钢结构厂房建筑结构设计优化的探究
2020-09-23黄浩
黄 浩
(西北综合勘察设计研究院安徽分院,安徽 合肥 230000)
钢结构厂房的建筑结构设计不仅涉及多领域学科的理论知识,而且设计内容和环节的复杂程度也较高,因此设计人员要不断总结经验,积极运用先进的设计理念,对传统的钢结构厂房结构设计方法加以创新。
1 工程概况
某钢结构厂房总建筑面积为113250m2,该工程设置A5~A7起重量50~120t的行车数台,轨顶标高14.5~20.5m不等。屋面恒载取0.30kN/m2,屋面活载按0.5kN/m2取,风荷载取0.40kN/m2(重现期50年),抗震设防烈度按7度(0.10g),设计地震分组为第三组,场地类别:Ⅲ类,屋面坡度按1/15设计。在进行优化设计分析时,以“体系优化为主,构件优化为辅”的原则,选择合理的结构体系,以做到安全可靠和经济合理。以较为典型的主轧跨为例,详细说明结构优化设计。
主轧跨为单跨,跨度30m,内设两台120/32t桥式吊车,一台50/10t桥式吊车,工作制为A5,轨顶标高19.5m,柱顶标高为28.7m。
2 主体结构优化设计
2.1 钢柱截面选型
在重型钢结构厂房中,由于吊车吨位一般较大,排架柱吊车以下部分一般选用双阶H型钢格构式柱和钢管混凝土格构式柱。在钢柱截面选型时,对H型钢和钢管混凝土格构式柱在满足承载力和变形要求的情况下进行了比较,比较结果如表1所示。从表1可以看出,钢柱选用钢管混凝土格构式柱要比H型钢格构式柱节约钢材约21%,具有较高经济性的同时,承载力和刚度均未降低,截面尺寸小,对生产工艺影响低。除此以外,钢管混凝土柱还有以下优点:1)钢管混凝土在轴心压力作用下,由于钢管对混凝土的套箍作用,使得钢管内的混凝土都处于三向受压状态,混凝土的抗压强度大大提高;钢管内填充的混凝土,也提高了薄壁管的局部稳定性,使得其屈服强度可以得到充分利用;2)造型简洁,加工制作简便;3)火灾时管内混凝土可以吸收部分热量,其耐火性能优于纯钢结构;4)钢管外露面积小,抗腐蚀性能好,并且圆管仅外面需要进行防腐和防火处理,防腐和防火面积小,较为经济。
圆钢管混凝土格构柱具有承载力和刚度高,截面尺寸小、防腐防火性能优越、造价低等优点,热连轧工程中钢结构下柱全部采用双肢钢管混凝土格构式柱,缀条采用热轧无缝钢管;上柱采用焊接H型钢柱,上下柱通过肩梁连接,肩梁采用单腹板形式。为了保证传力的可靠性,肩梁腹板穿过下柱柱肢,并设加肋板。由于上层吊车吨位较大,肩梁又是上下柱联结的关键部位,在选定柱截面尺寸时,将上层吊车梁中设置在下柱吊车肢钢管的中心,使上部吊车梁竖向荷载直接传递给吊车肢,减少传力路径,减小肩梁受力。
表1 H型钢和钢管混凝土格构式柱方案比较
2.2 柱距选择
厂房柱距应优先满足工艺要求。在满足工艺布置的前提下,对12、13.5、15、16.5、18m五种柱距下钢柱、屋架、吊车梁和围护结构檩条用钢量进行了比较,综合考虑不同柱距对各系统用钢量的变化,从而选择最优柱距进行设计。比较结果如表2所示。
表2 不同柱距下各系统用钢量比较(kg/m2)
通过以上比较可以看出,在柱距由12m增加到18m,刚架系统的用钢量随着柱距的增加逐步减小;而吊车梁、屋面系统的用钢量随着柱距的增加逐步增大;墙面系统用钢量变化不大。从总用钢量来看,15m柱距时用钢量最低。因此,基本柱距采用15m。
2.3 屋面梁选型
屋面承重一般选用实腹H型钢梁和钢屋架,钢屋架可采用梯形角钢屋架、圆管钢屋架和方管钢屋架。四种屋面梁形式的用钢量比较结果如表3所示。
表3 四种形式屋面梁用钢量比较
通过表3的比较结果可以看出,梯形角钢屋架比实腹H型钢梁的用钢量节省20%;梯形圆管钢屋架比实腹H型钢梁的用钢量节省33%;梯形方管钢屋架比实腹H型钢梁的用钢量节省35%。梯形方钢管屋架不仅用钢量低,其表面为平面,便于桁架杆件之间以及屋面檩条连接,防腐蚀性能也优于梯形角钢屋架。
3 屋面结构优化设计
该工程基本柱距为15m,若屋面按跨度15m设计檩条,可选用实腹式H型钢、高频焊H型钢或者H型钢蜂窝梁,这几种类型的H型钢檩条的间距大,用钢量高,并且翼缘钢板厚,不便于屋面板连接。综合考虑屋面支撑系统和围护结构,该工程采用在两榀屋架间设主次桁架,主桁架沿厂房纵向,在主桁架中部沿厂房横向设次桁架,檩条支承在次桁架上,这样可以把檩条间距减小到7.5m,屋面檩条就可以直接采用C型檩条或Z型檩条体系。同时主次桁架可兼做屋面支撑系统的系杆支撑屋架,这种支撑体系的屋面刚度较大,比较适用于重型钢结构厂房。
4 吊车梁系统优化设计
由于行车吨和吊车梁跨度较大,为保证吊车梁的稳定性,吊车梁设置了制动结构、辅助桁架、下翼缘水平支撑和垂直支撑。吊车梁承载力验算时均按照可能同时出现的两台最大吊车考虑;挠度和疲劳验算时,按一台最大的吊车考虑。吊车梁设计成简支结构,采用上下翼缘不等宽的焊接H型钢,上翼缘除满足受力外,还需满足轨道安装的构造尺寸要求;腹板通过设置纵、横向加劲肋限制其局部屈曲,以降低用钢量。中部支座采用突缘式,以减小对排架柱面外的偏心;端部或伸缩缝处采用平板式,以便于连接。
为降低用钢量,对于A5及其以下级别的吊车,其制动结构均采用制动桁架。制动桁架与吊车梁上翼缘采用摩擦型高强螺栓连接、与辅助桁架连接采用现场焊缝连接。为了保证整个吊车梁系统的空间稳定性,在吊车梁下翼缘间设水平支撑和在跨度1/3处设垂直支撑。制动桁架、辅助桁架及水平(垂直)支撑构件均采用双向受力性能更好同时便于连接的方钢管,用钢量较传统角钢或槽钢可降低10%。
5 结语
该工程优化设计时,通过不同结构形式的对比分析,采用了更为经济合理的钢管混凝土格构式柱+矩形钢管桁架屋架的主体结构、主次桁架+冷弯薄壁型钢檩条的屋面结构、墙架柱+冷弯薄壁型钢檩条的墙面结构体系以及矩形钢管吊车梁制动桁架系统,通过精心的计算和设计、优化结构体系,合理选材,最终用钢量125kg/m2,用钢量较以往类似工程降低10%。由于在优化设计中,采用了先进、成熟的技术,不仅用钢量低,其承载力和刚度也均未降低,结构安全可靠度得到了很好的保证,同时也实现了很好的经济指标,取得了良好的经济效益和社会效益,可供类似工程参考。