主要经济双壳贝类性别分化的分子机制概述*
2020-09-27周丽青杨金龙
周丽青 赵 丹 吴 宙 吴 磊 杨金龙
主要经济双壳贝类性别分化的分子机制概述*
周丽青1,2赵 丹2吴 宙3吴 磊4杨金龙2①
(1. 中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室 青岛 266071;2. 上海海洋大学 水产种质资源发掘与利用教育部重点实验室 上海 201306;3. 浙江海洋大学海洋科学与技术学院 舟山 316000;4. 江苏海洋大学海洋生命与水产学院 连云港 222005)
本文简要概述了主要经济双壳贝类性别分化分子机制研究进展,介绍国内外研究性别分化和性别决定的代表性双壳贝类物种及主要研究成果,主要涉及牡蛎科(Ostreidae)、扇贝科(Pectinidae)、珍珠贝科(Pteriidae)等常见的经济物种,分子层面涵盖了核酸、蛋白质和激素等,通过综述这些物种相关研究的现状,展望双壳贝类性别分化研究的发展趋势,以期加深对双壳贝类性别分化和性腺发育的认识,为解析虾夷扇贝()及其他双壳贝类性别分化分子机制研究理清思路。
双壳贝类;性别分化;基因;分子;核酸;激素;蛋白质
贝类繁殖机制与性别分化一直是生物学研究目标之一,因种类繁多、方式各异,目前对软体动物繁殖的分子机制仍知之甚少(Song, 2017; Zhang, 2014)。海洋软体动物,尤其双壳贝类存在雌雄同体现象,但关于雌雄同体形成及性别分化的数据,包括性别分化和性别决定过程的分子数据,还不多见(Teaniniuraitemoana, 2014)。随着分子生物学研究技术的快速发展,研究者们围绕双壳贝类性腺发育、繁殖特性及性别分化和性别决定开展的研究越来越深入。结合作者目前在虾夷扇贝()性腺发育和性别分化开展的研究工作,本文简要介绍牡蛎科(Ostreidae)、扇贝科(Pectinidae)、珍珠贝科(Pteriidae)等常见的经济物种性别分化、性别决定和性腺发育的研究现状,重点探讨双壳贝类性别分化研究的发展趋势,以期加深对双壳贝类性别分化和性腺发育的认识。一般来说,有机体的性别由 2个因素决定:遗传因素或环境因素。、、Gata型锌指蛋白I (zglp1)、蛋白ovo(ovo)和基因参与了贝类的遗传性别决定与分化。激素用量、温度、污染、养殖条件等因素也影响着贝类的性别决定,有时会引起性别逆转。双壳贝类性别分化或变化的分子机制研究综述如下。
1 牡蛎科性腺发育与性别分化分子机制
牡蛎()俗称海蛎子,是世界第一大养殖贝类。除了可食用外,牡蛎也是海洋生态系统的重要成员,对内湾和近海水域藻华的调控有重要作用。牡蛎种类也很多,有些牡蛎有性生殖系统比较神奇,由雌雄异体、性别变化和偶尔的雌雄同体组成,尽管很多研究人员已经对牡蛎进行了大量研究,但对性别决定和分化的分子机制的认识仍然存在很多盲区,关于繁殖调控的分子通路研究也很少。有关牡蛎性腺发育和性别分化相关研究见表1。
表1 牡蛎科性腺发育及性别分化过程中的分子生物学研究
续表1
续表1
相关文献以品种和报道时间为序排布,从表1可以看出,长牡蛎()因为分布范围广泛,对其性腺发育和性别分化的研究开展得最多。从20世纪90年代起,至2008年前后,科研人员尝试检测性激素含量和分析促性腺激素释放激素受体基因表达情况,来阐述性腺发育或性别分化的过程;2012~2013年期间,也有关于长牡蛎GnRH样肽前体基因的表达位点和生物活性的报道,及性腺转化生长因子β ()在牡蛎生殖过程中的作用,又如Ni等(2013)用酶联免疫吸附法研究福建牡蛎雌二醇-17β(E2)和睾酮(Testosterone, T)含量的变化,获得一个编码牡蛎雌激素受体(ER),认为ER可能在牡蛎性腺发育中起重要作用;Naimi等(2009)分别观察了长牡蛎、和基因()在雌雄配子发生周期中的表达特征;同年,Fabioux等(2009)采用RNA干扰技术敲除性腺细胞中的基因,从而证明对牡蛎生殖细胞发育具有重要意义,开启了一系列性别分化相关基因鉴定及功能的研究。随着分子生物学和生物信息学分析技术的发展,转录组、基因组、蛋白质组和代谢组等组学分析技术和精密检测设备的研发,使进一步揭示牡蛎性腺发育和性别分化机制终将成为可能,并明确了牡蛎性别分化过程是个多基因参与、环境和遗传因素相互作用的遗传通路,这些研究也为扇贝、珠母贝等其他贝类的相关研究奠定了基础。从最早的激素含量检测分析,到性别分化相关基因的序列及功能分析,再到组学分析,目标只有一个,就是探讨牡蛎性别分化机制,从而实现对牡蛎的性别和繁殖调控,有利于牡蛎的遗传改良。
2 扇贝科性腺发育与性别分化分子机制
栉孔扇贝()是中国重要的水产养殖品种,然而,频繁的大规模病害已严重影响到产业的发展,遗传连锁图谱对栉孔扇贝的遗传改良和选择性育种有借鉴作用。因此,研究人员构建了栉孔扇贝性别相关AFLP遗传连锁图谱,其中,有1个性别标记在雌性第19个连锁组上,重组率为0,LOD为27.3,而对应的雄性中没有这个标记,雌性中这个特殊的标记(P2f230)一旦得到证实,将来可以分离、克隆、测序和转化为Sequence characterized amplified region (SCAR),将其定位于染色体上作为性别决定的基因(Li, 2005)。在双壳贝类雌雄间性状无明显差异、尚未见有性染色体的报道及性别决定因子或性别决定机制不清楚的情况下,构建分子标记高密度遗传连锁图谱将为品种改良奠定基础,多种双壳贝类遗传连锁图谱构建中均发现,雄性遗传连锁图谱中基因重组率要低于雌性,说明减数分裂时,雌性基因连锁互换的频率要高于雄性,栉孔扇贝(Wang, 2005)和虾夷扇贝(Chen, 2012)也是如此,与(Liu, 2017)、长牡蛎(Li, 2004)和贻贝() (Lallias, 2007)相似。
虾夷扇贝是中国和日本重要的养殖贝类。除具有商业价值,还因其养殖群体中一定比例的雌雄同体在性别决定和分化机制研究中的价值而备受关注。为确定虾夷扇贝分子性别分化的开始,筛选早期性别鉴定的分子标记,对5~13月龄贝的性腺进行组织学检查,发现10月龄在性腺形态上发生性别分化,8个性别决定或分化候选基因的性腺表达谱显示,只有2个基因表现出性别二型表达,雌性性腺中含有丰富的FOXL2,雄性性腺中含有大量DMRT1L,研究将有助于更好地理解双壳类性别分化的分子机制(Li, 2018)。利用Illumina测序技术对成熟期雄性和雌性性腺转录组文库进行配对和末端测序,通过BlastX与Swiss-Prot和NR开放数据库相比,9354个unigenes与已知的独特蛋白质显著匹配。根据注释信息,至少有30个与性别决定和分化相关的基因,如、、和被筛选和鉴定(Yang, 2016)。也有研究对虾夷扇贝3个雌性和3个雄性性腺的转录组进行测序和分析,研究了先前在脊椎动物中报道的关键性别决定基因,并推测存在于双壳类贝类中,即、、和等。这些基因均具有保守的功能结构域,并在性腺中被检测到,其中,偏向雌性,和偏向雄性,表明这3个基因可能是扇贝性别决定或分化的关键候选基因(Li, 2016)。为进一步研究双壳类性别决定和分化的分子机制提供了资料。
许多软体动物常发生性逆转,性激素可能会参与这一过程。在成体虾夷扇贝中,促性腺激素释放激素和17β-雌二醇(E2)参与了雄贝的性成熟过程。成熟期,和分别在扇贝的雌性和雄性性腺中表达。性逆转期,扇贝性腺器官培养时,性激素处理降低了性逆转期大部分扇贝性腺的表达。然而,在培养的成熟性腺中,无论是E2还是睾酮(T)作用,和的表达都没有明显的变化,提示性激素处理可能影响性逆转期的性腺发育(Otani, 2017)。促性腺激素释放激素(GnRH)是控制脊椎动物生殖周期的核心,由于GnRH同源激素也存在于无脊椎动物中,因此,可能在双壳贝类中的也具有共同的祖先GnRH样肽。比较虾夷扇贝GnRH样肽前体的cDNA转录本与其他无脊椎动物和脊椎动物的未加工的和成熟的氨基酸序列,确定了它的表达位点和生物活性。用抗章鱼GnRH样肽免疫细胞化学证明,扇贝神经组织中存在GnRH样肽,扇贝GnRH样肽对体外培养的扇贝雄性性腺精原细胞分裂有促进作用,但对体外培养的鹌鹑垂体细胞释放LH无促进作用(Treen, 2012)。
3 珍珠贝科性腺发育与性别分化分子机制
珍珠贝养殖是近年来备受关注的一种集约化珍珠生产方式,珠母贝是生产珍珠的主要生物。这吸引了专家对珠母贝的生长和繁殖进行研究,研究的目标是通过利用控制繁殖的育种计划生产有活力的珠母贝种群。在许多动物中,基因同源序列常被用作特定生殖细胞检测的分子标记。珠母贝()成熟亲贝和稚贝基因同源序列(povlg1)原位杂交结果表明,1月龄幼贝中,内脏团两侧对称分布的一团生殖细胞最初由多个细胞组成。2月龄幼贝,这些细胞迁移到内脏团的腹侧边缘。4月龄幼贝,这些细胞团沿内脏团的外围迁移,迁移过程中细胞数量和大小不断增加。这种对未成熟生殖细胞分布和迁移的观察,将为控制性腺发育和珍珠质量提供有用的信息(Sano, 2015)。马氏珠母贝()是我国人工培育海水珍珠的最主要珠母贝,在其养殖群体中,有少数雌雄同体个体,并在一定条件下出现性转化。因此,克隆鉴定马氏珠母贝的基因既可丰富基因家族的成员,探讨基因在贝类中的保守性,也为进一步克隆贝类的性别决定和分化的候选基因及探讨贝类性别决定和分化机制提供基础资料(于非非等, 2007)。
采用第二代测序方法和RNAseq技术,对生产黑珍珠的黑唇珠母贝()不同发育阶段的雄性和雌性性腺标本进行了测序,在Illumina测序、组装和注释之后,差异表达分析鉴定了1993种不同类型性腺间差异表达的contigs;样本聚类分析解释了性腺基因差异表达的大部分变异;对这些contigs的分析揭示了已知的编码与性别决定和/或分化有关的蛋白质的特异基因的存在,如雄性的和,雌性的和卵黄原蛋白特异性表达基因、和,在不同生殖阶段(性别不确定、性反转和性腺衰退)的表达谱表明这3个基因可能参与了黑唇珠母贝的精卵转换。这些为研究雌雄同体海洋软体动物的繁殖提供了一种新的转录组学分析方法,鉴定了雄性先熟、雌雄同体黑唇珠母贝的性别分化和潜在的性别决定基因(Teaniniuraitemoana, 2014)。同样是基于RNAseq数据集,严格的表达分析鉴定了1937个在性腺组织学分类中差异表达的contigs;9个候选基因被鉴定为性别通路的标记:7个为雌性通路,2个为雄性通路(Teaniniuraitemoana, 2015)。这些是探究该物种和其他相关物种性别反转、性别分化和性别决定论的有用工具。
具有家族的典型特征,与簇有显著的同源性。定量PCR反应测定发现,配子发生过程中性腺中的mRNA在成熟个体中表达量最高;经原位杂交证实,在精子、精细胞、卵母细胞和卵黄原细胞中均有表达;用RNA干扰技术敲除,导致mRNA表达水平下降,注射-dsRNA组为排放期雄性性腺,滤泡破裂,精子释放。结果表明,的可能参与雄性性腺发育,维持雄性生殖功能(Wang, 2018)。采用RACE-PCR技术,从马氏珠母贝雄性性腺的SMART cDNA中克隆了基因的全长cDNA序列。同源性比对显示,编码的氨基酸序列与海胆()、线虫()、青鳉()、斑马鱼()、爪蟾()和小鼠()的基因的同源性并不高,但它们的DM结构域是高度保守的。RT-PCR结果认为,基因可能参与了马氏珠母贝性别发育的调控(于非非等, 2009)。利用RACE-PCR技术从SMART cDNA文库中克隆到一个基因的cDNA全长,通过荧光定量PCR技术,对该基因在不同组织及发育不同时期性腺中的表达情况进行分析。结果显示,马氏珠母贝这个基因与长牡蛎基因的同源性最高,为80%,故命名为;系统进化树分析也显示,与长牡蛎基因的亲缘关系最近。荧光定量PCR分析组织表达特异性及时序表达图谱显示,基因可能在马氏珠母贝早期神经系统发育和性别发育的调控方面起重要作用(于非非等, 2016)。利用RACE-PCR技术获得企鹅珍珠贝()基因cDNA的全长序列,通过荧光定量PCR分析基因在各组织中的表达特征,以及在早期雌性性腺、成熟期雌性性腺、早期雄性性腺、成熟期雄性性腺和排放期雄性性腺中的表达变化结果,推测可能与企鹅珍珠贝雄性性腺的发育有关,可能参与了企鹅珍珠贝雄性性别分化和性腺发育的生理过程(潘珍妮等, 2017)。同样地,企鹅珍珠贝基因与黑蝶真珠蛤()和马氏珠母贝有高度同源性(>81%);在企鹅珍珠贝各组织中均有表达,在足中表达量最高(<0.05),雄性性腺中其次;在成熟期雄性性腺中检测到最大表达量(<0.05),在发育早期的雄性性腺、退化期雄性性腺和成熟期雌性性腺中表达量较低,其中,发育早期雌性性腺表达量最低(<0.05)(许开航等, 2018)。
4 总结与展望
双壳贝类常有性逆转现象,从已有的研究报道来看,除环境因素之外,遗传物质对性别的调控作用是主要因素,性激素可能会参与这一过程。水产养殖业是动物性食物生产增长速度最快的领域,贝类是水产养殖的主要对象之一,采用现代生物技术以满足人们对水产养殖产品的数量和质量增长的需求日益迫切。然而,主要经济贝类种类较多,且繁殖特性和性别分化各有特点,尽管开展了大量相关研究,仍有很多未知亟待解答。通过对虾夷扇贝雌雄2个性别3个不同发育阶段的大样本量性腺转录组数据,进行加权基因共表达网络分析,发现turquoise和green基因模块的基因与雄性性状密切相关,coral1和black基因模块的基因与雌性性状密切相关,在性别决定和性别分化中起非常重要的作用(Zhou, 2019),目前,我们正在开展、、等基因功能验证分析。随着转录组、基因组和蛋白质组学分析技术的发展,使得我们能以更开阔的视野探寻双壳贝类性别分化的分子机制,将来有望对双壳贝类进行性别和生殖调控,培育高产、抗逆、抗病新品种(系)贝类,保护和增殖濒危或珍稀贝类资源。
Cavelier P, Cau J, Morin N,. Early gametogenesis in the Pacific oyster: New insights using stem cell and mitotic markers. Journal of Experimental Biology, 2017, 220(21): 3988–3996
Chen M, Chang YQ, Zhang J,. A genetic linkage map of Japanese scallopbased on amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. African Journal of Biotechnology, 2012, 11(46): 10517–10526
Corporeau C, Groisillier A, Jeudy A,. A functional study of transforming growth factor-Beta from the gonad of Pacific oyster. Marine Biotechnology, 2011, 13(5): 971–980
Dheilly NM, Lelong C, Huvet A,. Gametogenesis in the Pacific oyster: A microarrays-based analysisidentifies sex and stage specific genes. PLoS One, 2012, 7(5): e36353
Fabioux C, Corporeau C, Quillien V,.RNA interference in oyster –silencing inhibits germ cell development. FEBS Journal, 2009, 276(9): 2566–2573
Franco A, Jouaux A, Mathieu M,. Proliferating cell nuclear antigen in gonad and associated storage tissue of the Pacific oyster: Seasonal immunodetection and expression in laser microdissected tissues. Cell and Tissue Research, 2010, 340(1): 201–210
Frías-Espericueta MG, Osuna-Lópeza JI, Páez-Osuna F. Gonadal maturation and trace metals in the mangrove oyster: Seasonal variation. Science of the Total Environment, 1999, 231(2–3): 115–123
Guévélou E, Huvet A, Galindo-Sánchez CE,. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster. Biology of Reproduction, 2013, 89(4): 100, 1–15
Huvet A, Béguel JP, Cavaleiro NP,. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oysters. Journal of Experimental Biology, 2015, 218(11): 1740–1747
Huvet A, Fleury E, Corporeau C,. In vivo RNA interference of a gonad-specific transforming growth factor-β in the Pacific oyster. Marine Biotechnology, 2012, 14(4): 402–410
In VV, Ntalamagka N, O’Connor W,. Reproductive neuropeptides that stimulate spawning in the Sydney rock oyster (). Peptides, 2016, 82: 109–119
Lallias D, Lapègue S, Hecquet C,. AFLP-based genetic linkage maps of the blue mussel (). Animal Genetics, 2007, 38(4): 340–349
Li L, Xiang JH, Liu X,. Construction of AFLP-based genetic linkage map for Zhikong scallop,Jones et Preston and mapping of sex-linked markers. Aquaculture, 2005, 245(1–4): 63–73
Li L, Guo XM. AFLP-based genetic linkage maps of the Pacific oysterThunberg. Marine Biotechnology, 2004, 6(1): 26–36
Li RJ, Zhang LL, Li WR,.andare Yin and Yang genes for determining timing of sex differentiation in the bivalve mollusk. Frontiers in Physiology, 2018, 9: 01166
Li Y, Siddiqui G, Wikfors GH.Gmelin using protein profiles of hemolymph by Proteinchip®and SELDI-TOF-MS technology. Aquaculture, 2010, 309: 258– 264
Li YP, Zhang LL, Sun Y,. Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop. Marine Biotechnology, 2016, 18(4): 453–465
Li YQ, Siddiqui G, Wikfors GH. Determination of sex and gonadal development of eastern oystersGmlin through protein profiles of hemolymph by SELDI- TOF-MS technology. Abstracts, 103rd Annual Meeting, March 27–31, 2011, 524
Liu B, Teng SS, Shao YQ,. A genetic linkage map of blood clam () based on simple sequence repeat and amplified fragment length polymorphism markers. Journal of Shellfish Research, 2017, 36(1): 31–40
Luo LZ, Zhang QH, Kong X,. Differential effects of zinc exposure on male and female oysters () as revealed by label-free quantitative proteomics. Environmental Toxicology and Chemistry, 2017, 36(10): 2602–2613
Matsumoto T, Osada M, Osawa Y,. Gonadal estrogen profile and immunohistochemical localization of steroidogenic enzymes in the oyster and scallop during sexual maturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1997, 118(4): 811–817
Naimi A, Martinez AS, Specq ML,. Identification and expression of a factor of the DM family in the oyster. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2009, 152(2): 189–196
Naimi A, Martinez AS, Specq ML,. Molecular cloning and gene expression of Cg-Foxl2 during the development and the adult gametogenetic cycle in the oyster. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009, 154(1): 134–142
Ni JB, Zeng Z, Ke CH. Sex steroid levels and expression patterns of estrogen receptor gene in the oysterduring reproductive cycle. Aquaculture, 2013, 376–379: 105–116
Otani A, Nakajima T, Okumura T,. Sex reversal and analyses of possible involvement of sex steroids in scallop gonadal development in newly established organ-culture systems. Zoological Science, 2017, 34(2): 86–92
Pan ZN, Yu XY, Wang MF,. Molecular cloning and expression analysis of Dmrt2 gene from. Marine Sciences, 2017, 41(10): 117–124 [潘珍妮, 余祥勇, 王梅芳, 等. 企鹅珍珠贝Dmrt2基因的克隆及表达分析. 海洋科学, 2017, 41(10): 117–124]
Reis IMM, Mattos JJ, Garcez RC,. Histological responses and localization of the cytochrome P450 (CYP2AU1) inexposed to phenanthrene. Aquatic Toxicology, 2015, 169: 79–89
Rodet F, Lelong C, Dubos MP,. Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochimica et Biophysica Acta, 2005, 1730(3): 187–195
Rodet F, Lelong C, Dubos MP,. Alternative splicing of a single precursor mRNA generates two subtypes of gonadotropin- releasing hormone receptor orthologues and their variants in the bivalve mollusc. Gene, 2008, 414(1–2): 1–9
Rodrigues-Silva C, Flores-Nunes F, Vernal JI,. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster. Aquatic Toxicology, 2015, 159: 267–275
Sano N, Kimata S, Obata M,. Distribution and migration of immature germ cells in the pearl oysterwith the expression pattern of the vasa ortholog by in situ hybridization. Journal of Shellfish Research, 2015, 34(3): 803–809
Santerre C, Sourdaine P, Adeline B,. Cg-SoxE and Cg-β- catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2014, 167: 68–76
Santerre C, Sourdaine P, Martinez AS. Expression of a natural antisense transcript of Cg-Foxl2 during the gonadic differentiation of the oyster: First demonstration in the gonads of a lophotrochozoa species. Sexual Development, 2012, 6(4): 210–221
Santerre C, Sourdaine P, Marc N,. Oyster sex determination is influenced by temperature — First clues in spat during first gonadic differentiation and gametogenesis. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2013, 165(1): 61–69
Song SS, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. Invertebrate Reproduction and Development, 2017, 61(2): 97–109
Teaniniuraitemoana V, Huvet A, Levy P,. Gonad transcriptomeanalysis of pearl oyster: Identification of potential sex differentiation and sex determining genes. BMC Genomics, 2014, 15(1): 491
Teaniniuraitemoana V, Huvet A, Levy P,. Molecular signatures discriminating the male and the female sexual pathways in the pearl oyster. PLoS One, 2015, 10(3): e0122819
Treen N, Itoh N, Miura H,. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: A primitive endocrine system controlling reproduction. General and Comparative Endocrinology, 2012, 176(2): 167–172
Wang LL, Song LS, Chang YQ,. A preliminary genetic map of Zhikong scallop (Jones et Preston 1904). Aquaculture Research, 2005, 36(7): 643–653
Wang Q, Shi Y, He MX., a potential factor in sexual development in the pearl oyster. Journal of Oceanology and Limnology, 2018, 36(6): 2337–2350
Wei PY, He PP, Zhang XZ,. Identification and characterization of microRNAs in the gonads ofusing high-throughput sequencing. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics , 2019, 31: 100606
Xu F, Kong LF, Zhang Y,. Complete genome sequencing and functional analysis of oyster. Science and Technology Information, 2016(6): 162–163 [许飞, 孔令锋, 张扬, 等. 牡蛎全基因组测序与功能解析. 科技资讯, 2016(6): 162–163]
Xu KH, Wang MF, Yu XY,. Molecular cloning and expression analysis of Sox9 gene from. Journal of Guangdong Ocean University, 2018, 38(2): 15–22 [许开航, 王梅芳, 余祥勇, 等. 企鹅珍珠贝Sox9基因的克隆及表达分析. 广东海洋大学学报, 2018, 38(2): 15–22]
Xu R, Li Q, Yu H,. Oocyte maturation and origin of the germline as revealed by the expression of nanos-like in the Pacific oyster. Gene, 2018, 663: 41–50
Yang D, Yin C, Chang YQ,. Transcriptome analysis of male and female mature gonads of Japanese scallop. Genes and Genomics, 2016, 38(11): 1041–1052
Yu FF, Zhou L, Wang MF,. Cloning and sequence analysis of three DM domain in. Journal of Agricultural Biotechnology, 2007, 15(5): 905–906 [于非非, 周莉, 王梅芳, 等. 马氏珠母贝() 3个DM结构域的克隆及序列分析. 农业生物技术学报, 2007, 15(5): 905–906]
Yu FF, Gui JF, Zhou L,. Cloning and expression characterization of Dmrt5 in. Acta Hydrobiologica Sinica, 2009, 33(5): 844–850 [于非非, 桂建芳, 周莉, 等. 马氏珠母贝Dmrt5基因的克隆及时序表达模式分析. 水生生物学报, 2009, 33(5): 844–850]
Yu FF, Wang MF, Gui JF,. Molecular cloning and expression patterns of Sox11 gene in. Acta Hydrobiogica Sinica, 2016, 40(1): 71–75 [于非非, 王梅芳, 桂建芳, 等. 马氏珠母贝Sox11基因的克隆及时序表达模式分析. 水生生物学报, 2016, 40(1): 71–75]
Yue CY, Li Q, Yu H. Gonad transcriptome analysis of the Pacific oysteridentifies potential genes regulating the sex determination and differentiation process. Marine Biotechnology, 2018, 20(2): 206–219
Zhang N, Xu F, Guo XM. Genomic analysis of the Pacific oyster () reveals possible conservation of vertebrate sex determination in a mollusc. G3(Bethesda), 2014, 4: 2207–2217
Zhang X, Li Q, Kong LF,. DNA methylation frequency and epigenetic variability of the Pacific oysterin relation to the gametogenesis. Fisheries Science, 2018, 84(5): 789–797
Zhong XX, Li Q, Kong LF,. Quantitative trait locus analysis of meat yield and shell shape traits in the Pacific oyster,. Journal of Fishery Sciences of China, 2015, 22(3): 574–579 [仲晓晓, 李琪, 孔令锋, 等. 长牡蛎出肉率与壳形性状的QTL定位分析. 中国水产科学, 2015, 22(3): 574–579]
Zhou LQ, Liu ZH, Dong YH,. Transcriptomics analysis revealing candidate genes and networks for sex differentiation of yesso scallop (). BMC Genomics, 2019, 20(1): 671
Zhou ZY, Li Q, Yu H,. Cloning and expression analysis ofgene of Pacific oyster (). Periodical of Ocean University of China, 2018, 48(6): 45–54 [周祖阳, 李琪, 于红, 等. 长牡蛎基因cDNA克隆和表达分析. 中国海洋大学学报, 2018, 48(6): 45–54]
Review: Molecular Mechanism of Sex Differentiation in Major Economic Bivalves
ZHOU Liqing1,2, ZHAO Dan2, WU Zhou3, WU Lei4, YANG Jinlong2①
(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071; 2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 3. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000; 4. College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005)
In this review, we have provided an overview of the current knowledge on the different molecular mechanisms of sex differentiation in major economic bivalves. The representative species of bivalves were introduced to understand the different mechanisms of sex differentiation or sex determination. The review provides a brief summary of the recent discoveries on sex differentiation in oysters, scallops, pearl oysters, and other common economically important bivalve species. The review highlights the various sex differentiation-associated molecular mechanisms by focusing on the involvement of nucleic acids, proteins, hormones, and so on. The current research trends on sex differentiation in bivalves have been discussed, which may help to advance our understanding of the sex differentiation and gonadal development of the Yesso scallop and other bivalves.
Bivalves; Sex differentiation; Genes; Molecule; Nucleic acid; Hormone; Protein
YANG Jinlong, E-mail: jlyang@shou.edu.cn
S917.4
A
2095-9869(2020)05-0023-09
10.19663/j.issn2095-9869.20191213001
http://www.yykxjz.cn/
周丽青, 赵丹, 吴宙, 吴磊, 杨金龙. 主要经济双壳贝类性别分化的分子机制概述. 渔业科学进展, 2020, 41(5): 194–202
Zhou LQ, Zhao D, Wu Z, Wu L, Yang JL. Review: Molecular mechanism of sex differentiation in major economic bivalves. Progress in Fishery Sciences, 2020, 41(5): 194–202
* 国家自然科学基金(31672637)、国家重点研发计划(2018YFD0900800)和浙江重中之重开放基金(KF2018008)共同资助[This work was supported by National Natural Science Foundation of China (31672637), National Key Research and Development Program of China (2018YFD0900800), and Zhejiang Provincial Top Discipline of Bioengineering (Level A) of China (KF2018008)]. 周丽青,E-mail: zhoulq@ysfri.ac.cn
杨金龙,教授,E-mail: jlyang@shou.edu.cn
2019-12-13,
2020-02-08
(编辑 冯小花)