APP下载

水果尺寸在线测量的智能柔性手爪设计

2020-05-27季钦杰卢伟宋爱国王鹏丁宇王玲

江苏农业学报 2020年2期

季钦杰 卢伟 宋爱国 王鹏 丁宇 王玲

摘要:针对目前水果自动化分级中手爪普遍缺少抓取力和水果尺寸信息而感知能力不足的问题,设计一种具有抓取力和水果尺寸原位动态检测功能的柔性手爪。首先,设计一种基于单气道多腔体结构的智能柔性三指手爪,其中一根手指通过悬臂梁力传感器竖直安装于手掌上用于检测力触觉,一根手指内嵌柔性弯曲度传感器用于检测手指的弯曲度,另一根手指直接固装于手掌上;设计力觉传感器和弯曲度传感器调理电路,并分别进行标定。其次,提出基于力觉传感器和弯曲度传感器融合的水果尺寸原位测量方法,推导基于手指弯曲度的水果尺寸测量公式,并通过有限元分析和试验进行验证。有限元仿真结果表明,基于手指弯曲度的水果直径测量误差小于5%;通过分别对不同直径(15 mm、25 mm、35 mm、45 mm)的3D打印圆柱和水果(杏子、冬枣、红提和龙眼等)进行抓取试验,表明力觉信号第一次突变时刻(手指刚接触到圆柱时)的手指弯曲度可用于被抓物直径的精确测量,误差小于5%。基于柔性手爪的力觉传感器和弯曲度传感器信息融合进行水果尺寸的在线快速测量是可行的。

关键词:力触觉;弯曲度;柔性手爪;原位测量;柔性机器人

中图分类号:S225;TP241文献标识码:A文章编号:1000-4440(2020)02-0455-08

Abstract:For improving the shortcomings of the existed gripper without grasping force and fruit size detection in fruit grading system, an intelligent soft gripper which could measure grasping force and fruit size on-line dynamically was developed. Firstly, an intelligent flexible three-finger gripper based on the multi-cavity structure and single airway in each finger was developed. One finger was vertically installed on the palm through a cantilever beam force sensor to detect the tactile sense, one finger was embedded with a flexible curvature sensor to detect the curvature of the finger, and the other finger was installed on the palm directly. Moreover, the conditioning circuits of force sensor and bending sensor were developed and calibrated, respectively. Secondly, an in-situ measurement method of fruit size based on the fusion of the force sensor and curvature sensor was proposed. In addition, the fruit size measurement formula based on finger curvature was derived and verified by the finite element analysis experiment and fruit picking experiment. The simulation results of finite element showed that the fruit diameter detection error based on finger curvature was less than 5%. The grasping experiments on 3D-printed cylinders (15 mm, 25 mm, 35 mm, 45 mm) and different fruits(apricot, jujube, grape and longan, etc.) indicated that the finger curvature at the moment of the first mutation of force signal (the fingers just touched the object) could be used to accurately measure the diameter of the object with an error of less than 5%. Its feasible to quickly measure the fruit size online based on the fusion information of force sensor and bending sensor.

Key words:haptic;curvature;soft gripper;in-situ measurement;soft robot

水果含有豐富的维生素、膳食纤维等营养物质,是健康饮食必不可少的食物[1],中国的水果产量连续蝉联世界首位,但目前水果采摘仍然完全依靠人工,是水果生产中最耗时、费力的环节[2]。为实现水果采摘机械化,国内外学者做了大量研究,开发出如柑橘[3]、樱桃[4]、番茄[5]、苹果[6]等采摘机器人,但少有投入实际使用。主要问题之一是缺少适用于农业采摘的末端执行器,吸盘等专用执行器通用性差、灵活性低、抓取力小,而刚性的多指灵巧手则容易对质地柔软的果蔬造成损伤[7],此外,其昂贵的价格也阻碍了其在农业中的应用。

相比刚性机械手,欠驱动的柔性手爪在水果采摘方面具有天然优势,驱动简单[8],有无限自由度[9-10],可根据水果形状贴合变形[11-12],自适应抓取[13-14]。如Toshiba灵巧手[15]、基于FPA的多指灵巧手[16]、仿生搬运助手[17]、气动网络柔性手[18-20]、纤维增强结构柔性手[21-23]等。有些柔性手被应用于柑橘[24]、草莓[25]等农作物采摘。这些柔性手爪是通过特殊的结构实现抓取多样性,但不能感知抓取状态信息,因此缺少准确的力度或位置控制。

为实现柔性手爪感知信息,有学者将导电材料封入硅胶以实现电信号转换,如将碳纳米管复合材料[26]、eGaIn液态金属[27]注入柔性手爪底面形成特殊图案[28-29]以检测柔性手爪弯曲时的应力,但这种方法检测信息单一而且实现过程相当繁琐,需要带有凹槽的模具,然后从模具的一侧注入材料而另一侧抽真空。为降低柔性手爪的制作成本,提高信息感知多样化,将现有的传感器直接嵌入手爪内部,如嵌入柔性传感器利用先验知识检测碰触[30],基于触觉反馈重建灯泡三维模型[31],以及嵌装弯曲度和触觉传感器提高抓取的可靠性[32],利用TOF距离传感器实现变速抓取[33],将嵌入霍尔传感器的柔性驱动器放置于特定磁场中以测量手指曲率[34] ,但多数传感器为刚性结构,直接影响柔性手爪动作。

针对目前水果采摘和分拣中柔性手爪普遍缺少力度、位置信息感知的不足,本研究拟设计一种具有力触觉和手指弯曲度信息动态感知的柔性手爪,可用于水果采摘机器人和水果分级自动化流水线。

1试验设计与测量方法

1.1柔性手爪设计

1.1.1总体结构设计柔性手爪如图1所示,具有3根柔性手指,柔性手指一面为壁厚较薄的波纹管状指节,另一面为较厚的底板,充气时波纹管状指节形变远大于底板从而使得柔性手指向底板侧弯曲。其中第一根手指通过竖直安装的悬臂梁式力觉传感器固装于手掌上,第二根柔性手指内嵌入弯曲度传感器且直接固装到手掌上,第3根手指直接固装到手掌上,且3根手指圆周等距安装。3根手指分别通过气管连接到四通快接头的其中一个接口,剩余一个接口作為总接口连接到外部驱动气源。

1.1.2柔性手爪传感设计柔性手指是利用3D打印的模具由硅胶(Smooth-On,Inc)浇注而成,制作一根嵌入弯曲度传感器的柔性手指和2根不嵌入传感器的柔性手指,3根柔性手指通过连接件固装于手掌上组成三指柔性手爪。

采用的弯曲度传感器为Flex2.2,该传感器自然状态下电阻约为190 KΩ,当向金属侧弯曲时电阻值随弯曲程度增大而大幅度减小,最小值约为40 KΩ,灵敏度高;当向另一侧弯曲时电阻值小幅度增大,最大值约为220 KΩ,灵敏度较低,因此将弯曲度传感器金属侧面向手指底板外部,非金属侧面向手爪内部腔体嵌入手指底板内,这样可准确检测柔性手爪抓取动作时的弯曲度。该弯曲度传感器柔软可弯曲,对柔性手爪的动作影响甚微。

柔性手爪在气压驱动下自身形变而产生抓取力,能自适应贴合物体表面,因此柔性手爪在抓取物体时的受力点、受力方向、接触面积等因素很大程度上由被抓物体的几何形状所决定,这直接导致柔性手爪的抓力难以准确测量。目前常用的力传感器有薄膜式和应变片式2种,薄膜式力传感器要求测量过程中薄膜不能弯曲、受力方向垂直于薄膜表面,否则会产生较大误差甚至无法检测力的大小,这不适用于产生大形变、抓力方向随被抓物体形状变化的柔性手爪。本研究选用的应变片式力传感器为悬臂梁结构,采用竖直安装的方式通过检测水平力来估测手爪抓力,测量结果基本不受传感器和手爪自身重力的影响。

1.2传感器调理电路设计及标定

1.2.1弯曲度传感器

1.2.1.1弯曲度传感器调理电路弯曲度传感器R4与电阻R1、电阻R2、电位器R3组成单臂桥电路,调节电位器R3使得电桥初始输出为零,随后经过两级放大电路和T型滤波电路将弯曲度传感器的阻值变化信号放大、滤波后输出,如图2所示。

1.2.1.2弯曲度传感器标定如图3所示,柔性手指竖直固定,定义指尖和指根的连线与竖直方向的夹角(α)为手指的弯曲度。

如图11所示,测量值(φc)与长轴、短轴接近,误差小于5%。其中误差的一部分原因是由于水果为椭球体,3根柔性手指不一定能同时接触到水果,即当力触觉指示手爪已经接触到物体时,感知弯曲度信号的柔性手指可能还未接触到水果。此外,进一步缩短气压增进的步长也可以减小误差。

3结论

为实现在柔性手爪抓取水果的过程中直接测量水果直径,本研究设计一种可感知力触觉、弯曲度的柔性手爪,并假设柔性手爪以圆弧状弯曲、弯曲过程中底板长度不变从而推算出水果直径测量公式。由于柔性手爪为超弹性体,运动过程复杂,因此通过有限元仿真分析验证了假设的合理性。对标准直径的圆柱和不同直径的水果进行抓取试验,结果表明,测量误差小于5%,可满足娇嫩易损的类球形水果直径的在线、快速、无损检测,具有较好的应用前景。

参考文献:

[1]徐丽明,张铁中. 果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-42.

[2]王丽丽,郭艳玲,王迪,等. 果蔬采摘机器人研究综述[J].林业机械与木工设备,2009,37(1):10-11,14.

[3]卢伟,宋爱国,蔡健荣,等. 柑橘采摘机器人结构设计及运动学算法[J].东南大学学报(自然科学版),2011,41(1):95-100.

[4]TANIGAKI K, FUJIURA T, AKASE A, et al. Cherry-harvesting robot[J]. Computers and Electronics in Agriculture, 2008, 63(1): 65-72.

[5]KONDO N, YATA K, IIDA M, et al.  Development of an end-effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture, Environment and Food, 2010, 3(1): 20-24.

[6]BAETEN J, DONNé K, BOEDRIJ S, et al. Autonomous fruit picking machine: A robotic apple harvester[C]//Alexander Zelmsky. Field and service robotics. Berlin: Springer, 2008: 531-539.

[7]張立彬,杨庆华,胥芳,等. 机器人多指灵巧手及其驱动系统研究的现状[J]. 农业工程学报,2004, 20(3):271-275.

[8]BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814.

[9]TRIVEDI D, RAHN C D, KIER W M, et al. Soft robotics: Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5(3): 99-117.

[10]SAUNDERS F, GOLDEN E, WHITE R D, et al. Experimental verification of soft-robot gaits evolved using a lumped dynamic model[J]. Robotica, 2011, 29(6): 823-830.

[11]ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895.

[12]LUO M, AGHELI M, ONAL C D. Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake[J]. Soft Robotics, 2014, 1(2): 136-146.

[13]DOLLAR A M, HOWE R D. The highly adaptive SDM hand: design and performance evaluation[J]. The International Journal of Robotics Research, 2010, 29(5): 585-597.

[14]DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35(1/3): 161-185.

[15]SUZUMORI K, IIKURA S, TANAKA H. Applying a flexible microactuator to robotic mechanisms[J]. IEEE Control Systems Magazine, 1992, 12(1): 21-27.

[16]王志恒. 基于FPA的新型气动机器人多指灵巧手研究[D].杭州:浙江工业大学,2011.

[17]ROLF M, STEIL J J. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant[C]//Institute of Electrical and Electronics Engineers. 2012 IEEE/RSJ international conference on intelligent robots and systems. New York: Institute of Electrical and Electronics Engineers, 2012: 3440-3446.

[18]POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]//Institute of Electrical and Electronics Engineers. 2013 IEEE/RSJ international conference on intelligent robots and systems. New York: Institute of Electrical and Electronics Engineers, 2013: 1512-1517.

[19]HAO Y, GONG Z, XIE Z, et al. Universal soft pneumatic robotic gripper with variable effective length[C]//Institute of Electrical and Electronics Engineers. 2016 35th chinese control conference (CCC). New York: Institute of Electrical and Electronics Engineers, 2016: 6109-6114.

[20]MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170.

[21]GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.

[22]GALLOWAY K C, POLYGERINOS P, WALSH C J, et al. Mechanically programmable bend radius for fiber-reinforced soft actuators[C]//Institute of Electrical and Electronics Engineers. 2013 16th international conference on advanced robotics (ICAR). New York: Institute of Electrical and Electronics Engineers, 2013: 1-6.

[23]DEIMEL R, BROCK O. A compliant hand based on a novel pneumatic actuator[C]//Institute of Electrical and Electronics Engineers. 2013 IEEE International Conference on Robotics and Automation. New York: Institute of Electrical and Electronics Engineers, 2013: 2047-2053.

[24]MUSCATO G, PRESTIFILIPPO M, ABBATE N, et al. A prototype of an orange picking robot: past history, the new robot and experimental results[J]. Industrial Robot: An International Journal, 2005, 32(2): 128-138.

[25]彭艷,刘勇敢,杨扬,等. 软体机械手爪在果蔬采摘中的应用研究进展[J].农业工程学报,2018,34(9):11-20.

[26]ZHU M, WANG Z, HIRAI S, et al. Design and fabrication of a soft-bodied gripper with integrated curvature sensors[C]//Institute of Electrical and Electronics Engineers. 2017 24th international conference on mechatronics and machine vision in practice (M2VIP). New York: Institute of Electrical and Electronics Engineers, 2017: 1-6.

[27]PARK Y L, CHEN B R, WOOD R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors[J]. IEEE Sensors Journal, 2012, 12(8): 2711-2718.

[28]BILODEAU R A, WHITE E L, KRAMER R K. Monolithic fabrication of sensors and actuators in a soft robotic gripper[C]//Institute of Electrical and Electronics Engineers. 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2015: 2324-2329.

[29]MORROW J, SHIN H S, PHILLIPS-GRAFFLIN C, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails[C]//Institute of Electrical and Electronics Engineers. 2016 IEEE international conference on robotics and automation (ICRA). New York: Institute of Electrical and Electronics Engineers, 2016: 5024-5031.

[30]ELGENEIDY K, NEUMANN G, PEARSON S, et al. Contact detection and size estimation using a modular soft gripper with embedded flex sensors[C]//Institute of Electrical and Electronics Engineers. 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2018: 498-503.

[31]SHIH B, DROTMAN D, CHRISTIANSON C, et al. Custom soft robotic gripper sensor skins for haptic object visualization[C]//Institute of Electrical and Electronics Engineers. 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2017: 494-501.

[32]PARK W, SEO S, BAE J. Development of a sensorized hybrid gripper to evaluate grasping quality[C]//Institute of Electrical and Electronics Engineers. 2019 2nd IEEE international conference on soft robotics (RoboSoft). New York: Institute of Electrical and Electronics Engineers, 2019: 149-154.

[33]LI Y, CHEN Y, LI Y. Pre-charged pneumatic soft gripper with closed-loop control[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1402-1408.

[34]OZEL S, KESKIN N A, KHEA D, et al. A precise embedded curvature sensor module for soft-bodied robots[J]. Sensors and Actuators A: Physical, 2015, 236: 349-356.

[35]YAP H K, NG H Y, YEOW C H. High-force soft printable pneumatics for soft robotic applications[J]. Soft Robotics, 2016, 3(3): 144-158.

(責任编辑:陈海霞)