西藏多龙矿集区荣那铜金矿床蚀变矿物学和地球化学及找矿意义*
2020-10-24赵子欧乔东海赵元艺
赵子欧 乔东海 赵元艺
1.中国地质大学地质过程与矿产资源国家重点实验室,中国地质大学地球科学与资源学院,北京 1000832.中国地质科学院矿产资源研究所,北京 100037
班公湖-怒江缝合带位于青藏高原中南部,是青藏高原三条主要构造缝合带之一(Girardeauetal.,1984;Panetal.,2012;Metcalfe,2013),属于特提斯-喜马拉雅成矿域(图1a)。其演化历史独特,成矿条件优越,有丰富的金属矿产资源,是极具潜力的斑岩型-浅成低温热液型铜(金)成矿带(潘桂棠等,1997;段志明等,2013;Xieetal.,2017)。近些年,我国矿产堪查工作在班公湖-怒江成矿带西段的多龙矿集区内取得重大突破,探明有荣那、色那、尕尔勤、多不杂等大型、超大型矿床等12个矿床(点),已探明的铜资源量约2000万吨,远景资源量大于3000万吨,金资源量300余吨,找矿潜力巨大(陈红旗等,2015;唐菊兴等,2016)。
荣那矿床位于西藏改则县物玛乡境内,是多龙矿集区内的超大型铜(金)矿床,铜资源含量巨大(>1500万吨),Cu平均品位大于0.5%,且其深部矿体边界仍未限定,有极大的资源潜力,是世界级的铜(金)矿床(段志明等,2013;孙兴国等,2014;杨超等,2014;唐菊兴等,2016),也是班公湖-怒江成矿带内首例斑岩型-浅成低温热液型矿床(唐菊兴等,2014;杨超等,2014),因此,其成矿机制、成矿阶段等研究对于重建多龙矿集区内成矿动力学背景模型,以及重新评估班公湖-怒江成矿带的资源前景均有着极其重要的意义(耿全如等,2011;唐菊兴等,2014,2016;韦少港,2017)。
ZK3204钻孔位于荣那矿床勘探线正中间,其探明的矿体顶部为全区已知矿体最高地段,且深部仍未穿透矿体,矿化连续,矿体延伸趋势明显,蚀变矿物种类齐全,具有极高的研究价值(孙兴国等,2014)。
短波红外光谱测试是矿产勘查领域常用的识别热液蚀变矿物的手段之一,拥有比镜下薄片鉴定和X射线衍射分析更快速、精准、定性定量等技术优势,尤其是针对荣那浅成低温热液矿床中难以识别的黏土矿物(杨志明等,2012;井新奎,2018)。而黄铁矿作为铜、金等热液矿床的主要组分及载矿矿物,因结构稳定,其微量元素通常反映了结晶过程及成因 (严育通等,2012;薛建玲等,2013)。因此,本文选择以荣那矿床ZK3204岩芯钻孔为研究对象,通过蚀变矿物短波红外光谱测试,结合金属矿物组合以及黄铁矿LA-ICP-MS原位微量元素特征,以期查明矿床成因,并对深部资源勘查工作提供理论依据。
1 区域地质概况
多龙矿集区呈近东西向展布,长约30km、南北宽约10km,地处班公湖-怒江缝合带北缘中生代铁格隆构造岩浆弧内(耿全如等,2011;Lietal.,2014;宋扬等,2014),中酸性岩浆活动及火山活动强烈,发育有大量中酸性侵入体,主要有闪长岩、花岗闪长岩、花岗闪长斑岩等,年龄集中在120~105Ma左右,其中与成矿关系最密切的为早白垩世花岗闪长斑岩(孙振明,2015;赵元艺等,2017;乔东海,2018)。该矿集区主要出露地层包括下二叠统曲地组、上三叠统日干配错组、下侏罗统曲色组、中侏罗统色哇组、下白垩统美日切错组、上白垩统阿布山组、渐新统康托组(图1b),其中曲色组与色哇组的复理石-类复理石沉积是矿区内铜金矿体的主要赋矿围岩。区内断裂构造发育,主要由东西向、北东向和北西向断裂控制(孙振明,2015),三组断裂构造呈网格状发育,构造交汇区为成矿提供了有利条件(韦少港,2017)。
2 矿床地质特征
荣那铜金矿床矿体整体呈北东-南西走向,向南东倾伏,呈长约2000m、宽约1000m的巨厚板状体,且受北东向断裂控制(孙振明,2015)。目前矿床勘查钻孔深度平均超700m,最深达1293m,矿床铜远景资源量超1500万吨(孙兴国等,2014;唐菊兴等,2016)。
矿床主要出露地层包括中下侏罗统色哇组、下白垩统美日切错组、渐新统康托组、第四系(孙兴国等,2014;唐菊兴等,2014;Xuetal.,2017) (图1b)。矿区内岩浆活动强烈(Zhuetal.,2013),喷出岩主要为美日切错组英安岩、安山岩,在矿床上部形成火山岩盖层;侵入岩主要为早白垩世侵入的花岗闪长斑岩、石英闪长玢岩(唐菊兴等,2016)。
图1 西藏多龙矿集区大地构造位置示意图(a,据西藏自治区地质调查院,2012(1)西藏自治区地质调查院.2012.西藏自治区改则县拿若铜矿调查评价报告.拉萨:西藏自治区地质调查院修改)和多龙矿集区地质图(b,据李光明等,2015;李志和冉启兰,2018修改)Fig.1 Schematic diagram of the structural pattern of the Duolong mining district,Tibet (a) and regional geological map of the Duolong mining district (b,modified after Li et al.,2015;Li and Ran,2018)
矿床蚀变及矿化垂向分带特征明显,蚀变带由浅到深依次为高级泥化带、青磐岩化带、绢英岩化带、钾化带;矿化带由上部硫砷铜矿、铜蓝、蓝辉铜矿等浅成低温热液矿床高硫化态矿物组合逐渐转变到下部黄铜矿、斑铜矿等斑岩型矿床矿物组合(杨超等,2014;李光明等,2015;王艺云等,2018)。
3 样品描述与分析方法
3.1 样品描述
本次研究样品来自荣那铜金矿床中部的ZK3204钻孔(图2)岩芯,共采集岩芯样品50件,采样间距控制在20m左右,并记录其采样深度、蚀变情况和地质特征等。采样原则是,优先等距采集,使样品在钻孔中各部位尽量均匀分布,对于蚀变及矿化特征不明显的深度,可以适当调整采样距离,以体现ZK3204整体的蚀变及矿化特征。后将岩芯样品送至廊坊科大矿物分选科技有限公司磨制探针片,然后在光学显微镜下进行观察、鉴定和照相。重点进行金属矿物组合及蚀变矿物的观察与鉴定(图3、图4)。
图2 荣那矿床东西向04排钻孔横剖面图(据杨超等,2014;王艺云等,2018;李志等,2018修改)Fig.2 The east-westward profile of the No.4 row drilling holes in the Rongna deposit (modified after Yang et al.,2014;Wang et al.,2018;Li et al.,2018)
3.2 分析方法
3.2.1 短波红外光谱测试
本次短波红外光谱测试所用仪器为南京地质矿产研究所的BJFK-1型便携式近红外矿物分析仪(PIMA),测试前,先将样品洗净晾干。测试期间,将仪器置于稳固水平位置,测试环境保持干燥,环境温度在20~30℃范围内,时刻保持顶部测量窗口洁净。为避免发生误差或异常,每块样品选择蚀变典型且平整新鲜的岩石表面点位3个,每个点的短波红外光谱测量时间为15~20秒(杨志明等,2012;井新奎,2018),后期运用TSG软件对PIMA测试获得的共150条光谱曲线进行数据处理及解译,并进行人工核对和筛选,最终根据谱线特征吸收峰参数识别矿物的蚀变信息(修连存等,2007,2009)。
3.2.2 黄铁矿LA-ICP-MS元素地球化学分析
将探针光片中的黄铁矿进行原位元素含量测试,方法为激光剥蚀电感耦合等离子质谱法(LA-ICP-MS),实验在中国地质科学院国家地质实验测试中心完成。使用仪器为Thermo Element Ⅱ型等离子质谱仪,激光剥蚀系统为New Wave UP-213。实验采用He作为剥蚀物质载气,所有分析数据都用标样值进行了校正,采用外标结合内标基体归一法。黄铁矿外标采用Nist 610和Mass-1标化,Fe做内标。Nist 610和Mass-1均为人工合成的玻璃圆盘,起始时测一次标样,结束时再测一次,测试结果均在误差范围内(袁继海,2011;蓝廷广等,2017)。
4 矿物学特征
4.1 蚀变矿物学特征
通过PIMA测试获得的短波红外光谱曲线与标准矿物曲线匹配,识别出3种主要蚀变矿物,包括高岭石、伊利石和绢云母(表1、图5)。高岭石在钻孔浅部最为发育;绢云母主要集中在钻孔中部,而在其余深度含量均较低;伊利石广泛分布于钻孔中,主要集中在钻孔中下部,在钻孔上部呈阶段性分布,主要集中在在146~179m及350m附近(表1)。部分深度还存在3种次要蚀变矿物,包括地开石、叶腊石和石膏。
表1 荣那矿床ZK3204钻孔岩芯短波红外光谱蚀变矿物测试数据表Table 1 Altered minerals test data by Short Wave Infrared Spectrum of the drilling hole ZK3204 in the Rongna deposit
从垂向上来看,ZK3204钻孔蚀变矿物组合具明显分带性,表现为高岭石+(地开石)→高岭石+伊利石→高岭石+(地开石+石膏)→高岭石+绢云母+伊利石→高岭石+伊利石+(叶腊石)+(地开石)。
4.2 金属硫化物矿相学特征
ZK3204钻孔岩芯中矿石以细脉浸染状构造为主,少量表现出稀疏浸染状与稠密浸染状构造(图3b,e,f);金属硫化物矿物主要有黄铁矿、黄铜矿、蓝辉铜矿、铜蓝、黝铜矿、斑铜矿、辉铜矿等(图4a-f),粒径在100~300μm之间,多具交代残余结构。其中铜蓝、蓝辉铜矿常交代黄铜矿、黄铁矿(图4a,d),表明是在黄铜矿和黄铁矿形成之后形成的。其含铜矿物主要分4个带:顶部主要由辉铜矿-蓝辉铜矿组成;中上部为蓝辉铜矿-砷黝铜矿-硫砷铜矿组合;中部以斑铜矿-铜蓝组合为特征;下部主要为斑铜矿-黄铜矿。总体上,矿床中上部为Cu-S体系,向下转变为Cu-Fe-S体系。
图4 荣那矿床ZK3204钻孔岩芯金属矿物显微镜下照片(a)黄铁矿、黄铜矿和蓝辉铜矿共生;(b)黄铁矿、斑铜矿共生;(c)黄铁矿、黝铜矿、斑铜矿共生;(d)斑铜矿、黄铜矿表面的铜蓝;(e)黄铁矿、斑铜矿交代黄铜矿;(f)黄铁矿充填于黄铜矿裂隙中.Py-黄铁矿;Ccp-黄铜矿;Dg-蓝辉铜矿;Bn-斑铜矿;Thr-黝铜矿;Cov-铜蓝Fig.4 Photomicrographs of metallic minerals in the drilling hole ZK3204 in the Rongna deposit(a) the paragenesis of pyrite,chalcopyrite,digenite;(b) the paragenesis of pyrite,bornite;(c) the paragenesis of pyrite,tetrahedrite,bornite;(d) covellite inclusion in the surface of bornite and chalcopyrite;(e) pyrite,bornite replaced by chalcopyrite;(f) the fractures of chalcopyrite filled with pyrite.Py-pyrite;Ccp-chalcopyrite;Dg-digenite;Bn-bornite;Thr-tetrahedrite;Cov-covellite
图5 荣那矿床ZK3204钻孔岩性与蚀变矿物以及主要金属元素含量变化图Fig.5 Lithology and altered minerals and variation diagram of the major metallic minerals of the drilling hole ZK3204 in the Rongna deposit
5 黄铁矿LA-ICP-MS分析结果
5.1 主量元素地球化学特征
黄铁矿(Fe2S)元素含量标准值为Fe=46.55%,S=53.45%,S/Fe=2,S/Fe<2的称为硫亏损,S/Fe>2称为铁亏损(周学武等,1994;Doyle and Mirza,1996;Oberthüretal.,1997)。本文黄铁矿样品中Fe=50.75%~56.90%,S=42.96%~48.64%,S/Fe在1.32~1.67之间,均属于强硫亏损型(表2)。
表2 荣那矿床ZK3204钻孔岩芯黄铁矿LA-ICP-MS分析结果(×10-6)(平均含量)Table 2 LA-ICP-MS trace element compositions (×10-6) for the pyrites of the drilling hole ZK3204 in the Rongna deposit (average contents)
5.2 微量元素地球化学特征
黄铁矿部分元素含量低于仪器检测下限,不做进一步讨论。ZK3204钻孔Au的变化范围为0.01×10-6~2.36×10-6,平均为0.14×10-6;Ag的变化范围为0.01×10-6~3.11×10-6,平均为0.33×10-6;Cu的变化范围为0.17×10-6~5075×10-6,平均为529.2×10-6;Zn的变化范围为1.17×10-6~22.49×10-6,平均为6.96×10-6;Pb的变化范围为0.01×10-6~89.37×10-6,平均为2.83×10-6;As的变化范围为8.20×10-6~40.74×10-6,平均为15.26×10-6;Se的变化范围为6.07×10-6~231.5×10-6,平均为53.50×10-6;Sb的变化范围为0.01×10-6~0.17×10-6,平均为0.56×10-6;Co的变化范围为0.02×10-6~9678×10-6,平均为720.3×10-6;Ni的变化范围为1.32×10-6~2590×10-6,平均为331.5×10-6(图6、电子版附表1)。
图6 荣那矿床ZK3204钻孔岩芯黄铁矿微量元素含量变化图解Fig.6 Variation diagrams of trace element contents of pyrites from the drilling hole ZK3204 in the Rongna deposit
对ZK3204钻孔黄铁矿微量元素进行R型聚类分析,可将其大致分为五大类,第一类包括Cu、Ag、Au;第二类包括As、Sb、Bi、Mo;第三类包括Zn、Hg、Pb、Co;第四类包括Ni;第五类包括Se,与其他各元素相关性较低,表现出独立因子成分(图7、表3)。采用因子分析,获得方差极大旋转成分矩阵,累计方差贡献68.90%,主因子基本上包含了原始元素变量的大部分信息,其中F1:Cu、Ag、Au,方差贡献21.05%;F2:Sb、Bi、Mo,方差贡献15.81%;F3:Zn、Pb,方差贡献10.96%;F4:Ni、As,方差贡献10.89%;F5:Se、Co、Hg,方差贡献10.20%。因子分析结果与聚类分析结果基本一致。
图7 黄铁矿微量元素R型聚类分析图解Fig.7 R-type clustering analysis graphic of trace elements in pyrites
表3 黄铁矿微量元素因子分析旋转成分矩阵Table 3 Rotation factor load matrix of trace elements in pyrites
黄铁矿Co、Ni含量及其比值(Co/Ni)受其沉淀时的物化条件影响,常作为判别黄铁矿成因的经验性指示标志,Co/Ni>10常被认为是火山成因,10>Co/Ni>1为热液成因,而Co/Ni<1为沉积改造或沉积成因(Bajwahetal.,1987;Brill,1989;周涛发等,2010;严育通等,2012;薛建玲等,2013)。因此,荣那矿床ZK3204钻孔中黄铁矿可大致分为四类:Py I:Co、Ni、Cu、Au、Ag含量较低,Co/Ni显示沉积或沉积改造成因;Py Ⅱ:Co、Ni含量较低,Cu、Au、Ag含量较高,Co/Ni显示为沉积或沉积改造成因;Py Ⅲ:Co含量较低,Ni、Cu、Au、Ag含量较高,Co/Ni显示为沉积或沉积改造成因;Py Ⅳ:Co、Ni含量较高,贫Cu、Au、Ag,Co/Ni显示为火山或热液成因。Py Ⅰ、Py Ⅱ、Py Ⅲ广泛分布于钻孔中,Py Ⅳ主要集中在钻孔中上部(图8)。
图8 黄铁矿Co-Ni成因图解(底图据Bajwah et al.,1987;Brill,1989)Ⅰ-火山成因;Ⅱ-热液成因;Ⅲ-沉积成因;Ⅳ-岩浆热液成因Fig.8 The genetic diagram of Co-Ni for pyrite (base map after Bajwah et al.,1987;Brill,1989)Ⅰ-Volcanic;Ⅱ-Hydrothermal;Ⅲ-Sedimentary;Ⅳ-Magmatic-hydrothermal
6 讨论
6.1 矿床成因
通常,斑岩型矿床与浅成低温热液型矿床同属一个岩浆-热液成矿系统,但其空间位置一般不相叠加(Sillitoe,2000),蚀变矿物及矿石组构也有极大差别,因此可作为反映其成矿部位、成矿环境及成矿期次的标志(Reyes,1990;Hedenquistetal.,2000;Qiuetal.,2019)。荣那矿床成因类型复杂,前人根据热液蚀变及金属矿物组合证据指出,荣那矿床具有三元体系,由深到浅分别为:斑岩型矿床→高硫型浅成低温热矿床叠加斑岩型矿床→高硫型浅成低温热液型矿床(陈红旗等,2015;李光明等,2015;孙振明等,2015)。ZK3204钻孔显示出,在700m以下,发育大量伊利石与高岭石,矿石矿物主要有斑铜矿、黄铜矿为主的Cu-Fe-S体系,为中高温中性成岩环境,属于荣那矿床的斑岩型矿床;在300m以上,发育有大量高岭石,矿石矿物为以辉铜矿、蓝辉铜矿为主的高硫化态Cu-S体系,为酸性成岩环境(杨超等,2014),属于荣那矿床的高硫型浅成低温热液型矿床;而在300~700m,发育的黄铜矿、斑铜矿等多被蓝辉铜矿、铜蓝交代(图4a,d),并形成蓝辉铜矿、砷黝铜矿、硫砷铜矿等Cu-As-S体系矿物,且多穿插石膏、地开石、叶腊石等矿物,显示浅成低温热液矿床叠加在早期斑岩型矿床之上。
黄铁矿微量元素构成同样也包含了矿床成矿过程的重要信息(严育通等,2012;申俊峰,2013;薛建玲等,2013;Qiuetal.,2016)。通常,Py Ⅰ被认为是来自围岩并重新沉淀的黄铁矿,其保留了围岩中的信息,因此呈沉积或沉积改造成因(周涛发等,2010)。而Py Ⅱ及Py Ⅲ却与多数热液矿床黄铁矿高Co、Ni含量及比值的特性相反,这可能与风化作用有关。通常,Ni在黄铁矿重结晶过程中不容易被释放出来,含量较为稳定,而风化作用过程中Co丢失较多(Morse and Luther,1999;Tribovillardetal.,2006),导致Co/Ni值逐渐减小,荣那矿床由此形成了Py Ⅱ和Py Ⅲ。但同作为富成矿元素的Py Ⅱ与Py Ⅲ的Co、Ni含量却有较大差异,低Ni的Py Ⅱ的形成很可能远早于Py Ⅲ,且经历过极强的风化作用,导致Ni也随之流失。
前人研究表明,荣那矿床至少经历了两期斑岩体侵入,年龄分别为120.2±1.0Ma与115.9±0.41Ma,同属多龙矿集区的多不杂矿床也发育同样的两期成矿作用,分别为121.6±1.9Ma与115.7±1.1Ma(杨超等,2014;方向等,2015);且多龙矿集区内各矿床的花岗闪长斑岩与闪长玢岩均显示出同时同源、形成于岛弧俯冲环境、具有壳幔混合性质的特征(孙振明,2015),表明在早白垩世晚期(约121~115Ma),多龙矿集区发生了与班公湖-怒江洋盆向北俯冲消减密切相关的主要成岩成矿事件,但同时也经历了隆升事件,即使在荣那矿床第二期斑岩体形成之后,挤压和隆升作用仍未完全停止,第二期斑岩体也随即遭受风化剥蚀,形成了Py Ⅲ,但第一期斑岩体却因风化时间过长,并可能受到沉积改造作用,由此形成了Py Ⅱ。在ZK3204深部本该是斑岩型矿床钾化带,高岭石和伊利石含量呈现逐渐升高趋势的这种反常现象,正是原钾化带中的钾长石及黑云母等矿物,因后期风化作用影响而形成的产物。
虽然荣那矿床在不同成矿期内均经历了剧烈的风化作用,但热液矿床中由矿化元素活动性差异导致的矿化分带性常常保留在黄铁矿微量元素之中,对其进行空间分析能显示出成矿地球化学空间演化规律(薛建玲等,2013;田广等,2014)。在钻孔下部的斑岩型矿体内,高温亲铁元素(Co、Ni)→主要成矿元素(Cu、Ag、Au、Zn、Pb)→低温亲铜元素(As、Sb)组合表现出良好的分带性(图6),显示斑岩型矿床为在岩浆流体上升过程中冷却稀释,使金属元素逐渐沉淀而富集成矿的,但越接近高级泥化带,这种元素分带组合中的部分元素相关性逐渐减弱,Co、Ni含量及比值逐渐增大,Zn、Pb与Cu、Au、Ag逐渐由正相关变为负相关(图6、图7、表3),这可能与浅成低温热液矿床的形成有关。在矿床上部,不仅发育有大量高岭石,也发育有金红石、石膏与多孔状残余石英等蚀变矿物,代表一种高氧逸度、强酸性淋虑的成岩环境(Reyes,1990;Hedenquistetal.,2000;杨超等,2014)。目前已有流体包裹体证据表明,这种成岩环境与荣那矿床岩浆流体受大气降水混合影响有关,矿床上部遭受强酸性淋虑蚀变过程(杨超等,2014),由此形成高硫型浅成低温热液矿床,这与目前斑岩型-浅成低温热液型矿床系统模型相符合(Hedenquistetal.,1998,2000;Sillitoe,2000;Einaudietal.,2003;Simpsonetal.,2004;Seedorffetal.,2005;Gemmell,2007;Hedenquist and Taran,2013)。而在近地表黄铁矿微量元素中,这种过程表现为Al、Zn、Pb等强亲硫性金属元素被淋虑出,为高岭石、地开石等蚀变矿物及铅锌矿、铜蓝等硫化矿物提供了物质基础。同时,这类高硫化强酸性流体对金的迁移与富集也起着重要作用(Ridley and Diamond,2000;Phillips and Evans,2004;Phillips and Powell,2010;Yuetal.,2020),而强亲硫性金属元素(如Pb、Zn)也作为Au的保护剂,先与高硫型酸性流体发生反应,但随着在矿物中浓度逐渐降低,Au发生运移和富集,所以Pb、Zn与Cu、Ag、Au也逐渐变为负相关性(图6、图8),矿床上部黄铁矿中Au含量更高(图6)。原斑岩型矿床的Py Ⅱ和Py Ⅲ的成矿元素在这过程中也已被淋虑和迁移,并与保留围岩信息的Py Ⅰ一同受热液改造影响,由此形成Py Ⅳ。
高硫型浅成低温热液矿床对斑岩型矿床的叠加改造也体现在深部斑岩体中。与大气降水混合后的高硫化强酸性流体下渗到一定深度,形成石膏、地开石、叶腊石等蚀变矿物,并通过热液改造使黄铁矿贫成矿元素(如1033m处),也使Cu-Fe-S金属矿物体系被交代(图4a,d)。该深部改造过程与紫金山斑岩型-高硫型浅成低温热液矿床类似(刘羽等,2011;唐菊兴等,2014),并非传统意义上的硫化物次生富集成矿。
一般来说,在斑岩型-浅成低温热液矿床成矿系统的浅成低温热液矿床成矿过程中,成矿元素被重新活化和富集,使矿床上部有存在独立矿体的可能(Hedenquistetal.,1998)。但是与紫金山矿床不同的是,目前荣那浅成低温热液矿床范围内并未发现任何独立矿体,这可能也与在荣那矿床成矿期内剧烈的风化作用有关,根据估算,在120~110Ma期间,荣那矿床上部剥蚀深度在500~1000m左右(杨超等,2014),上部矿体可能已遭受风化剥蚀,从而导致独立矿体的消失。这也正与荣那矿床黄铁矿中Co、Ni降低的特征相符合。而在110Ma左右,火山活动喷发出形成较厚的安山岩、英安岩等盖层,覆盖在矿体之上很好地保护了矿体(王勤等,2015;唐菊兴等,2016),使矿床没有进一步遭受风化剥蚀影响,所以仍保留了一部分热液及火山成因黄铁矿。而这也暗示,班公湖-怒江洋盆在早白垩世晚期仍未闭合(孙振明,2015)。
6.2 深部资源预测
前人已就磁异常、钻探、音频电磁测深等物探方面做了大量研究,结果表明荣那矿体由浅到深矿化基本连续,且向矿体倾向延伸方向仍有找矿潜力(段志明等,2013;孙兴国等,2014;汪东波等,2016;李志和冉启兰,2018),但是地球化学方面的研究及证据仍不充分。
黄铁矿作为热液矿床重要的载矿矿物,其微量元素反映出的热液矿床元素分带性常常可为热液矿床盲矿预测提供良好依据(胡楚雁,2001;薛建玲等,2013;李惠等,2015)。因子及聚类分析表明,荣那矿床主成矿阶段F1(Cu、Ag、Au)可作为矿体的指示标志,在钻孔下部,高温亲铁元素(Co、Ni)→主要成矿元素(Cu、Ag、Au、Zn、Pb)→低温亲铜元素(As、Sb)组合表现出良好的分带性,由1033.80m向下,Cu、Ag、Au等微量元素均有升高及延伸的趋势,说明远未接近矿体尾晕,仍有较大找矿潜力。
荣那矿床深部资源潜力也可以从矿石矿物组合特征角度来预测(郭娜等,2017;王艺云等,2018)。钻孔深部矿石矿物主要以斑铜矿、黄铜矿等Cu-Fe-S矿物为主,随着钻孔深度增大,黄铜矿含量逐渐升高,钻孔中Cu、Pb、Zn、Cr、Hg等含量、矿石品位以及作为斑岩型矿床典型蚀变产物的绢云母、伊利石含量在1000m之后均有向下升高的趋势(图3),表明在矿床深部(1000m之下),仍然存在矿体。由此可见,荣那矿床下部仍有较大的远景资源量,位于目前勘查区中部的ZK3204钻孔深部及周边可作为未来深部资源勘察的重点对象。
7 结论
(1)ZK3204钻孔岩芯样品中矿石的构造以细脉浸染状构造为主,少量表现出浸染状与稠密浸染状构造。含铜矿物主要分四个带:下部主要为斑铜矿-黄铜矿;中部以斑铜矿-铜蓝组合为特征;中上部为蓝辉铜矿-砷黝铜矿-硫砷铜矿组合;顶部主要由辉铜矿-蓝辉铜矿组成。蚀变矿物组合由上往下表现为高岭石+(地开石)→高岭石+伊利石→高岭石+(地开石+石膏)→高岭石+绢云母+伊利石→高岭石+伊利石+(叶腊石)+(地开石)。
(2)荣那矿床经历了三个成矿期、四个成矿阶段,分别为:岩浆成矿期、热液成矿期、表生成矿期,其中热液成矿期有两个成矿阶段。
(3)在矿床深部(815m以下),荣那铜金矿床主成矿阶段元素(Cu、Ag、Au)含量、钻孔中Cu、Pb、Zn、Cr、Hg等含量、矿石品位以及绢云母、伊利石含量均有向下升高的趋势,说明在ZK3204钻孔下部仍有巨大的找矿潜力,可作为未来深部资源重点勘察对象。
致谢南京地质矿产研究所的修连存研究员在PIMA测试中给予了指导;国家地质实验测试中心的赵令浩博士在LA-ICP-MS实验中提供了帮助。中国地质大学(北京)的邱昆峰副教授提出了建设性意见和建议;中国地质科学院矿产资源研究所的曲晓明研究员提出了宝贵的修改意见。在此,一并表示衷心的感谢!