APP下载

西洋参治疗缺血性心脏病作用研究进展

2020-05-25刘岩松王迪郝珍珠郭慧文朴星虎方美善王冰梅

中国医药导报 2020年10期
关键词:西洋参

刘岩松 王迪 郝珍珠 郭慧文 朴星虎 方美善 王冰梅

[摘要] 缺血性心脏病是全世界发病率与死亡率最高的疾病,严重威胁人们的生命与健康。西洋参在治疗心血管疾病中已经有了较为广泛的应用,具有抗心肌细胞凋亡、心律失常、改善梗死后心室重构、增强抗氧化酶活性等多种作用。关于西洋参主要有效成分对缺血性心脏病的保护作用研究较多,但作用机制尚不明确。本文通过综述近年来西洋参主要活性成分治疗缺血性心脏病的作用机制,从抑制心肌细胞凋亡、改善血液循环、抑制氧化应激等多种角度进行论述,为西洋参治疗缺血性心脏病提供依据,同时为进一步多靶点、多层次地开发应用西洋参及组方提供参考价值。

[关键词] 西洋参;缺血性心脏病;西洋参皂苷

[中图分类号] R285          [文献标识码] A          [文章编号] 1673-7210(2020)04(a)-0042-04

Research progress of Panax quinquefolium L. therapy for ischemic heart disease

LIU Yansong1   WANG Di1   HAO Zhenzhu1   GUO Huiwen1   PIAO Xinghu1   FANG Meishan2   WANG Bingmei1

1.School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Jilin Province, Changchun   130117, China; 2.Department of Traditional Chinese Medicine, China-Japan Friendship Hospital,Jilin University,Jilin Province, Changchun   130051, China

[Abstract] Ischemic heart disease is the disease with the highest morbidity and death rate in the world, which seriously threatens people′s life and health. Panax quinquefolium L. has been widely used in the treatment of cardiovascular diseases. It has many effects such as anti-apoptosis of myocardial cells, arrhythmia, improvement of ventricular remodeling after infarction, and enhancement of antioxidant enzyme activity. There are many studies on the protective effect of main active components of Panax quinquefolium L. on ischemic heart disease, but the mechanism is still unclear. This article reviews the mechanism of the main active ingredients of Panax quinquefolium L. in the treatment of ischemic heart disease in recent years, and expounds from a variety of perspectives, such as inhibiting myocardial cell apoptosis, improving blood circulation, and inhibiting oxidative stress. Based on this, it also provides reference value for further multi-target, multi-level development and application of Panax quinquefolium L. and the organization.

[Key words] Panax quinquefolium L.; Ischemic heart disease; American ginseng saponins

缺血性心臟病,又被称为冠心病,是指因冠状动脉管腔狭窄或闭塞,造成心肌供血不足、心肌缺氧及代谢障碍而导致的心脏疾病。据《柳叶刀》杂志研究报告显示,从1990~2017年,心血管疾病已成为我国疾病负担的主要原因之一[1-2]。每年约有350万人死于心血管疾病,其中缺血性心脏病患者占比超过30%,死亡率增加20.6%。引起缺血性心脏病的原因主要与高血压、糖尿病、高脂血症等多种因素有关[3]。目前临床干预缺血性心脏病的主要手段为常规药物治疗,血运重建治疗(冠状动脉内支架术、冠脉搭桥术),血管新生治疗(干细胞、生长因子、基因治疗)和心脏移植等[4]。然而,即使接受药物或血运重建治疗的患者仍会出现反复心绞痛或心力衰竭等症状,而血管新生和心脏移植等疗法因技术难度大、术后并发症发生率高且手术费用高昂等原因限制临床上推广应用[5]。

目前,中药在防治心血管疾病方面效果明显,其中西洋参在心血管疾病的治疗中已经有了较为广泛的应用,关于其单体成分、组方及复方的研究亦逐步深入。临床上常用于治疗冠心病、心律失常、心力衰竭等心血管疾病[6-9]。本文对西洋参治疗缺血性心脏病的研究进行综述,为进一步深入研究缺血性心脏病及其药物开发提供依据。

1 西洋参的成分与药理作用

西洋参为五加科人参属多年生宿根草本植物,其味甘微苦,性凉,入心、肺、肾三经,能补助气分,兼能补益血分。张锡纯在《医学衷中参西录》中言其“性凉而补,凡欲用人参而不受人参之温补者,皆可以此代之”。西洋参的主要成分为皂苷类、氨基酸类、糖类、挥发油类、无机元素类和脂肪酸类等[10-11],皂苷类是其最主要的成分。按照苷元的结构可分为齐墩果酸型,原人参二醇型和原人参三醇型[12];原人参二醇类主要有Rb1、Rb2、Rb3、Rc、Rd、Rg3和Rh2;原人参三醇类主要有Re、Rf、Rg1、Rg2、Rh1、F1、F3和三七皂苷R1;齐墩果酸类为Ro。其中Rb1、Re、Rd、Rg1和Rb3被认为是6种主要皂苷,占西洋参中总人参皂苷含量的70%以上[13-14]。现代医学和药理学研究提示,西洋参皂苷对改善神经系统、心血管系统和免疫系统等系统疾病具有显著作用[15-17],尤其在心血管系统疾病方面,具有抗心肌细胞凋亡、心律失常、改善梗死后心室重构、增强抗氧化酶活性等作用[18]。

2 西洋参皂苷治疗缺血性心脏病的作用机制

2.1 抑制心肌细胞凋亡维持线粒体膜电位稳定

细胞凋亡是一种由基因控制的,依赖于半胱氨酸蛋白酶(caspase)调节的程序性死亡[19]。诸多促细胞凋亡通路及蛋白都参与其中,如C/EBP同源蛋白(CHOP)与FOXO3a/Bim信号通路都在细胞凋亡过程中起重要作用[20-22]。相关学者[23-24]通过缺血/再灌注(IR)、心肌梗死(AMI)等病理实验发现,西洋参茎叶总皂苷(PQS)可降低葡萄糖调节蛋白78(GRP78)、钙网蛋白(CRT)、CHOP、caspase-12及促凋亡蛋白Bax的表达,提高抗凋亡蛋白Bcl-2表达,抑制内质网凋亡通路激活的细胞凋亡,减轻心肌细胞损伤。李冬等[25]通过TUNEL法、Western blots法观测到PQS可降低胞浆cytochrome C及心肌cleaved caspase-3蛋白表达量,维持再灌注期线粒体膜电位(ΔΨm)稳定,抑制线粒体凋亡通路的激活。PQS还能通过基因转录和蛋白质翻译水平调节FOXO3a/Bim信号通路,对心肌细胞的凋亡起到保护作用[26]。

2.2 抑制氧化应激消除炎性反应

炎症和氧化应激反应是心血管疾病发生发展过程中的重要病理机制[27-28]。在正常生理状态下,机体组织内氧自由基的产生与清除保持着平衡,而当机体受到病理性刺激时将产生氧化应激反应,抗氧化防御系统受损,并过度产生大量自由基,使有害物质堆积并对组织造成损伤,恶化心肌缺血、细胞凋亡和组织坏死程度。丙二醛(MDA)为脂质过氧化反应过程中的有毒产物,其表达与心肌损伤程度成正比[29]。炎性反应因子如肿瘤坏死因子-α(TNF-α)和白细胞介素6(IL-6)是机体受到刺激后发挥关键始动作用、激活细胞因子级联反应的重要物质,可促进中性粒细胞及黏附分子的激活与表达,反馈性地生成大量的氧自由基,加重机体损伤程度[30],其浓度释放和心肌损伤密切相关。超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)是机体清除活性氧的主要酶类,其活性强度可直接反映出机体的抗氧化能力[31]。

已有研究[32-33]显示,PQS既可通过显著降低心肌梗死大鼠肌酸磷酸激酶(CPK)、乳酸脱氢酶(LDH)活性及MDA,TNF-α和IL-6等炎性因子含量,增强抗氧化酶如SOD、GSH-Px活性,增加抗氧化能力,减少炎性反应,还可改善心肌缺血引起的心肌组织炎症细胞浸润、心肌纤维变形等组织损伤,逆转心肌缺血及非缺血区高敏C反应蛋白(hs-CRP)、IL-6阳性表达,调节内皮素1(ET-1)与一氧化氮(NO)的释放,保护血管内皮和改善能量代谢障碍。西洋参茎叶三醇组皂苷(PQTS)是西洋参皂苷中可有效清除自由基从而达到抗氧化作用的有效成分[34]。研究显示[35-36]PQTS可降低急性心肌梗死大鼠天门冬氨酸氨基转换酶(AST)、游离脂肪酸(FFA)等心肌坏死活性产物活性,提高SOD等抗氧化酶活性,减少氧自由基对心肌的损伤,还可降低心肌缺血大鼠血浆血栓素A2(TXA2)水平,提高血浆前列环素(PGI2)水平,纠正血管活性物质平衡失调状态。

2.3 改善血液循环,促进血管新生

持续的心肌缺血不仅会导致心肌细胞的坏死和凋亡,使心脏收缩与舒张功能受损,血流动力学发生障碍,还会造成血管内皮细胞损伤和血液黏度提高,导致心肌受到不可逆损伤[37]。而心肌缺血和梗死区血管的快速生长或残留血管重新开放对缺血性心脏病的预后具有重要作用[38]。已有文獻显示[39],西洋参总皂苷(AGS)可显著降低心肌缺血再灌注损伤大鼠血小板黏附、聚集率,下调全血黏度和血浆黏度,改善血液循环。而在机制研究方面,有研究[40]通过结扎大鼠左冠状动脉前降支建立心肌梗死模型,对PQS的保护心肌损伤作用进行判定。结果显示,经PQS干预后,大鼠心肌梗死区内平均微血管密度(MMVD)显著增大,且内皮细胞生长因子(VEGF)、碱性成纤维细胞生长因子(bFGF)等促血管新生调控因子水平得到了显著提升,提示PQS可促进梗死及缺血区血管新生。血浆脑钠肽(BNP)为心衰的保护性因子,具有减轻心脏的前后负荷的作用,其浓度与心功能衰竭严重程度呈正比[41]。研究显示[42],PQS可改善心室收缩及舒张功能,降低血浆BNP水平,减轻心肌梗死后心功能障碍。

4 讨论

目前为止,药物治疗仍是治疗缺血性心脏病的传统武器,从传统中药的角度进行深入研究,为研究者开发、研制更理想有效的心血管药物提供了新途径。综上所述,西洋参的有效成分PQS、AGS、PQTS能够通过抑制心肌细胞凋亡、氧化应激损伤、炎性反应、改善血液循环等多方面,起到抵抗心肌缺血、改善心功能的作用,其中PQS是目前研究最多的皂苷成分,其介导的治疗心血管疾病机制已有多种解释,而其他活性成分如AGS、PQTS、西洋参叶二醇组皂苷发挥作用的机制及途径还有待进一步探索。在这一基础上,可以西洋参皂苷单体药效研究为基础,尝试开发以西洋参为基础的中药组方或复方,并把目光放置至临床多中心随机对照临床试验研究,以期为西洋参治疗心血管相关疾病发挥更大的作用。

[參考文献]

[1]  Zhou M,Wang H,Zeng X,et al. Mortality,Morbidity,and Risk Factors in China and Its Provinces,1990-2017:a Systematic Analysis for the Global Burden of Disease Study 2017 [J]. Lancet,2019,394(10204):1145-1158.

[2]  Yang G,Wang Y,Zeng Y,et al. Rapid health transition in China,1990-2010:findings from the Global Burden of Disease Study 2010 [J]. The Lancet,2013,381(9882):1987-2015.

[3]  Ahmadi A,Stone GW,Leipsic J,et al. Prognostic Determinants of Coronary Atherosclerosis in Stable Ischemic Heart Disease [J]. Circ Res,2016,119(2):317-329.

[4]  Levine GN,Bates ER,Bittl JA,et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease [J]. J Am Coll Cardiol,2016,82(4):E266-E355.

[5]  Potz BA,Parulkar AB,Abid RM,et al. Novel molecular targets for coronary angiogenesis and ischemic heart disease [J]. Coron Artery Dis,2017,28(7):605-613.

[6]  Gan XT,Karmazyn M. Cardioprotection by ginseng:experimental and clinical evidence and underlying mechanisms [J].Can J Physiol Pharmacol,2018,96(9):859-868.

[7]  Wang CZ,Mehendale SR,Yuan CS. Commonly Used Antioxidant Botanicals:Active Constituents and Their Potential Role in Cardiovascular Illness [J] Am J Chin Med,2007,35(4):543-558.

[8]  Wang C,Li YZ,Wang XR,et al. Panax quinquefolium Saponins Reduce Myocardial Hypoxia-Reoxygenation Injury by Inhibiting Excessive Endoplasmic Reticulum Stres [J]. Shock,2012,37(2):228-233.

[9]  Duan L,Xiong X,Hu J,et al. Panax notoginseng Saponins for Treating Coronary Artery Disease:A Functional and Mechanistic Overview [J]. Front Pharmacol,2017,8(10):702.

[10]  Ahuja A,Kim JH,Kim JH,et al. Functional role of ginseng-derived compounds in cancer [J]. J Ginseng Res,2018,42(3):248-254.

[11]  Kochan E,Szymczyk P,Ku■ma ?覵,et al. Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors [J]. Molecules,2017, 22(6):880.

[12]  Feng R,Liu J,Wang Z,et al. The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes [J]. Biochem Biophys Res Commun,2017,494(3/4):556-568.

[13]  Yang WZ,Hu Y,Wu WY,et al. Saponins in the genus Panax L.(Araliaceae):A systematic review of their chemical diversity [J]. Phytochemistry,2014,10(106):7-24.

[14]  Shi ZY,Zeng JZ,Wong AST. Chemical Structures and Pharmacological Profiles of Ginseng Saponins [J]. Mole-cules,2019,24(13).pii:E2443.

[15]  Rasheed N,Tyagi E,Ahmad A,et al. Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium [J]. J Ethnopharmacol,2008,117(2):257-262.

[16]  Xu H,Yu X,Qu S,et al. In vive and in vitro cardioprotective effects of panax quinquefolium 20(S)-protopanaxadiol saponins (PQDS),isolated from panax quinquefolium [J]. Pharmazie,2013,68(4):287-292.

[17]  Szczuka D,Nowak A,Zak?覥os-Szyda Ma,et al. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties [J]. Nutrients,2019,11(5).pii:E1041.

[18]  Luo H,Zhu D,Wang Y,et al. Study on the Structure of Ginseng Glycopeptides with Anti-Inflammatory and Analgesic Activity [J]. Molecules,2018,23(6):1325.

[19]  Tang D,Kang R,Berghe TV,et al. The molecular machinery of regulated cell death [J]. Cell Res,2019,29:347-364.

[20]  Bhat TA,Chaudhary AK,Kumar S,et al. Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer [J]. Biochimica Biophys Acta Rev Cancer,2017,1867(1):58-66.

[21]  Li Y,Ren M,Wang X,et al. Glutaredoxin 1 mediates the protective effect of steady laminar flow on endothelial cells against oxidative stress-induced apoptosis via inhibiting Bim [J]. Sci Rep,2017,7(1):15539.

[22]  Liu Z,Shi Z,Lin J,et al. Piperlongumine-induced nuclear translocation of the FOXO3A transcription factor triggers BIM-mediated apoptosis in cancer cells [J]. Biochem Pharmacol,2019,163(5):101-110.

[23]  王琛,劉蜜,孙胜,等.西洋参茎叶总皂苷通过抑制过度内质网应激减轻大鼠心肌缺血/再灌注损伤[J].中国病理生理杂志,2013,29(1):20-27.

[24]  刘蜜,王琛,王晓礽,等.西洋参茎叶总皂苷通过抑制内质网应激相关细胞凋亡减轻大鼠急性心肌梗死后心室重构[J].中国病理生理杂志,2013,29(5):796-803.

[25]  李冬,刘蜜,陶天琪,等.西洋参茎叶总皂苷对缺血/再灌注大鼠心肌线粒体膜电位及细胞凋亡的影响[J].中国病理生理杂志,2014,30(9):1559-1566.

[26]  吴茂林,翟昌林,张亚梅,等.西洋参茎叶总皂苷对大鼠心肌缺血再灌注损伤后FOXO3a/Bim信号通路的影响[J].中华中医药学刊,2014,32(11):2763-2766.

[27]  Hammadah M,Alkhoder A,Al Mheid I,et al. Hemodynamic,catecholamine,vasomotor and vascular responses:Determinants of myocardial ischemia during mental stress [J]. Int J Cardiol,2017,243(9):47-53.

[28]  Yao BJ,He XQ,Lin YH,et al. Cardioprotective effects of anisodamine against myocardial ischemia/reperfusion injury through the inhibition of oxidative stress,inflammation and apoptosis [J]. Mol Med Rep,2018,17(1):1253-1260.

[29]  Guo Y,Li Z,Shi C,et al. Trichostatin A attenuates oxidative stress-mediated myocardial injury through the FoxO3a signaling pathway [J]. Int J Mol Med,2017,40(4):999-1008.

[30]  Suri F,Yazdani S,Elahi E. LTBP2,knockdown and oxidative stress affect glaucoma features including TGFβ pathways,ECM genes expression and apoptosis in trabecular meshwork cells [J]. Gene,2018,673(10):70-81.

[31]  Guan T,Song J,Wang Y,et al. Expression and characterization of recombinant bifunctional enzymes with glutathione peroxidase and superoxide dismutase activities [J]. Free Radic Biol Med,2017,110(9):188-195.

[32]  孙莉,荀平.西洋参茎叶皂苷抗大鼠心肌缺血再灌注损伤的作用及机制[J].中国实验方剂学杂志,2014,20(24):176-179.

[33]  郭春雨,刘倩,石颖,等.西洋参茎叶总皂苷对心肌梗死大鼠非梗死区组织的保护作用[J].中华老年心脑血管病杂志,2012,14(7):748-751.

[34]  Xie JJ,Chen J,Guo SK,et al. Panax quinquefolium saponin inhibits endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and attenuates the progression of osteoarthritis in rat [J]. Biomed Pharmacother,2018,97(1):886-894.

[35]  田剛,睢大筼,司欣,等.西洋参茎叶三醇组皂苷对急性心肌梗死大鼠的保护作用[J].吉林大学学报:医学版,2012,38(4):653-657.

[36]  李智,于晓风,曲绍春,等.西洋参叶20s-原人参三醇组皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].吉林大学学报:医学版,2009,35(1):51-54.

[37]  Costa MA,Paiva AE,Andreotti JP,et al. Pericytes constrict blood vessels after myocardial ischemia [J]. J Mol Cell Cardiol,2018,116(3):1-4.

[38]  Long TY,Jing R,Kuang F,et al. CIRBP protects H9C2 cells against myocardial ischemia through inhibition of NF-κB pathway [J]. Braz J Med Biol Res,2017,50(40):e5861.

[39]  王蕾,于晓风,王耀振,等.西洋参总皂苷对心肌缺血再灌注损伤大鼠血液流变学的影响[J].人参研究,2017, 29(2):22-24.

[40]  王承龙,史大卓,殷惠军,等.西洋参茎叶总皂苷对急性心肌梗死大鼠心肌VEGF、bFGF表达及血管新生的影响[J].中国中西医结合杂志,2007(4):331-334.

[41]  Wong PC,Guo J,Zhang A. The renal and cardiovascular effects of natriuretic peptides [J]. Adv Physiol Educ,2017, 41(2):179-185.

[42]  刘蜜,王琛,刘秀华,等.西洋参茎叶总皂苷对心肌梗死后心力衰竭大鼠血流动力学及血浆脑钠肽的影响[J].辽宁中医杂志,2013,40(9):1935-1937

(收稿日期:2019-11-08  本文编辑:刘永巧)

猜你喜欢

西洋参
文登西洋参“红”了!
西洋参的几种简单吃法
“参”得人心的文登西洋参
脾胃虚寒者 不宜服用西洋参
益气养阴西洋参
天热用西洋参“灭火”
西洋参的前世 今生
西洋参防护X线辐射对小鼠肺的过氧化损伤
西洋参防护放疗旁效应损伤的中医学机制
西洋参的鉴别方法