新高次四维超混沌系统的广义反同步*
2020-09-24孙常春
郑 莉,孙常春
(沈阳建筑大学 理学院,沈阳 110168)
近十年来,混沌理论[1]得到了迅速发展.混沌系统的特殊性在于加入了确定性输入后,产生了类似随机的运动,即内随机性.这种内随机性不同于一般随机性,也不同于周期性,具有两种特点.经大量研究发现,混沌广泛存在于人类研究的各个领域.混沌现象不仅在流体力学、物理学、化学等领域被研究和应用,医学上已经证实,麻疹的流行、血细胞生成、心肺功能的相互作用等多种人体生物现象也都是呈混沌态的.同时在社会科学中,混沌理论也被用来探讨人口迁移和用电预测[2]等社会现象.已有学者提出,将混沌信号应用在人工智能中,人类将得到更高智慧的人工智能.目前对混沌理论的研究包括:提出特殊的新系统,如没有平衡点的系统[3]、多平衡点的系统[4]、具有无穷多平衡点的系统[5]、具有共存吸引子的系统[6]、高维系统[7]、高次系统、分数阶系统[8]、切换系统[9]或者兼具以上特征的多特征系统.对这些系统进行动力学分析,证明其混沌性,挖掘其新的特征并进行同步分析[10]和电路实现[11].在以往所提出的高次混沌系统中,含6次项的高次系统已经较为特殊,本文提出了含13次项的四维超混沌系统,其在x1-x2-x3三维空间中呈帽子形,在x1-x2平面投影为嘴唇形.
1 四维超混沌系统
1.1 超混沌系统概述
四维超混沌系统的表达式为
(1)
式中,a、b、c、d、e、f、g、h、l、m、n为系统中的未知参数.式(1)中包含了11项,其中5个1次项,3个2次项,1个3次项,1个6次项,1个13次项.
1.2 超混沌系统的相图及李雅普诺夫指数谱
当a=20,b=14,c=4,d=8,e=6,f=5,g=11,h=2.8,l=1.5,m=1,n=1且初始值取(0.01,0.01,0.01,0.01)时,系统(1)是混沌的,其相图如图1所示.
图1 系统(1)相图
选取初始值为(0.01,0.01,0.01,0.01)时,系统(1)在1 000 s以内的Lyapunov指数谱如图2所示.
图2 系统(1)Lyapunov指数谱
式(1)状态方程的维数为4,状态方程的阶数大于2,且LE1>0,LE2>0,LE3=0,LE4<0,LE1+LE2+LE4<0,故系统(1)为超混沌系统.
2 广义反同步控制器设计及仿真实验
2.1 非线性广义反同步控制器设计
响应系统和驱动系统的轨道之间满足某一特定函数关系的同步,称为广义同步,本文给出设计非线性广义反同步控制器的方法.指定系统(1)为驱动系统,则响应系统为
(2)
令
(3)
将式(2)与式(1)相加,可得
(4)
令非线性控制器为
(5)
将式(5)代入式(4),则有
(6)
e1(-ae2+ω1)+e2(de2+ω2)+
e3(-ge3+ω3)+e4(me1+ne4+ω4)
(7)
2.2 仿真实验
在Matlab平台下,取误差为10-6,x1(0)=0.01,x2(0)=0.01,x3(0)=0.01,x4(0)=0.01,y1(0)=0.02,y2(0)=0.02,y3(0)=0.02,y4(0)=0.02,在非线性控制器作用下,驱动系统与响应系统能迅速同步.图3为加入控制器时系统(1)和(2)的反同步误差曲线.
图3 加入控制器时系统(1)和(2)的反同步误差曲线
3 结 论
本文提出了含超高次项四维超混沌系统,在非线性反同步控制器作用下,驱动系统与响应系统能够迅速同步.因该超混沌系统具有一定的特殊性,在保密通信及图像加密中具有更高的实用价值.