄武岩夹层样品均落入岛弧玄武岩的范围内,属于活动大陆边缘(陆缘弧)区域,这种地球化学特征同样暗示设兴组玄武岩形成于俯冲环境,与亏损地幔源区及陆壳物质参与有密切成因关系。Yb是不活泼元素,行为类似于不相容元素,Th/Yb在部分熔融与分离结晶作用过程中将保持不变,Nb/Yb与此类似(Pearce,1983;Rollinson,1993),本文玄武岩样品在Th/Yb-Nb/Yb构造判别图(图17d)中均位于或靠近大陆弧范围,说明形成于大陆弧环境。 俯冲物质加入并交代地幔楔还会造成由此形成的岛弧玄武岩富集大离子亲石元素。含水流体可以携带来自大洋板片的大离子亲石元素至地幔楔,但如上所述,高场强元素的水溶性极低,它们会被留在板片中或者在地幔楔熔融过程中保存在残余矿物中,地幔楔熔体可携带大离子亲石元素,加上含水流体从俯冲板片携带来的大离子亲石元素,共同为岛弧玄武岩富集大离子亲石元素做出贡献。 本文玄武岩样品在Hf-Th-Nb和Ti-Zr-Y构造背景划分图中投影点集中(图18a,b),均处于岛弧钙碱性玄武岩范围,与微量元素岩石分类得到的结论相同,在Hf-Th-Ta构造背景划分图(图18c)(Pearce and Norry,1979)中样品均落入火山弧的范围内。 图18 玄武岩构造背景判别图(a) Hf-Th-Nb划分图(据Wood,1980;夏林圻等,2007);(b) Ti-Zr-Y划分图(据Pearce and Norry,1979);(c) Hf-Th-Ta划分图(据Wood,1980;夏林圻等,2007)Fig.18 Diagrams of basalt tectonic background classification(a) Hf-Th-Nb diagram (after Wood,1980;Xia et al.,2007);(b) Ti-Zr-Y diagram (after Pearce and Norry,1979);(c) Hf-Th-Ta diagram (after Wood,1980;Xia et al.,2007) 以上构造背景分析充分说明设兴组玄武岩产生于火山弧环境下,据此推断新特提斯洋俯冲时期的构造活动过程如下:新特提斯洋岩石圈在印度-欧亚大陆碰撞之前向北俯冲,产生的俯冲带流体诱使大陆岩石圈地幔(地幔楔)发生部分熔融,产生设兴组玄武岩,此后进入陆内俯冲。综上,林周盆地设兴组砂岩中玄武岩夹层形成于新特提斯洋的俯冲岛弧环境下,是俯冲消减阶段产生的地幔楔部分熔融的产物。 综合前人研究及本文地球化学、年代学研究结果,得到如下的藏南中生代构造-岩浆演化历史及特提斯演化过程:早白垩世早期羌塘和古特提斯洋南部的拉萨地块发生初始碰撞,触发雅鲁藏布新特提斯洋壳的向北俯冲,期间产生俯冲洋壳熔融成因的早白垩世埃达克质火山岩(137Ma)(Zhuetal.,2009),深部软流圈物质从大洋岩石圈断离处进入地幔楔,导致地幔物质的减压熔融、上覆拉萨微陆块的古老基底物质或增厚的地壳物质发生带状重熔,在110Ma左右形成地幔物质显著增加的带状岩浆大爆发(朱弟成等,2009)。随后,中、北拉萨地块进入陆内背景,南部地区由于雅鲁藏布新特提斯洋壳岩石圈北向俯冲,继续发生以桑日群火山岩(朱弟成等,2006)和冈底斯岩基(103~80Ma)(Wenetal.,2008)为代表的弧岩浆作用,主要发育为陆缘火山弧及弧间盆地,该时期拉萨地块短缩变形并显著抬升,在南缘形成一个安第斯型造山带,随后又发生快速的风化、剥蚀、地壳减薄。 沉积构造方面,侏罗纪晚期至白垩纪早期,拉萨地体内部发育有一系列由新特提斯洋向北俯冲引发的弧后盆地,这一构造背景已经被岩浆岩与沉积岩的研究证明(Zhangetal.,2004,2012;Mengetal.,2014;Maetal.,2015),这些盆地是具有活动大陆边缘大陆弧性质的盆地,自盆地形成后至印度-亚欧大陆碰撞前,南部拉萨地体发育连续的沉积地层,说明了沉积活动的连续性。早白垩世由于拉萨与羌塘的碰撞和中拉萨110Ma左右的带状岩浆大爆发,拉萨地体整体呈现出北高南低但较为平缓的地形地貌,自北向南的河流携带具有负εHf(t)特征的锆石先后沉积于弧后、弧前盆地,典型的弧后盆地是林周盆地,典型的弧前盆地是日喀则盆地,到晚白垩世,新特提斯洋板片发生洋脊俯冲(Zhangetal.,2010),大量幔源物质加入致使拉萨地体南侧迅速隆升,地壳加厚,此时拉萨地块南高北低,北侧的物源被南侧的隆升阻断,弧后盆地经历了以中部拉萨地体为主要物源转变为以南部冈底斯岩浆弧为主要物源的快速剥蚀、搬运,到晚白垩世晚期,南侧的岩浆弧基本被剥蚀殆尽,具有负εHf(t)特征的中生代碎屑物质重新加入。林周盆地设兴组(晚于98Ma)与上覆的林子宗火山岩(底部约为65Ma)之间呈大约33Ma的构造间断,可能代表了冈底斯弧的碰撞之前的隆升剥蚀过程。 设兴组处于冈底斯弧的弧后盆地位置,先后经历了以中部拉萨地体为主要物源-南部拉萨地体为主要物源-中部拉萨地体物质重新加入的物源变化。本文砂岩处于设兴组最后沉积的层位,以中部拉萨地体为主要物源,来自中拉萨早白垩世的带状岩浆大爆发,少量南部拉萨地块来源的锆石是安第斯型岛弧俯冲作用产生的岩浆,设兴组沉积时林周盆地所在的拉萨地块南缘为安第斯型大陆边缘,处于新特提斯洋壳北向俯冲消减的阶段,晚白垩世晚期,新特提斯洋岩石圈在印度-亚欧大陆碰撞之前向北俯冲,俯冲带流体诱发地幔楔发生部分熔融,产生设兴组玄武岩(图19)。 图19 林周盆地晚白垩世构造演化示意图Fig.19 Schematic map of Late Cretaceous tectonic evolution in Linzhou basin (1)林周盆地设兴组顶部的杂砂岩源岩多具有S型花岗岩的特征,少部分具有I型花岗岩的特征。源区物质年龄集中在98~200Ma,最年轻的锆石为98Ma,指示沉积是在98Ma之后发生的,中部拉萨地块为设兴组提供主要物源,南部拉萨地块为次要物源区。 (2)设兴组晚白垩世处于夹持在南部冈底斯弧与中部拉萨地块之间的弧后盆地,经历了中部拉萨地体与冈底斯岩浆弧物源输入。砂岩是晚白垩世冈底斯岩浆带隆升、快速剥蚀后中北部拉萨地块物质加入并沉积形成的。 (3)设兴组玄武岩和玄武安山岩为高钾钙碱性玄武岩系列岩石,是俯冲背景下被含水流体交代的岩石圈地幔部分熔融产生的大陆弧玄武岩,与亏损地幔源区及地壳物质参与有成因联系。 (4)晚白垩世时期,林周盆地位于冈底斯岩浆弧北部,林周盆地设兴组(晚于98Ma)与上覆的林子宗火山岩(底部约为65Ma)之间呈大约33Myr的构造间断,可能代表了冈底斯弧的碰撞之前的隆升剥蚀过程。 致谢感谢两位审稿人提出的宝贵修改意见。4.4 设兴组玄武岩夹层的成因
4.5 南部拉萨地块白垩纪构造岩浆演化
5 结论