ASPH在肝脏恶性肿瘤发生发展中作用和机制研究进展
2020-06-08邹怡然王海波李俊沈锋
邹怡然 王海波 李俊 沈锋
[摘要] 天冬氨酰-(天冬酰胺酰)β-羟化酶(ASPH)是α-酮戊二酸依赖性双加氧酶,催化天冬氨酰和天冬酰胺基残基的羟化。ASPH在肝细胞癌和肝内胆管癌中均有表达,对二者的发生和发展有作用。本文主要对ASPH的结构和功能及其作用机制的研究进展进行综述。
[关键词] 天冬氨酰-(天冬酰胺酰)β-羟化酶;α酮戊二酸依赖性双加氧酶FTO;肝肿瘤;受体,Notch;综述
[中图分类号] R345;R735.7 [文献标志码] A [文章编号] 2096-5532(2020)02-0248-05
doi:10.11712/jms.2096-5532.2020.56.101 [开放科学(资源服务)标识码(OSID)]
[网络出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200521.1527.002.html;2020-05-22 08:50
[ABSTRACT] Aspartyl-(asparaginyl)-β-hydroxylase (ASPH) is a α-ketoglutarate-dependent dioxygenase and catalyzes the hydroxylation of aspartyl and asparaginyl residues. ASPH is expressed in both hepatocellular carcinoma and intrahepatic cholangiocarcinoma and has an effect on the development and progression of these two diseases. This article reviews the research advances in the structure, function, and mechanism of ASPH.
[KEY WORDS] aspartyl-(asparaginyl)-β-hydroxylase; alpha-ketoglutarate-dependent dioxygenase FTO; liver neoplasms; receptors, Notch; review
原发性肝癌是世界范围内最常见的癌症之一,也是癌症相关死亡的重要原因[1]。根据肿瘤组织来源可分为肝细胞癌(HCC)和肝内胆管癌(ICC)[2],一般HCC占70%~85%,ICC占10%~20%[3]。天冬氨酰-(天冬酰胺酰)β-羟化酶(ASPH)是一种高度保守的双加氧酶,在包括HCC和ICC的多种恶性肿瘤中高表达[4]。ASPH可以调控原发性肝癌的发生及发展,可能是疾病药物及免疫治疗研究的新方向。本文简要综述了ASPH在HCC和ICC发生发展中作用和机制的研究进展。
1 HCC与ICC的诊疗现状
1.1 HCC的诊疗现状
HCC是全球第五大常见的恶性肿瘤,也是与癌症相关死亡的第二大原因[3]。HCC的发病率随年龄升高而增高,且男性的发病率约为女性的2倍[5]。最常见的致病因素是慢性病毒性肝炎(HBV与HCV)、长期饮酒和黄曲霉毒素暴露等[6]。尤其HBV感染,全球大约有60%的HCC病人发病与之相关[7]。肝切除(LR)和肝移植(LT)是早期肿瘤病人的首选治疗方法,其中LR是临床应用最广泛的治疗手段,符合切除标准的病人接受LR术后能取得比较满意的治疗效果[8]。但是对于没有条件接受LR、LT或者化学栓塞治疗的晚期病人,其治疗方式的选择有限。然而令人欣喜的是,索拉菲尼——一种多酪氨酸激酶抑制剂的出现有效延长了晚期肝癌病人的生存期[9-10]。同时,新的分子靶向药物也不断被开发和应用:瑞戈非尼——一种口服多激酶抑制剂,作为索拉菲尼耐药病人的二线用药已进入临床应用[11];乐伐替尼——一种血管内皮生长因子受体1~3抑制剂,成纤维细胞生长因子受体1~4抑制剂,血小板衍生生长因子受体α、转染重排(RET)和KIT的抑制剂,在一项开放性、多中心、非劣效性、随机试验中显示其生存率不低于索拉非尼[12];近期,卡博替尼经批准用于甲状腺癌和肾癌的血管内皮细胞生长因子受体(VEGFR)2和RET抑制剂,在HCC的二线治疗中与安慰剂相比显示出生存收益[13]。这些新的化疗药物的出现,改变了晚期HCC的治疗策略,在一定程度上提高了晚期病人的预后。
1.2 ICC的诊疗现状
ICC起源于肝内胆管的上皮细胞,是第二常见的原发性肝癌[14]。在过去的30年里,ICC的发病率和与其相关的死亡率都呈现上升趋势[15]。其主要危险因素包括:慢性肝炎(主要为HCV)、肝硬化、胆管炎性疾病、肝胆吸虫、过量乙醇摄入和肥胖等[16]。ICC发病于肝内,病人最初没有症状或只表现非特异症状,包括腹痛、食欲不振、体质量下降、全身乏力和盗汗等,这种隐匿的发病特点使ICC的早期诊断困难[17]。ICC具有高度的侵袭性,手术切除是目前治疗ICC的主要手段,并可提高特定病人的生存率[18]。研究普遍认为切缘無肿瘤细胞切除(R0)是手术治疗的金标准,并且切缘的阳性病理结果与预后不良有着密切的联系[19-20]。鉴于以上特点,仅30%的病人有接受手术治疗的机会[21]。手术效果也难以令人满意,术后5年的无复发生存率和总生存率仅为26.1%和33.9%[22-23]。辅助化疗可以为晚期或侵袭性ICC病人提供一定的生存收益,但在临床实践中尚缺少有效的靶向治疗药物。近年来针对新辅助治疗(NAT)的研究逐渐增多,但因对其收益存在争议并未在临床推广应用。虽然支持晚期ICC病人应用NAT的证据十分有限,但已经有多项研究显示病人手术前接受降期治疗能够改善预后[24-26]。
2 ASPH的结构及功能
ASPH是分子量为8.6万的Ⅱ型跨膜蛋白,属于α-酮戊二酸依赖性的双加氧酶[27-33]。其基因全长含有214 085个碱基,有33个外显子,可编码4种蛋白质,即ASPH、Junctin(肌浆网的结构蛋白)、humbug(缺少催化結构域)和Junctate[34-35]。ASPH催化某些蛋白质(包括Notch1和Jagged)的表皮生长因子(EGF)样结构域中的天冬氨酰和天冬酰胺基残基的羟化[34,36-38],其在一般成人体内组织中表达非常低[39-41],但是其在促进细胞迁移和器官发育的过程中发挥一定作用,可在胚胎组织中表达[27-28]。研究人员在包括肝脏恶性肿瘤、肺癌、乳癌、结肠癌和神经系统恶性肿瘤等的转录和翻译水平都观察到了ASPH的过度表达[42-43]。ASPH在HCC中过表达与病人手术后较高的复发率和较低的存活率之间存在显著关联[41]。尽管在ICC中也观察到ASPH的过表达,并且提示了ASPH与ICC术后不良预后的关系[44],但ASPH在ICC中的作用机制的相关研究较少,还有待进一步深入探索。
2.1 ASPH在HCC中的作用机制
在HCC中存在ASPH过度表达的现象[45],且ASPH是HCC组织中表达最高的肿瘤抗原前体蛋白之一[46]。研究表明,与ASPH表达低的病人比较,ASPH表达高者肿瘤复发率高、生存率低,预后不良[41]。
ASPH刺激可导致抗原特异性CD4+T细胞的形成,采用ASPH负载的树突状细胞免疫可以降低HCC小鼠模型中肿瘤复发的风险[47]。在HepG2细胞中,ASPH的表达可由胰岛素和胰岛素样生长因子1(IGF-1)通过ERK/MAPK和PI3K/AKT信号通路诱导,并被胰岛素受体底物1(IRS-1)的过度表达激活,从而导致HepG2细胞的运动性和侵袭性增加;反之,siRNA抑制ASPH表达可降低HepG2细胞的运动性和侵袭性[42]。在转基因小鼠的肝脏中,乙型肝炎X蛋白(HBx)+/IRS-1+双转基因小鼠肝细胞不典型增生增加,继而发展为HCC,且肝脏中ASPH的mRNA表达选择性地增加,进一步证明了ASPH的过度表达与肝细胞的恶性转化之间存在联系[48]。
2.2 ASPH通过Notch信号通路作用于HCC
Notch信号通路在HCC细胞系中起到重要作用,并且Notch信号通路与ASPH也存在一定的联系。Notch信号级联是一种高度保守的通路,具有多种功能,在胚胎发育过程中对细胞信号传导和决定细胞命运的控制具有重要作用[49-51]。不仅于此,其在肝脏的生成、修复和代谢等方面也发挥着重要作用。哺乳动物中存在4种不同的Notch受体(Notch1~4),其应答于5种不同的配体(Delta-like 1、3、4和Jagged1、Jagged2)[51]。研究结果显示,在多种HCC细胞系中,Notch受体1、2、3和4以及配体Jagged1均有表达,并且Notch细胞内结构域(NICDs)和活化的Notch2细胞内结构域在部分HCC细胞系中也有显著地表达,这一结果表明Notch信号通路存在于HCC细胞系中[52]。研究者已经通过计算机辅助药物设计并且开发了ASPH的小分子抑制剂MO-I-1100,通过检测发现该化合物能将ASPH的活性降低80%[53-55]。使用该化合物可降低HCC细胞中下游Notch调节的HES1和HEY1基因的表达,成功抑制HCC细胞的迁移、侵袭和锚定依赖生长[52]。在动物模型中,抑制ASPH活性可通过抑制HCC的Notch信号级联抑制原位和皮下小鼠模型体内的HCC的生长,产生抗肿瘤作用 [55]。
2.3 ASPH在ICC中的作用机制
ASPH高度表达这一现象在胆管癌中尤为突出,其阳性率>95%[43,53]。通过对ICC病人临床数据进行分析,发现ASPH的表达与肿瘤大小、浸润性生长方式、侵袭性组织学分级和血管侵犯等变量相关,并且ASPH表达的增加是预后的危险因素,提示ASPH在调节ICC细胞侵袭或转移能力方面具有重要作用[44]。在ICC细胞系中,与高分化分型相比,ASPH在中分化或低分化肿瘤细胞中的表达更高,并通过促进细胞运动的方式促进ICC细胞的浸润性生长[54]。但是,在人正常增殖胆管细胞和大鼠非胆管癌模型中,不存在ASPH的过表达现象,这表明ASPH的过度表达与胆管上皮细胞转化为恶性肿瘤细胞有关[43]。此外,在大鼠ICC模型中,ASPH负载树突状细胞的免疫具有抗肿瘤作用,这些树突状细胞在体外对ICC细胞具有细胞毒性,抑制了肝内肿瘤的生长和转移,并且还与CD3+T细胞向肿瘤浸润的增加相关[55]。这与HCC中CD4+T细胞向肿瘤浸润的增加类似却又有所区别。
2.4 ASPH通过Notch信号通路作用于ICC
一些研究表明,Notch信号通路与ICC的发生和发展有关:从机制上讲,Notch信号级联反应的激活与ICC发生存在关联,ASPH过表达通过Notch1依赖的细胞周期蛋白D1(Cyclin D1)途径,促进Notch活化和调控ICC进程。Notch下游靶点Cyclin D1在ICC细胞系中被Notch信号转录调控[56],提示它可能是调节细胞周期的重要效应器。有研究者发现一种新的分子机制“ASPH-Notch-Cyclin D1”是ICC生长和进展的驱动因子,并针对性使用ASPH的小分子抑制剂,成功在体外抑制ICC细胞的增殖[57]。
3 ASPH的应用前景
近年来,ASPH在HCC与ICC的研究中取得重要进展,如前所述,针对性开发的小分子抑制剂在细胞和动物模型中能够有效抑制肿瘤的生长。与此同时,在其他多种恶性肿瘤的分子靶向治疗研究中,ASPH也展示出一定的开发价值:ASPH小分子抑制剂MO-I-1100除了能够抑制HCC,还在前列腺癌的研究中也展示出相似的肿瘤抑制效果[53]。在针对多形性胶质母细胞瘤(GBM)的研究中,ASPH小分子抑制剂MO-I-1100和MO-I-1151能够显著降低GBM细胞的存活率和定向运动能力[58]。在乳癌中,以ASPH为靶点的人单克隆抗体(mAb)PAN-622在肿瘤细胞表面的放射性标记是一种全新的显像方法,并且有可能用于转移性乳癌的治疗[59]。
4 結语
越来越多的研究已关注到,ASPH在原发性肝癌的发生和发展过程中发挥着重要的作用。ASPH在HCC和ICC组织中的表达较正常组织都是升高的,无论是何种组织类型来源,ASPH在肿瘤组织中的高表达都与病人的不良预后存在关联,说明围绕ASPH机制进一步深入研究在临床应用上有巨大前景和重要意义。从机制上看,ASPH在Notch通路中的调控作用在两种主要原发性肝癌中均有所体现,且针对Notch通路的ASPH小分子抑制剂能够在动物模型中抑制肿瘤的增殖和转移,提示了一个新的靶向治疗的研究方向和思路。
[参考文献]
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018,68(6):394-424.
[2] SIA D, VILLANUEVA A, FRIEDMAN S L, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017,152(4):745-761.
[3] MASSARWEH N N, EL-SERAG H B. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Control, 2017,24(3):1073274817729245.
[4] HOU G, XU B, BI Y, et al. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: a brief update[J]. Bosnian journal of basic medical sciences, 2018,18(4):297.
[5] VILLANUEVA A. Hepatocellular carcinoma[J]. New England Journal of Medicine, 2019,380(15):1450-1462.
[6] BUDNY A, KOZOWSKI P, KAMISKA M, et al. Epidemiology and risk factors of hepatocellular carcinoma[J]. Pol Merkur Lekarski, 2017,43(255):133-139.
[7] AKINYEMIJU T, ABERA S, AHMED M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and National level Results from the global burden of disease study 2015[J]. JAMA Oncology, 2017,3(12):1683-1691.
[8] KULIK L, EL-SERAG H B. Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019,156(2):477-491. e1.
[9] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. New England Journal of Medicine, 2008,359(4):378-390.
[10] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase Ⅲ randomised, double-blind, placebo-controlled trial[J]. The Lancet Oncology, 2009,10(1):25-34.
[11] BRUIX J, QIN S K, MERLE P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on so-rafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. The Lancet, 2017,389(164):56-66.
[12] KUDO M, FINN R S, QIN S K, et al. Lenvatinib versus so-rafenib in first-line treatment of patients with unresectable he-patocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. The Lancet, 2018,391(1126):1163-1173.
[13] ABOU-ALFA G K, MEYER T, CHENG A L, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma[J]. New England Journal of Medicine, 2018,379(1):54-63.
[14] ALJIFFRY M, ABDULELAH A, WALSH M, et al. Evidence-based approach to cholangiocarcinoma:a systematic review of the current literature[J]. Journal of the American College of Surgeons, 2009,208(1):134-147.
[15] KHAN S A, EMADOSSADATY S, LADEP N G, et al. Ri-sing trends in cholangiocarcinoma:is the ICD classification system misleading us[J]? Journal of Hepatology, 2012,56(4):848-854.
[16] PETRICK J L, YANG B, ALTEKRUSE S F, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare[J]. PLoS One, 2017,12(10):e0186643.
[17] LAZARIDIS K N, GORES G J. Cholangiocarcinoma[J]. Gastroenterology, 2005,128(6):1655-1667.
[18] BRIDGEWATER J, GALLE P R, KHAN S A, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma[J]. Journal of Hepatology, 2014,60(6):1268-1289.
[19] SPOLVERATO G, YAKOOB M Y, KIM Y, et al. The impact of surgical margin status on long-term outcome after resection for intrahepatic cholangiocarcinoma[J]. Annals of Surgical Oncology, 2015,22(12):4020-4028.
[20] YEH C N, HSIEH F J, CHIANG K C, et al. Clinical effect of a positive surgical margin after hepatectomy on survival of patients with intrahepatic cholangiocarcinoma[J]. Drug Design, Development and Therapy, 2015,9:163-174.
[21] MOEINI A, SIA D, BARDEESY N, et al. Molecular pathogenesis and targeted therapies of intrahepatic cholangiocarcinoma[J]. Clinical Cancer Research, 2016,22(2):291-300.
[22] CHAN K M, TSAI C Y, YEH C N, et al. Characterization of intrahepatic cholangiocarcinoma after curative resection:outcome,prognostic factor,and recurrence[J]. BMC Gastroente-rology, 2018,18(1):180.
[23] DE JONG M C, NATHAN H, SOTIROPOULOS G C, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2011,29(23):3140-3145.
[24] LE ROY B, GELLI M, PITTAU G, et al. Neoadjuvant che-motherapy for initially unresectable intrahepatic cholangiocarcinoma[J]. British Journal of Surgery, 2018,105(7):839-847.
[25] KIM Y I, PARK J W, KIM B H, et al. Outcomes of concurrent chemoradiotherapy versus chemotherapy alone for advanced-stage unresectable intrahepatic cholangiocarcinoma[J]. Radiation Oncology, 2013,8(1):292.
[26] LUNSFORD K E, JAVLE M, HEYNE K, et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series[J]. The lancet Gastroenterology & Hepatology, 2018,3(5):337-348.
[27] GRONKE R S, VANDUSEN W J, GARSKY V M, et al. Aspartyl beta-hydroxylase:in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor Ⅸ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(10):3609-3613.
[28] STENFLO J, HOLME E, LINDSTEDT S, et al. Hydroxy-lation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(2):444-447.
[29] SHIMIZU K, CHIBA S, KUMANO K, et al. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods[J]. Journal of Biological Chemistry, 1999,274(46):32961-32969.
[30] ZIMRIN A B, PEPPER M S, MCMAHON G A, et al. An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro[J]. Journal of Biological Chemistry, 1996,271(51):32499-32502.
[31] MCGINNIS K, KU G M, VANDUSEN W J, et al. Site-directed mutagenesis of residues in a conserved region of bovine aspartyl (asparaginyl) beta-hydroxylase: evidence that histidine 675 has a role in binding Fe2+[J]. Biochemistry, 1996,35(13):3957-3962.
[32] WANDS J R, LAVAISSIERE L, MORADPOUR D, et al. Immunological approach to hepatocellular carcinoma[J]. Journal of Viral Hepatitis, 1997,4:60-74.
[33] HO S P, SCULLY M S, KRAUTHAUSER C M, et al. Antisense oligonucleotides selectively regulate aspartyl beta-hydroxylase and its truncated protein isoform in vitro but distribute poorly into A549 tumors in vivo[J]. Journal of Pharmacology and Experimental Therapeutics, 2002,302(2):795-803.
[34] DINCHUK J E, HENDERSON N L, BURN T C, et al. As-partyl beta-hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin[J]. Journal of Biological Chemistry, 2000,275(50):39543-39554.
[35] TREVES S, FERIOTTO G, MOCCAGATTA L, et al. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco (endo) plasmic reti-culum membrane[J]. Journal of Biological Chemistry, 2000,275(50):39555-39568.
[36] MONKOVIC D D, VANDUSEN W J, PETROSKI C J, et al. Invertebrate aspartyl/asparaginyl beta-hydroxylase: potential modification of endogenous epidermal growth factor-like mo-dules[J]. Biochemical and Biophysical Research Communications, 1992,189(1):233-241.
[37] DINCHUK J E, FOCHT R J, KELLEY J A, et al. Absence of post-translational aspartyl beta-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia[J]. Journal of Biological Chemistry, 2002,277(15):12970-12977.
[38] CANTARINI M C, DE LA MONTE S M, PANG M Y, et al. Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms[J]. Hepatology (Baltimore, Md.), 2006,44(2):446-457.
[39] PATEL N, KHAN A O, MANSOUR A, et al. Mutations in ASPH cause facial dysmorphism, lens dislocation, anterior-segment abnormalities, and spontaneous filtering blebs, or Traboulsi syndrome[J]. American Journal of Human Gene-tics, 2014,94(5):755-759.
[40] WANG Zhiwei, LI Yiwei, KONG Dejuan, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness[J]. Current Drug Targets, 2010,11(6):745-751.
[41] WANG Kui, LIU Jian, YAN Zhenlin, et al. Overexpression of aspartyl-(asparaginyl)-beta-hydroxylase in hepatocellular carcinoma is associated with worse surgical outcome[J]. Hepatology (Baltimore, Md.), 2010,52(1):164-173.
[42] DE LA MONTE S M, TAMAKI S, CANTARINI M C, et al. Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness[J]. Journal of Hepatology, 2006,44(5):971-983.
[43] INCE N, DE LA MONTE S M, WANDS J R. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation[J]. Cancer Research, 2000,60(5):1261-1266.
[44] MAEDA T, TAGUCHI K, AISHIMA S, et al. Clinicopathological correlates of aspartyl (asparaginyl) beta-hydroxylase over-expression in cholangiocarcinoma[J]. Cancer Detection and Prevention, 2004,28(5):313-318.
[45] LAVAISSIERE L, JIA S, NISHIYAMA M, et al. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma[J]. Journal of Clinical Investigation, 1996,98(6):1313-1323.
[46] AREF A M, HOA N T, GE L, et al. HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma[J]. Onco Targets and therapy, 2014,7:1061.
[47] SHIMODA M, TOMIMARU Y, CHARPENTIER K P, et al. Tumor progression-related transmembrane protein aspartate-beta-hydroxylase is a target for immunotherapy of hepatocellular carcinoma[J]. Journal of Hepatology, 2012,56(5):1129-1135.
[48] LONGATO L, DE LA MONTE S, KUZUSHITA N, et al. Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver[J]. Hepato-logy, 2009,49(6):1935-1943.
[49] MIELE L, OSBORNE B. Arbiter of differentiation and death: Notch signaling meets apoptosis[J]. Journal of Cellular Phy-siology, 1999,181(3):393-409.
[50] MIELE L, MIAO H, NICKOLOFF B J. NOTCH signaling as a novel cancer therapeutic target[J]. Current Cancer Drug Targets, 2006,6(4):313-323.
[51] MIELE L. Notch signaling[J]. Clinical Cancer Research, 2006,12(4):1074-1079.
[52] AIHARA A, HUANG C K, OLSEN M J, et al. A cell-surface beta-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma[J]. Hepatology, 2014,60(4):1302-1313.
[53] DONG X, LIN Q, AIHARA A, et al. Aspartate β-hydroxylase expression promotes a malignant pancreatic cellular phenotype[J]. Oncotarget, 2015,6(2):1231-1248.
[54] MAEDA T, SEPE P, LAHOUSSE S, et al. Antisense oligodeoxynucleotides directed against aspartyl(asparaginyl)β-hydroxylase suppress migration of cholangiocarcinoma cells[J]. Journal of Hepatology, 2003,38(5):615-622.
[55] NODA T, SHIMODA M, ORTIZ V, et al. Immunization with aspartate-beta-hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma[J]. Hepatology, 2012,55(1):86-97.
[56] SUGIMACHI K, AISHIMA S, TAGUCHI K, et al. The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma[J]. Journal of Hepatology, 2001,35(1):74-79.
[57] HUANG C K, IWAGAMI Y, AIHARA A, et al. Anti-tumor effects of second generation beta-hydroxylase inhibitors on cholangiocarcinoma development and progression[J]. PLoS One, 2016,11(3):e0150336.
[58] STURLA L M, TONG M, HEBDA N, et al. Aspartate-β-hydroxylase (ASPH): a potential therapeutic target in human malignant gliomas[J]. Heliyon, 2016,2(12):e00203.
[59] REVSKAYA E, JIANG Z, MORGENSTERN A, et al. A radiolabeled fully human antibody to human aspartyl (asparaginyl) β-hydroxylase is a promising agent for imaging and therapy of metastatic breast cancer[J]. Cancer Biotherapy and Radiopharmaceuticals, 2017,32(2):57-65.
(本文編辑 于国艺)