APP下载

基于阈值指标分类法的玉米营养生长阶段受旱程度分级*

2020-07-24麻雪艳周广胜

中国农业气象 2020年7期
关键词:临界点叶面积降幅

麻雪艳,周广胜,李 根

基于阈值指标分类法的玉米营养生长阶段受旱程度分级*

麻雪艳1,2,周广胜2,3**,李 根1

(1. 天津市气象局,天津 300074;2. 中国气象科学研究院,北京 100081;3. 南京信息工程大学气象灾害预警协同创新中心,南京 210044)

基于田间小区实验,就玉米对不同强度及持续时间的干旱响应进行研究。玉米播种前进行底墒调控,使各小区土壤底墒基本一致。三叶期开始,按照研究区7月多年平均降水量的100%、80%、60%、40%、20%和7%分别进行一次性灌水,此后不再进行灌溉,全生育期利用大型电动遮雨棚遮挡自然降水,随生育时间推移形成6个不同初始土壤水分梯度的持续干旱过程。分析不同处理玉米营养生长阶段(三叶期-拔节期)的形态(株高、叶面积)和生物量(茎干重、叶干重、总干重)指标对干旱程度的响应规律,采用阈值指标分类法(TITAN)确定各生长指标对干旱程度响应规律发生明显改变的临界点,并基于不同指标响应干旱程度临界点的同步性确定玉米植株水平响应干旱程度(D)的临界点,从而将玉米的受旱等级划分为4个等级。结果表明:当0<D≤0.07时,玉米受到轻旱影响,其形态和生物量指标的平均降幅仅为1.2%~3.0%;当0.07<D≤0.47时,玉米受到中旱影响,叶面积和株高的平均降幅分别为15.9%和8.6%,茎、叶干重及总干重的平均降幅分别为18.8%、15.4%和12.4%;当0.47<D≤0.73时,玉米受到重旱影响,叶面积的平均降幅为37.8%,株高的平均降幅为16.9%,茎、叶干重及总干重的平均降幅分别为43.3%、45.2%和28.9%;当0.73<D≤1时,玉米受到特旱影响,叶面积和株高的平均降幅分别为83.6%和53.3%,叶干重和茎干重的降幅均高达90%以上,总干重的平均降幅达87.0%。研究结果可为作物干旱受灾程度的定量分级与评价提供方法和依据。

玉米;持续干旱;受旱程度;定量分级;阈值指标分类法(TITAN)

干旱是世界范围内限制作物生长发育及产量形成的主要灾害,干旱造成的作物产量损失甚至超过了其它因素造成的损失之和,是威胁世界粮食安全的最主要因素[1-2]。干旱对作物的影响程度与干旱强度、干旱持续时间及作物所处发育期等密切相关[3]。准确评估作物干旱受灾程度,科学划分作物干旱受灾等级,对高效开展农业防旱抗旱工作具有重要意义[4]。现有作物受旱程度的评估和分级多是基于减产率[5-6],但是减产率是作物全生育期受旱程度的评价指标,无法应用到作物生长发育过程中受旱程度的评估,制约了防灾减灾措施的及时制定与实施[7]。目前,对干旱发生发展过程的评估研究一般都是基于某一个或某几个环境指标,如降水量、土壤水分、水分亏缺指数、持续干旱日数等[8-12],或者基于某一生长指标,如生物量或死苗率等[7,13-14]。一方面,干旱对作物的影响具有累积效应,观测当时的环境指标值并不一定能反映作物当前的生长状态和受灾程度[15-16];另一方面,单一的生长指标不能全面、准确地反映作物的整体生长状况及受灾程度[17-18]。并且,由于不同指标对干旱程度的响应阈值可能不同,基于不同指标对干旱程度的响应阈值进行作物受旱程度的分级与评价可能会出现不一致的结论[19-20]。

为此,本研究拟以玉米为例,基于2014年玉米三叶期开始的6个初始土壤水分梯度的持续干旱模拟实验资料,考察玉米营养生长阶段(三叶期-拔节期)主要生长指标对持续干旱的响应规律,并提出基于多生长指标进行玉米受旱程度综合评估、准确分级的方法,为作物干旱受灾程度的定量分级与评价提供方法和思路。

1 材料与方法

1.1 实验地点

实验在中国气象科学研究院固城生态环境与农业气象试验站(39°08′N,115°40′E,15.2m)大型可控式水分试验场开展。试验场设有大型电动遮雨棚,占地750m2,共设42个试验小区,小区面积8m2(长4m×宽2m),小区之间筑有3m深混凝土隔离墙,防止水分水平交换。试验场土壤质地为砂壤土,土壤类型为褐土,含有机碳13.67g×kg−1,全氮0.87g×kg−1,有效磷25.76g×kg−1,有效钾118.55mg×kg−1,平均土壤容重1.37g×cm−3,0-30cm平均田间持水量和凋萎系数(重量含水率)分别为21.23%和7.10%。该站年平均气温12.1℃,年降水量494mm,约70%的降水主要集中在夏季,其中以7月最多(约150mm),但年际变异系数高达62.9%,致使正处于营养生长阶段的夏玉米受干旱影响的风险较大[16]。

1.2 实验设计

实验供试玉米品种选择全国范围内种植面积最大的郑单958。2014年6月23日播种,行距为50cm,株距为25cm,每小区4行,每行16穴,每小区共64穴,每穴播3粒。播种后,施磷酸二铵300kg×hm−2并适当灌溉,确保玉米正常出苗。7月1日(三叶期)间苗并定苗至每小区64株。全生育期利用大型电动遮雨棚遮挡自然降水,播种前进行底墒调控,使各小区土壤底墒基本一致,7月2日按照当地7月多年平均降水量的100%、80%、60%、40%、20%和7%,即按照150、120、90、60、30和10mm分别进行一次性灌水,形成6个初始土壤水分梯度(分别用T1-T6表示处理1-处理6),此后不再进行灌溉,随时间推移发展形成不同强度及持续时间的干旱过程。每个水分处理设3个重复小区,共18个小区。水分处理后每7天进行1次土壤含水量和玉米生长指标的观测,在玉米三叶期-拔节期(7月1日-8月9日)共进行4次观测,各次观测时间分别是7月10、18、31日和8月7日。

1.3 观测项目

1.3.1 土壤含水量

土壤含水量采用烘干法测定。每次观测时,在每个小区内随机选取1个取样点,各小区取样位置大致相同,每个处理共3个取样点。利用土钻每10cm分层钻取0-90cm土样,测定土壤湿重W0,并置于烘箱内105℃烘干至恒重后称取干重Ws,利用式(1)计算各层土壤重量含水率ω(g×g−1),利用式(2)计算体积含水率θ(cm3·cm−3)。由于在三叶期-拔节期,表层0-30cm土壤是玉米的主要供水层[21],因此,以0-10cm、11-20cm、21-30cm土层土壤相对湿度平均值(RH,%)反映玉米的土壤水分状况,即

式中,W0和Ws分别为测定土壤湿重和干重(g);ρb为土壤容重(1.37g×cm−3);ω1、ω2、ω3分别为0-10cm、11-20cm、21-30cm土层的重量含水量(%);Fc为0-30cm土层的田间持水量(21.23%)。

1.3.2 玉米生长指标

每次观测时,每小区随机选取2株玉米,每个处理共6株,依次测定株高、叶面积和叶干重、茎干重和总干重等生长指标。

株高:用直尺从土壤表面量至植株叶片伸直后的最高叶尖。

叶面积(S):用直尺量取玉米植株每片完全展开叶的叶长(Li)和叶宽(Di),乘以形状校正系数k(取值0.75)[22],所有叶片数值累加得到植株叶面积S(cm2)。

式中,n是玉米植株的完全展开叶数,i表示玉米植株的第i片叶片。

器官干重:挖取标准株包含绝大部分根系(0-30cm土层)的土柱,获取玉米鲜样。将玉米鲜样的地上部分与地下部分用剪刀分开,地上部分按叶片、茎进行分类,分器官称取鲜重并分别装入牛皮纸袋。将根部泥土冲洗干净,控水后装袋。将所有器官放入烘箱105℃杀青1h,80℃烘干48h后称取各器官生物量干重。

1.4 研究方法

1.4.1 干旱程度(D)的计算

干旱程度(D)是指一段时间内的累积水分亏缺程度,是干旱强度(I)随干旱持续时间的累积[23]。具体计算为[21]

式中,ET0(mm×d−1)为潜在蒸散量,采用Peman-Monteith方法[24]计算得到;T是评估期天数,即7月2日-8月7日,共36d;It为评估期内第t天的干旱强度。

干旱强度(I)是指作物某一日的水分亏缺程度[21]。借鉴FAO推荐的水分亏缺系数Ks,干旱强度表达式为[24]

式中,TAW是参考土层(0-30cm)土壤最大有效水分含量(cm3·cm−3),表征作物可利用的全部有效水含量;θFC为田间持水量(cm3·cm−3),θWP为凋萎系数(cm3·cm−3),θi是参考土层实际含水量(cm3·cm−3),Dr是参考土层土壤水分亏缺量(cm3·cm−3);RAW是参考土层土壤速效水含量(cm3·cm−3),为田间持水量与毛管断裂含水量之差,表征可被植物迅速吸收的土壤水分下限;p0取值0.55,ET0采用Peman-Monteith方法计[24]。

由式(7)可见,当土壤速效水含量(RAW)大于土壤水分亏缺量(Dr)时,Ks=1,I=0,表征作物未受到干旱影响;当土壤水分降低至凋萎系数及以下时,土壤有效水全部耗尽,Ks=0,I=1。

1.4.2 土壤水分插值

为确定逐日的干旱强度,需要对土壤水分资料进行插值。随着土壤水分含量的下降,其下降速率逐渐放缓,故采用幂函数形式进行拟合得到各小区逐日土壤水分含量,即

式中,ω(x)为水分处理后第x天0-30cm土层的体积含水率(cm3·cm−3);a、b为拟合参数。

1.4.3 玉米生长指标标准化

由于玉米生长受干旱影响的同时,还受到发育进程和诸如气温、辐射等其它环境因素的影响,因此不能将不同次观测的玉米生长指标样本直接放在一起考察其对干旱程度的响应。鉴于此,首先需要对玉米生长指标进行标准化处理。具体方法为

某次观测,当土壤水分条件最好的处理1尚未受到干旱影响时(D=0),将各处理玉米的生长指标除以处理1当次观测的相应指标值进行标准化,即

由于7月30日及以后,处理1-处理6均已不同程度受到干旱的影响。研究表明,玉米生长指标随干旱程度的变化符合二次曲线[21]。因此,对玉米生长指标与干旱程度进行二次多项式回归拟合,反推出干旱程度为0时的玉米生长指标值作为参考值进行标准化。即

式中,D为干旱程度,z为生长指标值,a、b、c为拟合参数。

1.4.4 阈值指标分类法

阈值指标分类法(Threshold Indicator Taxa Analysis,简称TITAN)是生态学领域的一种检测生态系统群落水平阈值的方法。它可以沿某一环境因子梯度检测每个群落特征指标分布规律发生改变的临界点,并评估不同群落特征指标临界点的同步性,最终确定整个群落响应该环境因子的临界点[25-26]。

(1)单个群落特征指标临界点的确定

以环境因子的中位点作为候选分类点,依次迭代将每个群落特征指标的样本分为2类,直到使每一个样本与它所在的类组联系最密切。联系的紧密程度利用指标种得分IndVal(Indicator species scores)来衡量(公式15)[27]。IndVal值在0~100范围变化,数值越大说明该组内的样本联系越紧密,当IndVal值为100时,表明该组内每个样本只可能出现在这个组内,它们对环境变量的响应规律完全一致。计算每一个备选分类点所得IndVal值,其中获得最大IndVal值的分类点即为该群落特征样本的临界点。

式中,A是组间相对丰度,即第i组类的样本量Ni占全部样本量Nt的比例;B是组内出现频率,即当环境变量因子为j时,第i组类中对应的样本量Nij占总样量Nj的比例。

(2)群落水平临界点的确定

将群落特征指标每个候选分类点的IndVal值基于该特征所有候选分类点所得IndVal的均值和标准差进行Z指数标准化,将不同群落特征每个候选分类点所得的z值进行累加,累积z值达到最大时的分类点即为整个群落响应该环境因子的临界点[25-26]。

(3)信度检验

利用自举法(Bootstrap)进行250次重复取样,对所得临界点进行信度检验。检验指标包括不确定性、纯粹性和可靠性3个方面。不确定性是指由自举法重复取样所得样本的IndVal值大于原始数据临界点对应的IndVal值的概率,概率越小,说明分类点的不确定性越低。可靠性是所有自举法重复取样所得的不确定性低于某一显著性水平(如0.05和0.01)的比例,比例越大,可靠性越高(最大值为1)。纯粹性是指自举法重复取样所得的某一样本的分组与原始数据所得分组完全一致的比例,纯粹性达到最大值1,说明该样本重复取样进行分组的结果与原始结果完全一致[25-26]。

1.4.5 玉米受旱程度分级

选择能够反映玉米植株生长状况的叶面积、株高、茎、叶干重和总干重等指标进行TITAN分析[26],确定每个指标对干旱程度D响应的临界点,进而确定玉米植株对干旱程度响应的临界点。由于TITAN每次只确定一个最显著的临界点,将样本分成2类,而玉米各生长指标对干旱程度的响应可能存在2种以上的变化区间。为此,采用TITAN首先确定第一个临界点,将指标样本分成2组,从每一组中分别确定下一级的临界点,直到分组不再显著或者组内样本量低于最小分类单元即3个样本量时结束,具体算法流程见图1。

图1 应用阈值指标分类法进行玉米受旱程度分级的流程图

1.4.6 数据处理与统计

采用SPSS17.0(SPSS Inc.,Chicago,IL,USA)进行土壤水分的插值拟合、玉米主要生长指标的Duncan多重比较分析、玉米生长指标与干旱程度、土壤湿度的相关分析以及玉米生长指标与干旱程度的回归拟合。应用R语言TITAN程序包(R Development Core Team,version R 2.9.2,2009)对玉米生长指标进行阈值指标分类分析。

2 结果与分析

2.1 玉米营养生长阶段干旱程度及其影响

由表1可见,水分处理后第7天(7月10日),各处理土壤湿度均呈现显著差异,处理5和处理6的干旱程度已经显著高于处理1-处理4,生长指标中仅处理6的叶面积显著偏低,其它生长指标尚未呈现处理间显著差异。随着时间推移,各处理土壤湿度逐渐降低而处理间差异逐渐缩小,各处理干旱程度逐渐加大且处理间差异不断增大,各生长指标逐渐增长且处理间差异逐渐增大。至8月7日,各处理土壤湿度均已降至50%以下且无显著差异,而各处理的干旱程度均大于0且处理间差异显著,各处理间生长指标也差异显著且与干旱程度的处理间差异较为一致。同时,由表2可见,干旱程度与玉米各生长指标的相关系数要高于土壤湿度,反映出干旱程度较土壤湿度更能反映玉米的生长状况。

表1 玉米三叶-拔节期4次观测不同水分处理生长指标、土壤湿度与干旱程度的多重比较分析

注:同列数据不同字母表示处理间在0.05水平上差异显著。

Note:The different letter within a column indicates the difference significance among treatments at 0.05 level. Treatments T1-T6 refer to the six different irrigations that performed during the three-leaf period of maize with the irrigation amounts of 150, 120, 90, 60, 30 and 10mm, respectively, equivalent to 100%, 80%, 60%, 40%, 20% and 7% of the local average precipitation in July (150mm), respectively.

表2 玉米生长指标与干旱程度、土壤相对湿度的相关系数

注:**表示相关系数通过0.01水平的显著性检验。 Note:**means P<0.01.

2.2 玉米生长指标响应干旱程度的临界点

采用阈值指标分类法(TITAN)分别确定各生长指标响应干旱程度的临界点,进而根据不同指标对干旱程度响应的同步性确定玉米植株水平响应干旱程度的临界点,结果见表3-表5。由表可见,各生长指标第1个临界点对应的干旱程度均为0.73,所得临界点的信度良好,玉米植株水平的第1个临界点也为0.73(表3)。叶面积、叶干重和茎干重的第2个临界点对应的干旱程度均为0.35,株高和总干重的第2个临界点对应的干旱程度为0.47,各指标临界点的信度良好,植株水平的第2个临界点对应的干旱程度为0.47(表4)。叶面积、叶干重、茎干重和总干重的第3个临界点对应的干旱程度为0.07,株高的第3个临界点对应的干旱程度为0.01,植株水平第3个临界点对应的干旱程度为0.07(表5)。

表3 玉米生长指标及植株水平响应干旱程度的第1临界点

表4 玉米生长指标及植株个体水平响应干旱程度的第2临界点

表5 玉米生长指标及植株个体水平响应干旱程度的第3临界点

2.3 玉米受旱程度分级评价

利用玉米植株水平的3个临界点将各生长指标样本划分为4个受旱等级,分段进行线性回归拟合,结果见图2。计算各段线性回归的斜率,即为相应受旱等级下玉米生长指标对干旱程度的响应幅度,以及各受旱等级玉米生长指标的平均降幅,结果见表6。

由图2可见,玉米各生长指标随干旱程度增加均呈下降趋势,但各阶段变化的斜率不同,反映出随着干旱程度的加剧,玉米生长指标对干旱程度的响应规律会发生改变。由表6可见,当干旱程度在0<D≤0.07时,玉米受轻旱,其形态和生物量指标的平均降幅仅为1.2%~3.0%;当0.07<D≤0.47时,玉米受中旱影响,叶面积的平均降幅为15.9%,株高的平均降幅为8.6%,茎、叶干重及总干重的平均降幅分别为18.8%、15.4%和12.4%;当0.47<D≤0.73时,玉米受重旱影响,叶面积和株高的平均降幅分别为37.8%和16.9%,茎、叶干重及总干重的平均降幅分别为43.3%、45.2%和28.9%;当0.73<D≤1时,玉米受特旱影响,叶面积的平均降幅为83.6%,株高的平均降幅为53.3%,叶干重和茎干重的降幅均高达90%以上,总干重的平均降幅达87.0%。

表6 玉米受旱程度分级评价

图2 玉米生长指标随干旱程度的变化规律

Fig. 2 Changes of maize growth indicators with drought degree

3 结论与讨论

3.1 结论

(1)采用干旱程度D这一指标来指示玉米生长环境的水分亏缺程度,该指标同时考虑了干旱强度(某一时刻的水分亏缺程度)和干旱持续时间两方面的影响,较单一的土壤水分指标能更好地反映持续干旱对玉米生长状况的影响。

(2)首次将生态学领域的阈值指标分类法(TITAN)应用于玉米受旱程度分级研究中。该方法基于玉米多个生长指标对干旱响应规律的同步性确定玉米植株水平响应干旱的临界点,实现玉米受旱程度的定量分级,为作物受灾程度定量分级提供了方法和思路。

(3)当干旱程度0<D≤0.07时,玉米受到轻旱影响,其形态和生物量指标的平均降幅仅为1.2%~3.0%;当0.07<D≤0.47时,玉米受到中旱影响,叶面积的平均降幅为15.9%,株高的平均降幅为8.6%,茎、叶干重及总干重的平均降幅分别为18.8%、15.4%和12.4%;当0.47<D≤0.73时,玉米受到重旱影响,叶面积的平均降幅为37.8%,株高的平均降幅为16.9%,茎、叶干重及总干重的平均降幅分别为43.3%、45.2%和28.9%;当0.73<D≤1时,玉米受到特旱影响,叶面积的平均降幅为83.6%,株高的平均降幅为53.3%,叶干重和茎干重的降幅均高达90%以上,总干重的平均降幅达87.0%。

3.2 讨论

干旱指标是干旱程度量化和分级的主要依据。目前,干旱指标大致可以分为3类,第1类是反映环境水分供应能力的指标,如土壤相对湿度等[28];第2类是反映作物水分供需差异的指标,如作物水分亏缺指数等[29];第3类是反映作物生长状况的指标,如出苗率、萎蔫程度、减产率等[29-30]。第1、2类干旱指标缺乏与作物生长状况的准确对应,无法直接用于作物干旱灾损的预估和评价,对实际生产的指导作用有限。基于第3类指标的分级多依赖经验划分,存在分级边界较模糊,统计学意义不显著等问题。本研究采用干旱程度这一指标来指示玉米生长环境的水分亏缺程度。该指标同时考虑了干旱持续时间和干旱强度两方面的影响。其中,干旱强度借鉴了FAO提出的作物水分胁迫系数Ks,考虑了土壤有效水分含量和能被作物根系吸收利用的速效水分含量,与土壤性质、气象条件、作物生长阶段等密切相关,各参数均具有明确的物理意义,能客观反映某一时间作物的水分亏缺程度。同时,本研究选取能反映玉米生长状况的多个生长指标,采用阈值指标分类法(TITAN)确定了玉米各生长指标对干旱程度响应规律发生明显改变的转折点,并基于不同指标对干旱程度响应规律发生改变的同步性确定了玉米个体水平响应干旱程度的临界点,进而将玉米的受旱程度划分为轻旱、中旱、重旱和特旱4个等级,既实现了环境指标(干旱程度)与玉米生长状况的准确对应,也实现了玉米受旱程度的定量分级。

同一受旱等级下,玉米各生长指标值的平均降幅并不相同,反映出不同生长指标对干旱响应的敏感程度不同。这是玉米通过调整形态结构和不同器官的生长速度来适应干旱胁迫的表现[31]。受旱程度为轻度时,各生长指标的降幅均较小,但是以茎干重的降幅最大,其次为株高,叶面积的降幅最小,反映出茎是对干旱响应最为敏感的器官。这是因为茎是植物体主要的水分传输和储存器官,也是根、叶水分胁迫信号传递的纽带[32],越来越多的研究发现植物的茎较叶片对水分胁迫的响应更加敏感[16,33]。当受旱程度达到中度及以上时,株高的平均降幅最小,显著低于其它生长指标的平均降幅。这表明株高对干旱的响应比较敏感,但响应幅度较小,反映出干旱对玉米株高的可塑性较小,玉米主要通过降低叶面积和生物量来响应干旱[34]。不同受旱等级下,玉米各生长指标的响应幅度也不同。当玉米受旱等级为轻旱时,各生长指标对干旱程度的平均响应幅度为0,随着受旱等级的增加,玉米各生长指标对受旱程度的响应幅度逐渐加大。这反映出玉米在不同干旱程度影响下会采取不同的生长策略。干旱胁迫初期主要采取快速生长的策略,尽可能多地获取资源,尽量维持正常的生理生态功能,使其生长不受或少受干旱的影响[34],随着干旱程度的加剧,玉米逐渐采取缓慢生长的策略,从而降低资源的消耗,维持生存[35-36]。

由于本研究实验设计为三叶期开始的持续干旱,至后期各处理玉米受旱严重,基本全部绝产,故未分析各级受旱程度与最终产量的对应关系。此外,作物受旱程度还与发育期有关,同一干旱程度对作物不同生育期造成的影响可能不同[37-38]。未来将继续开展观测试验,进一步明确作物生长发育过程中的受旱程度与最终产量的对应关系,以及分不同发育期探讨干旱对玉米生长发育的影响并进行定量分级。

[1] Neumann P M.Coping mechanisms for crop plants in drought-prone environments[J].Annals of Botany,2008,101: 901-907.

[2] Azizi F,Hajibabaei M.Evaluation of drought stress on irrigation efficiency,yield and yield components in new maize hybrids[J].International Journal of Agriculture Innovations and Research,2014,(3):579-583.

[3] Farooq M,Wahid A,Kobayashi N,et al.Plant drought stress:effects,mechanisms and management[A].Sustainable Agriculture[C].Springer Netherlands,2009:153-188.

[4] 王雷.河南省农业干旱时空演变特征及驱动机制分析[D].郑州:华北水利水电大学,2016.

Wang L.Analysis on spatial-temporal evolution characteristics and driving mechanism of agricultural drought in henan province[D].Zhengzhou:North China University of Water Resources and Electric Power,2016.(in Chinese)

[5] 曹成,汤广民.冬小麦受旱减产规律及产量与水关系模型研究[J].灌溉排水学报,2017,36(8):13-17.

Cao C,Tang G M.Reduction in yield of winter wheat caused by droughts and its water-yield relationship[J]. Journal of Irrigation and Drainage,2017,36(8):13-17.(in Chinese)

[6] 中国气象局.QX/T 81-2007 小麦干旱灾害等级[S].北京:气象出版社,2007.

China Meteorological Administration.QX/T 81-2007 Disaster grade of drought for wheat[S].Beijing:China Meteorological Press,2007.(in Chinese)

[7] 崔毅,蒋尚明,金菊良,等.基于水分亏缺试验的大豆旱灾损失敏感性评估[J].水力发电学报,2017,36(11):50-61.

Cui Y,Jiang S M,Jin J L,et al.Soybean drought loss sensitivity assessment based on water deficit experiment[J]. Journal of Hydroelectric Engineering,2017,36(11):50-61. (in Chinese)

[8] 薛昌颖,刘荣花,马志红.黄淮海地区夏玉米干旱等级划分[J].农业工程学报,2014,30(16):147-156.

Xue C Y,Liu R H,Ma Z H.Drought grade classification of summer maize in Huang-Huai-Hai area[J].Transactions of the CSAE,2014,30(16):147-156.(in Chinese)

[9] 解文娟,杨晓光,杨婕,等.气候变化背景下东北三省大豆干旱时空特征[J].生态学报,2014,34(21):6232-6243.

Xie W J,Yang X G,Yang J,et al. Spatio-temporal characteristics of drought for soybean under climate change in the three provinces of Northeast China[J].Acta Ecologica Sinica,2014,34(21):6232-6243.(in Chinese)

[10] 刘彦平.泾惠渠灌区干旱演变对作物产量及灌溉需水量的影响[D].杨凌:西北农林科技大学,2014.

Liu Y P.The effect of drought evolution on crop yield and irrigation requirement in Jinghui irrigation district[D]. Yangling:Northwest A & F University,2014.(in Chinese)

[11] 张蕾,霍治国,陈汇林,等.海南省辣椒春季干旱灾害等级指标[J].生态学杂志,2015,34(11):3139-3145.

Zhang L,Huo Z G,Chen H L,et al.Grade index of spring drought disaster for paprika in Hainan Province[J].Chinese Journal of Ecology,2015,34(11):3139-3145.(in Chinese)

[12] 李学文,高超,尹周祥,等.淮河上游地区夏玉米生长降水关键期内旱涝致灾降水阈值研究[J].气象科学,2018, 38(4):477-488.

Li X W,Gao C,Yin Z X,et al.Study on precipitation thresholds of drought and flood disasters in the key period of precipitation for summer maize in the upper reaches of the Huaihe River[J].Journal of the Meteorological Sciences, 2018,38(4):477-488.(in Chinese)

[13] 张蕾,霍治国,陈汇林,等.海南番茄春季干旱灾害等级指标[J].热带气象学报,2016,32(5):759-766.

Zhang L,Huo Z G,Chen H L,et al.Construction of a spring drought disaster index for tomato growth[J].Journal of Tropical Meteorology,2016,32(5):759-766.(in Chinese)

[14] 米娜,蔡福,张玉书,等.不同生育期持续干旱对玉米的影响及其与减产率的定量关系[J].应用生态学报,2017, 28(5):1563-1570.

Mi N,Cai F,Zhang Y S,et al.Effects of continuous drought during different growth stages on maize and its quantitative relationship with yield loss[J].Chinese Journal of Applied Ecology,2017,28(5):1563-1570.(in Chinese)

[15] 陈家宙,王石,张丽丽,等.玉米对持续干旱的反应及红壤干旱阈值[J].中国农业科学,2007,40(3):532-539.

Chen J Z,Wang S,Zhang L L,et al.Response of maize to progressive drought and red soil's drought threshold[J]. Scientia Agricultural Sinica,2007,40(3):532-539.(in Chinese)

[16] 麻雪艳,周广胜.夏玉米苗期主要生长指标的土壤水分临界点确定方法[J].生态学杂志,2017,36(6):1761-1768.

Ma X Y,Zhou G S.A method to determine the critical soil moisture of growth indicators of summer maize in seedling stage[J].Chinese Journal of Ecology,2017,36(6):1761-1768. (in Chinese)

[17] 胡生荣.三种滨藜的旱盐逆境胁迫及其引种适应性评价[D].呼和浩特:内蒙古农业大学,2008.

Hu S R.Research of drought & salt adversity stress of 3L.and the evaluation of their introduction adaptability[D].Hohhot:Inner Mongolia Agricultural University,2008.(in Chinese)

[18] 裴浩杰,冯海宽,李长春,等.基于综合指标的冬小麦长势无人机遥感监测[J].农业工程学报,2017,33(20):74-82.

Pei H J,Feng H K,Li C C,et al.Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index[J].Transactions of the CSAE,2017,33(20):74-82.(in Chinese)

[19] 李秀芬,马树庆,姜丽霞,等.两种常用的春玉米干旱等级指标在东北区域的适用性检验[J].气象,2017,43(11): 1420-1430.

Li X F,Ma S Q,Jiang L X,et al.Applicability test of two common indexes for spring maize drought grade in Northeast China[J].Meteorological Monthly,2017,43(11): 1420-1430.(in Chinese)

[20] 孙洪泉,吕娟,苏志诚,等.分位数法对多指标干旱等级划分一致性的作用[J].灾害学,2017,32(2):13-17.

Sun H Q,Lv J,Su Z C,et al.The effectiveness of the quantile method on the consistency of the drought classification by multiple indices[J].Journal of Catastrophology,2017,32(2): 13-17.(in Chinese)

[21] 麻雪艳.夏玉米干旱发生发展过程及其定量研究[D].北京:中国气象科学研究院,2017.

Ma X Y.The occurrence and development of drought on summer maize since the seedling stage and its quantitative research[D].Beijing:Chinese Academy of Meteorological Sciences,2017.(in Chinese)

[22] 麻雪艳,周广胜.春玉米最大叶面积指数的确定方法及其应用研究[J].生态学报,2013,33(8):280-287.

Ma X Y,Zhou G S.Method of determining the maximum leaf area index of spring maize and its application[J].Acta Ecologica Sinica,2013,33(8):280-287.(in Chinese)

[23] Zargar A,Sadiq R,Naser B,et al.A review of drought indices[J].Environmental Reviews,2011,19:333-349.

[24] Allen R G,Pereira L S,Raes D,et al.Crop evapotranspiration: guidelines for computing crop water requirements[R]. Rome,Italy FAO,1998.

[25] Cao X,Wang J,Liao J,et al.The threshold responses of phytoplankton community to nutrient gradient in a shallow eutrophic Chinese lake[J].Ecological Indicators,2016,61: 258-267.`

[26] Baker M E,King R S.A new method for detecting and interpreting biodiversity and ecological community thresholds[J].Methods in Ecology and Evolution,2010, 1(1):25-37.

[27] Dufrêne M,Legendre P.Species assemblages and indicator species: the need for a flexible asymmetrical approach[J]. Ecological Monographs,1997,67(3):345-366.

[28] 高桂芹,花家嘉,赵景旺.Y干旱指数在冀东春旱监测中的应用[J].中国农业气象,2009,30(3):431-435.

Gao G Q,Hua J J,Zhao J W.Application of Y drought index in spring drought monitoring in east Hebei province[J]. Chinese Journal of Agrometeorology,2009,30(3):431-435. (in Chinese)

[29] 中国气象局.GB T 32136-2015 农业干旱等级[S].北京:中国标准出版社,2015.

China Meteorological Administration.GB T 32136-2015 grade of agricultural drought[S].Beijing:China Standards Press,2015.(in Chinese)

[30] 刘荣花,成林,胡程达.冬小麦根冠指标对干旱持续发展的响应[J].中国农业气象,2019,40(11):702-711.

Liu R H,Chen L,Hu C D.Response of root-canopy index of winter wheat on persist drought[J].Chinese Journal of Agrometeorology,2019,40(11):702-711.(in Chinese)

[31] 徐飞,郭卫华,徐伟红,等.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J].北京林业大学学报,2010, 32(1):24-30.

Xu F,Guo W H,Xu W H,et al.Effects of water stress on morphology biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J].Journal of Forestry University,2010,32(1):24-30.(in Chinese)

[32] 员玉良.基于茎直径与茎流复合测量的植物水分生理调节观测方法研究[D].北京:中国农业大学,2015.

Yuan Y L.Methods for observing plant physiological water adaptability based on the combined measurement of stem diameter and sap flow[D].Beijing:Chinese Agricultural University,2015.(in Chinese)

[33] Westgate M E,Boyer J S.Osmotic adjustment and the inhibition of leaf,root,stem and silk growth at low to progressive drought stress water potentials in maize[J]. Planta,1985,164:540-549.

[34] Zhang X L,Zang R G,Li C Y.Population differences in physiological and morphological adaptations ofseedlings in response[J].Plant Science,2004, 166:791-797.

[35] Chaves M M,Oliveira M M.Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture[J].Journal of Experimental Botany,2004,55(407): 2365-2384.

[36] 麻雪艳,周广胜.干旱对夏玉米苗期叶片权衡生长的影响[J].生态学报,2018,38(5):1758-1769.

Ma X Y,Zhou G S.Effects of drought on the trade-off growth of leaf traits of summer maize in the seedling stage[J].Acta Ecologica Sinica,2018,38(5):1758-1769.(in Chinese)

[37] 赵鸿,李凤民,熊友才,等.土壤干旱对作物生长过程和产量影响的研究进展[J].干旱气象,2008,26(3):67-71.

Zhao H,Li F M,Xiong Y C,et al.Advance about impact of soil drying on growth and yield of crops[J].Arid Meteorology,2008,26(3):67-71.(in Chinese)

[38] 张建平,何永坤,王靖,等.不同发育期干旱对玉米籽粒形成与产量的影响模拟[J].中国农业气象,2015,36(1):43-49.

Zhang J P,He Y K,Wang J,et al.Impact simulation of drought at different growth stages on grain formation and yield of maize[J].Chinese Journal of Agrometeorology, 2015,36(1):43-49.(in Chinese)

Classification of Drought Degree during Vegetative Growth Stage of Maize Based on Threshold Indicator Taxa Analysis (TITAN)

MA Xue-yan1, 2, ZHOU Guang-sheng2, 3, LI Gen1

(1. Tianjin Meteorological Bureau, Tianjin 300074, China; 2. Chinese Academy of Meteorological Sciences, Beijing 100081;3.Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment, Nanjing University of Information Science & Technology, Nanjing 210044)

Drought was a major disaster that limited the growth and yield of crops worldwide. The loss of crop output caused by drought even exceeds the sum of the losses caused by all other factors, and was the most important factor threatening world food security. The influence of drought on crops was closely related to drought intensity, drought duration and the development stage of crops. It was of great significance for efficient agricultural drought prevention and drought relief to accurately assess the drought damage degree of crops and scientifically classify the drought damage levels of crops. Existing methods on crop drought assessment and grading were mostly based on yield reduction. However, yield reduction reflected the drought damage degree of the entire growth period of crop, which could not be applied to the assessment of crop drought damage degree during certain development period, restricting timely formulation and implementation of disaster prevention and mitigation measures. At present, the assessment and research on the progress of drought were generally based on one or several environmental indicators, such as precipitation, soil moisture, water deficit index, etc., or based on some single growth indicator, such as biomass. On the one hand, drought had a cumulative effect on crops, and the environmental indicators observed at that time could not necessarily reflect current growth state and damage degree of crops. On the other hand, a single growth indicator could not accurately reflect the overall growth status of crops. Since different growth indicators may have different response thresholds to drought degree, different conclusions may be drawn when grading and evaluating the drought degree of crops based on the response thresholds of different growth indicators to drought degree. Therefore, this study intended to investigate the responses of maize growth indicators to drought of different intensity and duration during its vegetative growth period (from the 3-leaf stage to jointing stage) based on a field plot experiment performed in 2014, and put forward a new way to accurately evaluating and classifying drought damage degree of maize based on response synchronicity of multiple growth indicators. In the field plot experiment, six different irrigations were performed during the three-leaf period of maize with the irrigation amounts (named treatments T1-T6) were 150, 120, 90, 60, 30, and 10mm, respectively, equivalent to 100%, 80%, 60%, 40%, 20% and 7% of the local average precipitation in July (150mm), respectively. No extra irrigation was performed thereafter. Precipitation was blocked completely by the auto-rain-shelter during the entire growth period. Then, six continuous drought processes of different initial soil moisture gradients were formed as time proceeded. Observations on soil water content, maize growth indicators were performed every 7-day after the irrigation treatments. Based on the observation data, the response regularity of maize morphological (plant height and leaf area) and biomass (stem dry mass, leaf dry mass, and total dry mass) indicators to the drought degree (D) was studied. By using of Threshold Indicator Taxa Analysis method (TITAN), the response turning points of growth indicators of maize's to drought degree were determined, and based on the response synchronicity of these growth indicators, the response turning point of maize plant level to drought degree was identified. Then the drought degree was divided into 4 levels according to these turning points. The results showed that, when 0<D≤0.07, maize was affected by light drought, and the average decrease of maize growth indicators was only1.2%-3.0%; when 0.07<D≤0.47, maize was affected by medium drought with an average decrease of leaf area of 15.9%, plant height of 8.6%, stem dry mass, leaf dry mass, and total dry mass of 18.8%, 15.4% and 12.4%, respectively; when 0.47<D≤0.73, maize was affected by severe drought with an average decrease of leaf area of 37.8%, plant height of 16.9%, stem dry mass, leaf dry mass and total dry mass of 43.3%, 45.2% and 28.9%, respectively; when 0.73<D≤1, maize was affected by extreme drought, with an average decrease of leaf area of 83.6%, plant height of 53.3%, leaf dry mass and stem dry mass above 90%, and total dry weight of 87.0%. The results would provide a method and basis for quantitative classification and evaluation of drought damage degree of crops.

Maize; Prolonged drought; Drought damage degree; Quantitative classification; Threshold Indicator Taxa Analysis method (TITAN)

10.3969/j.issn.1000-6362.2020.07.005

麻雪艳,周广胜,李根.基于阈值指标分类法的玉米营养生长阶段受旱程度分级[J].中国农业气象,2020,41(7):446-458

2020-01-15

周广胜,E-mail: zhougs@cma.gov.cn

国家自然科学基金(31901398);公益性行业(气象)科研专项(GYHY201506019);国家重点专项(2016YFD0300106);天津市气象局博士基金(201743bsjj03)

麻雪艳,E-mail: maxueyan88@126.com

猜你喜欢

临界点叶面积降幅
水稻叶面积指数与产量关系研究进展
2种水培观叶植物叶面积回归测定①
作物叶面积测量的研究进展
2019年6月汽车产销同比降幅有所收窄
2019年5月汽车产销同比降幅有所扩大
2019年1月汽车产销比上月均呈下降商用车降幅更为明显
零售量额降幅环比收窄