APP下载

锥盘式花生种子脱壳装置研制

2020-10-22郝建军聂庆亮马璐萍李建昌宋亚辉龙思放张贺斌

农业工程学报 2020年17期
关键词:脱壳荚果橡胶

郝建军,聂庆亮,马璐萍,李建昌,宋亚辉,龙思放,张贺斌

锥盘式花生种子脱壳装置研制

郝建军1,聂庆亮1,马璐萍1,李建昌1,宋亚辉2,龙思放1,张贺斌1

(1. 河北农业大学机电工程学院,保定 071001;2. 河北省农林科学院粮油作物研究所,石家庄 050035)

针对现有花生脱壳机脱净率低、种仁损伤率高及其对花生品种适应性差等问题,该研究设计了一种锥盘式花生种子脱壳机构。以花育23花生为试验对象,利用EDEM软件对花生荚果进行脱壳模拟试验,通过仿真分析与脱壳装置样机试验获得了脱壳机构最优结构参数。为进一步提高脱壳质量,在上下锥盘表面粘贴橡胶刺皮,以锥盘式花生脱壳机构的下锥盘转速、橡胶凸起数目、最小脱壳间隙为试验因素,脱净率、损伤率为响应值,进行单因素试验和Box-Behnken试验。利用Design-Expert软件对试验结果进行方差分析,以建立脱净率、损伤率与下锥盘转速、橡胶凸起数目及最小脱壳间隙的回归模型。通过提高脱净率、降低损伤率的双目标优化得到关键参数的最优组合为:下锥盘转速270 r/min,橡胶凸起数目5 500个/m2,最小脱壳间隙11 mm。样机试验表明,粘贴橡胶刺皮的锥盘式脱壳装置样机的脱净率和损伤率均值分别为 97.84%和3.27%;与滚筒式花生种子专用剥壳机相比,有橡胶刺皮的锥盘式脱壳装置的脱净率提高了2.03个百分点,损伤率降低了0.67个百分点。橡胶刺皮疲劳损伤试验表明,累计脱壳作业90 h后橡胶刺皮严重磨损,脱壳质量降低,应及时更换。研究结果可为花生种子脱壳机的研发及改进提供参考。

农业机械;设计;试验;花生种子;锥盘式;脱壳机;EDEM

0 引 言

中国是世界花生生产大国,花生种植面积多达500万hm2,产量多达1 700万t,约占世界花生总产量的40%左右[1]。种子脱壳是花生播前备种的重要环节,脱壳后的花生种子质量直接影响出苗、生长和产量等[2]。

目前,花生种子脱壳多依据花生荚果的外形特点,采用揉搓、挤压、撞击等原理,利用脱壳部件(滚筒式、平面式等)与脱壳筛(冲孔筛、栅条筛等)间的相互作用使花生荚果开裂、破碎完成脱壳,如Rostami等[3]设计的滚筒式花生脱壳机,高连兴等[4]研制的三辊式小区育种花生脱壳机,陆荣等[5-8]研发的锥滚筒式花生脱壳机,Helmy等[9]研制的往复式花生脱壳机,Oluwole等[10]研制的离心式花生脱壳机,王军峰等[11]研制的刮板式花生脱壳机,高学梅[12]设计的打击揉搓式花生脱壳关键部件。上述花生脱壳机均在一定程度上存在脱净率低、花生种仁损伤率高、对花生品种适应性差等问题。针对上述问题,本文设计了一种锥盘式花生种子脱壳机构,以期实现不同品种花生种子的高效低损脱壳。

1 锥盘式脱壳机设计

1.1 整机结构

锥盘式花生种子脱壳机(2 100×1 050×1 750,mm)主要由脱壳装置、风选装置和机架3部分组成,具体结构如图1所示。

1.进料斗 2.支撑板 3.螺纹柱 4.上锥盘 5.下锥盘 6.脱壳支撑板 7.纱网 8.纱网连接挡板 9.脱壳调速电机 10.风选风机 11.三角带与带轮 12.出料板 13.振动筛 14.动力电机 15.筛选风机 16.机架 17.连杆 18.止动螺母 19.碎壳导向板

脱壳装置由进料斗、上锥盘、纱网、纱网连接挡板、下锥盘、脱壳调速电机、支撑板、脱壳支撑板和螺纹柱等组成;风选装置主要由风选风机、三角带与带轮、出料板、振动筛、风选电机、筛选风机、连杆和碎壳导向板等组成。

1.2 脱壳机构结构及其工作原理

脱壳机构结构如图2所示。上锥盘固定在支撑板底部,通过调节止动螺母实现上锥盘轴向可调,下锥盘通过联轴器与安装在脱壳支撑板底部的脱壳调速电机连接。

1.上锥盘 2.支撑板 3.下锥盘 4.联轴器 5.脱壳支撑板 6.脱壳调速电机7.螺纹柱 8.止动螺母 9.进料斗

脱壳锥盘(如图3)是脱壳机构的关键部件,上下锥盘间形成的环锥形空腔构成脱壳室,通过移动上锥盘轴向位置调节脱壳间隙,以适应不同品种花生的脱壳作业需求。脱壳作业时,下锥盘由脱壳调速电机带动转动,花生荚果由进料斗落入脱壳室,在离心力、摩擦力、重力等作用下沿下锥盘斜面向下移动,外形尺寸较大的花生荚果在上下锥盘的挤搓和剪切作用下外壳开裂、破碎后,花生种仁从上下锥盘间隙流出并进入风选装置,与此同时外形尺寸较小的花生荚果依次沿下锥盘斜面向下运动至脱壳室下方的狭窄空间,并在上下锥盘的挤搓和剪切作用下完成脱壳。

注:α为下锥盘倾角,(°);β为上锥盘倾角,(°);h1最大脱壳间距,mm;h2为最小脱壳间距,mm;d1为花生荚果直径,mm;d2为花生种仁直径,mm;D1为进料口直径,mm;D为锥盘最大直径,mm;H为下锥盘高度,mm;下同。

2 脱壳机构关键参数设计

2.1 荚果脱壳受力分析

花生荚果脱壳受力状况如图4所示。

注:G为花生荚果的重力,N;F为花生荚果所受的离心力,N;ω为下锥盘角速度,rad·s-1;f、f1、f2为花生荚果所受的摩擦力,N;F1、F2分别为上、下锥盘对花生荚果的支持力,N。

根据图4可知:

由花生荚果脱壳受力分析可知,花生荚果的受力与锥盘转速,上下锥盘倾角、,花生荚果所处位置的回转半径及对应的脱壳间隙有关。以脱壳室中花生荚果在克服离心力、摩擦力后能自动下滑为极限条件可知[13],∑F≤0、∑F≤0。由式(1)、(2)分析可知,锥盘转速越大,花生荚果所受摩擦力和离心力越大,越有利于脱壳,但过大的离心力不仅会阻碍花生荚果向下移动,降低脱壳效率,而且还会增大花生种仁的受损概率,故锥盘转速不宜过大,结合前期脱壳试验确定下锥盘转速为100~500 r/min。

2.2 脱壳作业过程仿真分析及参数确定

离散元法(Distinct Element Method,DEM)是一种处理非连续介质问题的数值模拟方法,广泛应用于散体物料处理领域。EDEM 软件是基于离散单元法的通用 CAE 分析软件,常用于工业、农业生产中的颗粒处理和操作系统进行模拟和分析[14-16]。为分析锥盘倾角对花生脱壳的影响,脱壳作业中将每个花生荚果视为独立运动颗粒,利用EDEM[17-18]对不同锥盘倾角组合进行仿真分析,并结合样机脱壳试验确定脱壳机构最优结构参数。

以种植范围广的花育23花生为研究对象进行脱壳仿真分析,其三维尺寸在方向上分别为34~40 mm、12~14 mm、11~13 mm[19]。在EDEM中,利用颗粒填充方法根据花生荚果(如图5a)三维尺寸分布均值建立花生荚果模型(如图5b),采用Hertz-Mindlin模型[20]作为花生荚果与花生荚果及上下锥盘(钢)间的接触模型,参照文献[21-25]设置脱壳仿真参数,如表1所示。

由图3可知,为使花生荚果能够顺利进入脱壳室,应满足最大脱壳间距1大于花生荚果直径1;为保证花生荚果在上下锥盘作用下完成脱壳,应满足花生荚果直径1大于最小脱壳间距2;为保证花生种仁能从环锥形脱壳空腔中顺畅进入风选装置,应满足最小脱壳间距2大于花生种仁直径2。结合前期脱壳试验,初选1≥70 mm,2≥6 mm,上下锥盘最大直径=400 mm,上锥盘进料口直径1=160 mm,下锥盘台体高度=80 mm。为保证上下锥盘构成图3所示的脱壳室,锥盘倾角组合如表2所示。利用Inventor软件按照上述参数创建锥盘三维模型,并将其导入EDEM软件中进行仿真。结合花生种子三维尺寸及预仿真试验结果,仿真参数设置为最小脱壳间隙11 mm、下锥盘转速300 r/min,花生荚果离散元模型(生成速率20个/s,生成时长10 s)由进料口处所设置的颗粒工厂生成并自由落入脱壳室,喂料速率由公式(3)计算可得为3.6 kg/min,仿真模型如图5c所示。

式中V为喂料速率,kg/min;m为单个花生质量(每粒质量约3 g)[19],g;n为花生荚果生成速率,个/s。

表1 仿真参数

仿真结束后,每锥盘倾角组合分别分3次随机选取5粒花生荚果模型,导出每时刻合力值并计算最大合力均值(如表2所示)。由表2可知,=20°、=15°,=30°、=20°,=30°、=25°,=40°、25° 4种锥盘倾角组合时,所得的合力均值均介于60~70 N,此时可获得较高的脱净率和较低的损伤率[22]。按照上述4种锥盘组合所得合力均值绘制曲线如图6所示。由图6可见,当上锥盘倾角=30°、下锥盘倾角=25°时,花生荚果模型所受合力均值最大(≈68 N),且受最大合力均值时间最长(≈0.55 s),有利于充分脱壳。

表2 锥盘倾角组合及花生荚果模型所受最大合力均值

图6 花生荚果模型所受合力均值曲线

分别按上述4组锥盘倾角组合试制脱壳装置样机(如图7)。按照脱壳仿真参数(最小脱壳间隙11 mm、下锥盘转速300 r/min、喂料速率3.6 kg/min)对含水率为15%~18%的花育23花生荚果进行5次脱壳试验,每次试验选取花生荚果5 kg,按照公式(4)~(5)计算脱净率和损伤率,结果如表3。由表3可知,当=25°、=30°时所得脱净率和损伤率分别为95.8%、3.8%,综合脱壳效果更好,且满足花生脱壳质量要求(脱净率≥95%,损伤率≤4%)[26]。

式中1为花生脱净率;2为花生损伤率;为脱壳所得完整花生种仁质量(花生种仁无损伤),g;1为脱壳所得损伤花生种仁质量,g;2为未脱壳花生荚果的花生种仁质量(将未脱壳的花生荚果人工去壳后称重所得),g。

图7 花生种子脱壳装置样机

表3 脱净率与损伤率

为进一步提高脱净率,降低损伤率,采用BD801开姆洛克粘合剂将丁腈橡胶[27]刺皮(结构参数如表4所示)粘贴在表面拉毛处理后的锥盘表面。粘贴橡胶刺皮不仅能够缓减刚性锥盘对花生的冲击,以减少花生种仁损伤,还能减缓花生荚果群的流动,增大锥盘对花生荚果的磨搓作用力和磨搓作用时间,有利于花生荚果的破损、开裂。

表4 橡胶刺皮结构参数

3 脱壳试验与结果分析

选取含水率为15%~18%的花育23花生为研究对象,利用锥盘粘贴橡胶刺皮的脱壳装置样机(如图7所示,=30°、=25°)进行脱壳试验,分析下锥盘转速、橡胶凸起数目、最小脱壳间隙3个主要参数对花生脱净率和损伤率的影响。试验参数设置为:下锥盘转速100~500 r/min、橡胶凸起数目1 000~9 000个/m2、上下锥盘最小脱壳间隙7~15 mm。每组试验选取花生荚果5 kg,喂料速率3.6 kg/min。

3.1 单因素试验结果分析

由图8a(下锥盘转速对花生脱净率和损伤率的影响)可见,随着下锥盘转速的增加,脱净率迅速增加并在趋于稳定后随下锥盘转速的增加而降低,但下锥盘转速过大时花生种仁损伤率较大,这是由于下锥盘转速较高时,增大了花生种仁与锥盘的碰撞概率,从而增大了花生种仁的损伤率。为达到花生脱壳质量要求(脱净率≥95%,损伤率≤4%)[26],下锥盘转速取值为200~400 r/min。

由图8b(橡胶凸起数目对花生脱净率和损伤率的影响)可见,橡胶凸起数目对花生种仁损伤率影响较大,这是由于橡胶刺皮为柔性材料,可缓冲花生种仁与锥盘间的冲击,从而在一定程度上降低了花生种仁的损伤。但橡胶刺皮的凸起密度过大,会增加花生种仁从脱壳室中的流出阻力,延长花生种仁滞留在脱壳室内的时间,从而在一定程度上增加了花生种仁的损伤概率。为达到花生脱壳质量要求,橡胶凸起数目取值3 000~7 000个/m2。

由图8c(最小脱壳间隙对花生脱净率和损伤率的影响)可见,随着最小脱壳间隙的增加,脱净率和损伤率呈递减的趋势,但最小脱壳间隙过大时,花生荚果受上下锥盘的作用不充分,导致花生荚果脱壳不彻底,脱净率较低。当最小脱壳间隙较小时,花生荚果受上下锥盘的脱壳作用大,虽然花生荚果的脱净率较高,但在一定程度上增加了花生种仁的受损概率。为达到花生脱壳质量要求,取最小脱壳间隙9~13 mm。

图8 单因素试验结果分析

3.2 Box-Behnken试验与结果分析

3.2.1 Box-Behnken试验方案设计

在Design Expert 8.0.6软件中,利用Box-Behnken Design试验进行试验设计与分析[28],各因素取值范围根据单因素试验结果确定,试验因素水平编码值如表5所示,试验方案与结果如表6所示,脱净率、损伤率回归方程方差分析结果分别如表7、表8所示。

表5 试验因素水平编码表

表6 脱壳试验方案与结果

注:、、分别为下锥盘转速、橡胶凸起数目和最小脱壳间隙的水平值,下同。

Note:,,is the level values of the rotation speed of lower cone, number of rubber bumps and the minimum shelling clearance, respectively, the same below.

3.2.2 脱净率及损伤率的影响因素分析

由表7可知,模型显著性检验值0.0004,失拟项值0.072 6,说明回归模型极显著,失拟项不显著,拟合程度高;对脱净率的影响,、、2极显著,显著,影响显著顺序为2,下锥盘转速与最小脱壳间隙交互项影响极显著、橡胶凸起数目与最小脱壳间隙交互项影响显著,下锥盘转速与最小脱壳间隙交互项影响不显著。脱净率1回归模型为

表7 脱净率回归方程方差分析

注:**极显著(<0.01)*显著(0.01≤<0.05),下同。

Note: ** is highly significant (<0.01), * is significant (0.01≤<0.05), the same below.

表8 损伤率回归方程方差分析

由表8可知,模型显著性检验<0.000 1,失拟项值0.054 4,说明回归模型极显著,失拟不显著,拟合程度高;对花生种仁损伤率的影响,、、2、2极显著,、显著,影响显著顺序为、22、、,橡胶凸起数目与最小脱壳间隙交互项影响极显著,下锥盘转速与橡胶凸起数目、下锥盘转速与最小脱壳间隙交互项影响不显著。种仁损伤率2的回归模型为

试验因素交互作用显著项对脱净率、损伤率的响应面如图9所示。由图9a、图9b可知,在橡胶凸起数目不变时,脱净率随着最小脱壳间隙的增加及下锥盘转速的提高而减小;在下锥盘转速不变时,脱净率随着最小脱壳间隙的减小及橡胶凸起数目的增大而提高;由图9c可知,在下锥盘转速不变时,花生种仁损伤率随着橡胶凸起数目的减小及最小脱壳间隙的增加而降低。

3.2.3 最优作业参数确定及验证

根据以上试验结果,在Design-Expert软件中以提高脱净率、降低损伤率为优化目标,对脱壳作业参数进行优化,得到脱壳机构的最优参数组合为:下锥盘转速269.96 r/min,橡胶凸起数目5 738.99个/m2,最小脱壳间隙11.15 mm,此时脱净率预测值最高为97.95%,损伤率预测值最低为3.19%,将优化后参数圆整为下锥盘转速270 r/min、橡胶凸起数目5 500个/m2、最小脱壳间隙11 mm。

采用锥盘有无粘贴橡胶刺皮的锥盘式脱壳装置样机和108k-30型滚筒式花生种子专用剥壳机对含水率15%~18%的花育23花生进行5次脱壳对比试验,每组脱壳试验的试验条件为:下锥盘转速270 r/min、橡胶凸起数目5 500个/m2、最小脱壳间隙11 mm、花生荚果5 kg、喂料速率3.6 kg/min,试验结果如表9。由表9可知,与滚筒式花生种子专用剥壳机相比,无橡胶刺皮的锥盘式脱壳装置的脱净率略高,损伤率较略低,粘贴橡胶刺皮的锥盘式脱壳装置样机的脱净率则提高了2.03个百分点损伤率降低了0.67个百分点。由此可见,锥盘式脱壳装置样机脱壳质量较优,且锥盘粘贴橡胶刺皮时的脱壳效果更优,脱壳质量均满足行业标准要求(脱净率≥95%,损伤率≤4%)[26]。

表9 花生种子脱壳对比试验

3.3 橡胶刺皮疲劳损伤测试

选用上述粘贴橡胶刺皮的锥盘式脱壳装置,在滦县百信合作社对花育23花生进行间歇脱壳作业(每天累计脱壳4 h),测试橡胶刺皮的疲劳损伤及其对脱壳质量的影响,脱壳试验条件为:下锥盘转速270 r/min、橡胶凸起数目5 500个/m2、最小脱壳间隙11 mm、喂料速率约3.6 kg/min。试验结果如图10所示。

注:下锥盘转速270 r·min-1;橡胶凸起数目5 500个·m-2;最小脱壳间隙11 mm;喂料速率约3.6 kg·min-1。

由图10可知,随着累计脱壳作业时长的增加,脱净率递减、损伤率递增;累计脱壳作业75 h后脱净率显著降低,花生种仁损伤率显著增大;累计脱壳作业90 h后的橡胶刺皮磨损严重(橡胶凸起被磨掉),橡胶刺皮表面褶皱撕裂,刺皮边缘存在翘起的现象(如图11所示),为保证脱壳质量,此时应及时更换橡胶刺皮。计算可知,粘贴一次橡胶刺皮可完成超过18 000 kg的花生种脱壳。

图11 累计脱壳作业90 h后橡胶刺皮的磨损状况

4 结 论

1)为实现花生种子的高效低损脱壳,设计了一种锥盘式花生种子脱壳机构,使用EDEM软件对花生种子脱壳过程进行仿真分析,利用颗粒填充法,采用Hertz-Mindlin接触模型,建立花生荚果脱壳仿真模型并进行仿真分析,获得脱壳机构上下锥盘倾角最佳参数组合为下锥盘倾角25°,上锥盘倾角30°。

2)制备锥盘式脱壳装置样机,以花育23花生为试验对象,使用Design-Expert软件中的Box-Behnken Design(BBD)中心组合试验设计方法,建立脱净率、损伤率与下锥盘转速、橡胶凸起数目及最小脱壳间隙3个关键参数回归模型。提高脱净率、降低损伤率目标优化得到3个关键参数的最优组合为下锥盘转速270 r/min,橡胶凸起数目5 500个/m2,最小脱壳间隙11 mm。样机试验表明,锥盘式脱壳装置脱壳质量较优,符合花生脱壳行业标准要求:与滚筒式花生种子专用剥壳机相比,有橡胶刺皮的锥盘式脱壳装置的脱净率提了2.03个百分点,损伤率降低了0.67个百分点。

3)橡胶刺皮疲劳损伤对脱壳质量的影响试验表明,累计脱壳作业90 h后橡胶刺皮磨损严重,橡胶刺皮表面褶皱撕裂,且橡胶刺皮边缘有翘边的现象,此时的橡胶刺皮不利于花生种的脱壳,应及时更换橡胶刺皮。粘贴一次橡胶刺皮可完成超过18 000 kg的花生种脱壳。

[1]孙宗鹤. 我国科学家成功破译花生基因组密码[N]. 光明日报,2019-05-16 .

[2]National Agricultural Statistics Service. Crop production[R]. United States Department of Agriculture, 2018.

[3]Rostami M A, Azadshahraki F, Najafinezhad H. Development and evaluation of a peanut sheller[J]. AMA-Agricultural Mechanization in Asia Africa and Latin America, 2009, 40(2): 47-49.

[4]高连兴,回子健,董华山. 三滚式小区育种花生脱壳机设计与试验[J]. 农业机械学报,2016,47(7):159-165.

Gao Lianxing, Hui Zijian, Dong Huashan. Design and experiment of peanut sheller with three drums for plot breeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 159-165. (in Chinese with English abstract)

[5]陆荣,杨德旭,高连兴,等. 直立锥滚筒式小区花生脱壳机设计与试验[J]. 农业机械学报,2019,50(5):114-123.

Lu Rong, Yang Dexu, Gao Lianxing, et al. Design and test on plot peanut sheller with vertical tapered drum[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 114-123. (in Chinese with English abstract)

[6]刘明国. 立锥式花生脱壳装置结构与参数设计[J]. 农业科技与装备,2012(9):24-26,30.

Liu Mingguo. Analysis on the performance of various common precision seed sowing devices[J]. Agricultural Science & Technology and Equipment, 2012(9): 24-26, 30. (in Chinese with English abstract)

[7]刘明国,杜鑫,马冰. 立锥式花生脱壳装置性能试验与参数优选[J]. 农业科技与装备,2012(11):23-25.

Liu Mingguo, Du Xin, Ma Bing. Performance experiment and parameter optimization of vertical cone-type peanut sheller[J]. Agricultural Science & Technology and Equipment, 2012(11): 23-25. (in Chinese with English abstract)

[8]关绍春. 立式锥滚筒花生脱壳装置结构与参数设计[J].农业科技与装备,2014(7):36-38.

Guan Shaochun. Structure and parameter designs of vertical awl-shaped roller peanut shelling device[J]. Agricultural Science & Technology and Equipment, 2014(7): 36-38. (in Chinese with English abstract)

[9]Helmy M A, Abdallah S E, Mitrroi A. Modification and performance evaluation of a reciprocating machine for shelling peanut[J]. Ama-Agricultural Mechanization in Asia Africa and Latin America, 2013, 44(3): 18-24.

[10]Oluwole F A, Abdulrahim A T, Oumarou M B. Development and preliminary testing of a bambara groundnut sheller[J] International Agrophysics, 2007, 21(3): 269-270.

[11]王军锋,孙康,陈峰. 刮板式花生脱壳机设计[J].农机化研究,2012,34(12):96-99.

Wang Junfeng, Sun Kang, Chen Feng. The design of scraper peanut sheller[J]. Journal of Agricultural Mechanization Research, 2012, 34(12): 96-99. (in Chinese with English abstract)

[12]高学梅. 打击揉搓式花生脱壳试验研究与关键部件优化设计[D]. 北京:中国农业科学院,2012.

Gao Xuemei. Experimental Research and Optimization Design of Key Components on Peanut Sheller of Blowing and Rubbing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese with English abstract)

[13]刘明国. 花生脱壳装置力学分析[J]. 农业科技与装备,2013(9):23-25.

Liu Mingguo. Mechanics analysis of peanut shelling device[J]. Agricultural Science&Technology and Equipment. 2013(9): 23-25. (in Chinese with English abstract)

[14]海基科技. 基于离散元技术的EDEM软件详解[J]. 智能制造,2012,19(5):36-40.

[15]张强,张旭,孙绍安. 基于EDEM的家用榨油机压榨腔工作性能仿真研究[J]. 农业工程学报,2018,34(24):283-291.

Zhang Qiang, Zhang Xu, Sun Shaoan. Simulation study on working performance of pressing cavity of household oil press based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(24):283-291. (in Chinese with English abstract)

[16]刘文政,何进,李洪文,等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报,2018,49(5):132-142,149.

Liu Wenzheng, He Jin, Li Hongwen, et al. Calibration of simulation parameters for potato minituber based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 132-142, 149. (in Chinese with English abstract)

[17]郝建军,龙思放,李浩,等. 机收麻山药离散元模型构建及其仿真参数标定[J]. 农业工程学报,2019,35(20):34-42.

Hao Jianjun, Long Sifang, Li Hao, et al. Development of discrete element model and calibration of simulation parameters for mechanically-harvested yam[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 34-42. (in Chinese with English abstract)

[18]González-Montellano C, Fuentes J M, Ayuga-Téllez E, et al. Determination of the mechanical propertiesof maize grains and olives required for use in DEM simulations[J]. Journal of Food Engineering, 2012, 111(4): 553-562.

[19]刘明国. 花生脱壳与损伤机理及立锥式脱壳机研究[D]. 沈阳:沈阳农业大学,2011.

Liu Mingguo. Study on Peanut Shelling Damage Mechanism and Development of the Vertical cone type shelling machine[D]. Shenyang: Shenyang Agricultural University, 2011. (in Chinese with English abstract)

[20]张涛,刘飞,赵满全,等. 大豆种子与排种器接触物理参数的测定与离散元仿真标定[J]. 中国农业大学学报,2017,22(9):86-92.

Zhang Tao, Liu Fei, Zhao Manquan, et al. Measurement of physical parameters of contact between soybean seed and seed metering device and discrete element simulation calibration[J]. Journal of China Agricultural University, 2017, 22(9): 86-92. (in Chinese with English abstract)

[21]顾炳龙,杨亚洲,张玉虎,等. 密度碰撞恢复系数测量[J]. 农业与技术,2017,37(5):50-52.

[22]刘明国,杜鑫,张文. 花生疲劳脱壳试验研究[J]. 沈阳农业大学学报,2010,41(3):317-320.

Liu Mingguo, Du Xin, Zhang Wen. Experimental study on fatigue shelling of peanuts[J]. Journal of Shenyang Agricultural University, 2010, 41(3): 317-320. (in Chinese with English abstract)

[23]安家新. 螺旋式花生脱壳机关键部件设计与仿真分析[D].沈阳:沈阳农业大学,2017.

An Jiaxin. Design and Simulation Analysis on Spirat Peanut Sheller[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese with English abstract)

[24]张贺斌. 磨盘式花生脱壳机的设计及优化[D]. 保定:河北农业大学,2019.

Zhang Hebin. Design and Optimization of Grinding Disc Groundnut Sheller[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese with English abstract)

[25]薛然. 花生荚果圆筒筛筛分特性研究与参数优化[D]. 北京:中国农业科学院,2015.

Xue Ran. Experimental Study and Parameter Optimization of Cylinder Screen for Peanut Pod[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2015. (in Chinese with English abstract)

[26]中华人民共和国农业部.花生剥壳机作业质量:NY/T 994-2006[S]. 北京:中国农村杂志社,2006.

[27]王忠超. 丁腈橡胶性能影响因素研究[D]. 兰州:西北师范大学,2012.

Wang Zhongchao. Research on Factors Influencing the Performance of Nitrile Rubber[D]. Lanzhou: Northwest Normal University, 2012. (in Chinese with English abstract)

[28]杨亚洲,顾炳龙,兰孝峰,等. 基于Design-Expert的花生脱净率及破损率试验测试及分析[J]. 中国农机化学报,2017,38(5):32-35.

Yang Yazhou, Gu Binglong, Lan Xiaofeng, et al. Test and analysis of penut threshing rate and damage rate based on Desing-Expert[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(5): 32-35. (in Chinese with English abstract)

Development of cone disc type shelling mechanism for peanut seeds

Hao Jianjun1, Nie Qingliang1, Ma Luping1, Li Jianchang1, Song Yahui2, Long Sifang1, Zhang Hebin1

(1.071001;2.050035,)

In China, the planting area of peanut is 5 million hm2and the yield is 17 million kg. Seed shelling is an important part of peanut seed preparation before sowing, the quality of peanut seed after shelling affects the emergence, growth and yield of peanut. At present, peanut seed shelling is mainly based on the shape characteristics of peanut pods, mechanical actions such as kneading, extrusion and impact are used to crack and break the peanut pods to complete the shelling. However, the existing peanut shellers have some problems, such as low rate of shell removal, high rate of seed damage and poor adaptability to peanut varieties. In order to solve the above problems, a cone disc shelling mechanism for peanut seeds was designed. Taking Huayu 23 peanut as the experimental object, the EDEM software was used to simulate the shelling process of peanut pods, and the optimal structure parameters of the cone type shelling mechanism were obtained by simulation analysis and prototype testing. The best structural parameters of the shelling mechanism were obtained through simulation analysis and prototype test, that is, the inclination angle of the lower conewas 25°, and the inclination angle of the upper cone was30°. In order to further reduce the damage rate of peanut seeds, the rubber spines were pasted on the shell surface of the upper and lower cones of the machine. The rotation speed of lower cone, the minimum shelling clearance and number of rubber bumps were taken as experimental factors, threshing rate and damage rate of peanut were taken as response values, single-factor test and Box-Behnken test were conducted. ANOVA was performed on the test results by Design-Expert 8.0.6 software, and the regression models of the threshing rate and the damage rate between the rotation speed of lower cone, the minimum shelling clearance, the number of rubber bumps were established. The optimal combination of the three factors were obtained by the dual objective optimization method, that was the rotation speed of lower cone 270 r/min, the number of rubber bumps within one squire meter 5 500 and the minimum shelling clearance was 11 mm,respectively, at this time, the highest predicted value of the threshing rate was 97.95%, and the lowest predicted value of the damage rate was 3.19%. The comparative experiment results showed that compared with the drum type sheller for peanut seeds, the threshing rate of the cone disc sheller without rubber spines was slightly higher and the damage rate was slightly lower. The threshing rate of the cone disc sheller with rubber spines was increased by 2.03 percentage points, and the damage rate was reduced by 0.67 percentage points..According to the fatigue damage analysis of rubber spines, after 90 hours of shelling operation, the rubber skin was seriously worn and the shelling quality was reduced, it should be replaced in time. The research results can provide reference for the development and improvement of peanut seeds sheller.

agricultural machinery; design; experiments; peanut seeds; cone disc; sheller; EDEM

郝建军,聂庆亮,马璐萍,等. 锥盘式花生种子脱壳装置研制[J]. 农业工程学报,2020,36(17):27-34.doi:10.11975/j.issn.1002-6819.2020.17.004 http://www.tcsae.org

Hao Jianjun, Nie Qingliang, Ma Luping, et al. Development of cone disc type shelling mechanism for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 27-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.004 http://www.tcsae.org

2020-02-28

2020-08-19

河北省现代农业产业技术体系创新团队项目(HBCT2018090206);河北省重点研发计划项目(1922418D)

郝建军,教授,博士生导师,主要从事农机装备设计与制造研究。Email:hjjpaper@163.com

10.11975/j.issn.1002-6819.2020.17.004

S147.2

A

1002-6819(2020)-17-0027-08

猜你喜欢

脱壳荚果橡胶
我国核桃脱壳设备概况与发展探析*
基于Workbench LS-dyna的花生荚果脱壳受力仿真研究
基于EDEM的发散带式花生荚果分级机的仿真与试验
为什么橡胶有弹性?
为什么橡胶有弹性?
不同浓度多?甲合剂处理对花生经济性状的影响
河蟹脱壳期间注意事项
我国鲜食花生遗传育种研究进展
自制橡胶骨
印度橡胶进口量减少,国内橡胶供需不平衡