泡沫驱微观驱油机理及驱油效果
2020-05-12邢晓璇
邢晓璇
(中国石化胜利油田分公司勘探开发研究院,山东东营 257015)
泡沫体系是气体(氮气、空气、天然气或烟道气等)分散在液体中,以气体为分散相,液体为分散介质的热力学不稳定分散体系[1-3]。泡沫体系的黏度主要由液相的内摩擦作用和气泡的挤压、碰撞作用决定,其视黏度较高,一般认为是宾汉流体,具有剪切变稀的特性。较高的视黏度决定了泡沫体系具有流度调整和封堵作用,通过调剖和液流转向作用,扩大波及系数,提高驱油效率。同时,泡沫体系中的起泡剂溶液具有表面活性剂降低界面张力、乳化和改变润湿性等作用机理,可提高洗油效率和驱油效率,故泡沫体系具有调剖和驱油双重作用[4-6]。
中外关于泡沫的稳定性研究,取得了“堵大不堵小”、“堵水不堵油”等机理共识[7-10]。泡沫调剖和驱油作用室内研究[11-15]中尚未见到采用非均质条带微观模型进行泡沫微观驱油特征的研究。为此,笔者首次采用自行设计的渗透率级差为1∶3的非均质微观模型对泡沫驱油全过程的渗流特征、驱油机理和驱油效果进行仿真可视化研究,然后采用相同渗透率级差的并联填砂管模型,进一步验证泡沫驱的渗流特征和驱油机理,并对驱油效果进行定量分析。
1 实验器材与方法
1.1 实验材料
实验用油为孤东中二区2-29 斜535 地面脱气原油,50 ℃下黏度为1 638 mPa·s,密度为0.941 3 g/cm3。实验用水为模拟地层水,其矿化度为5 750 mg/L。实验用气为氮气,纯度为99.9%。泡沫剂为自行研制的烷基苯磺酸盐型耐高温泡沫剂,150 ℃老化72 h 后,起泡体积为865 mL,析液半衰期为314 s。
实验模型包括非均质微观模型和并联填砂管模型。非均质微观模型以渗透率分别为512 和1 517 mD 的岩心制成的铸体薄片为模板,采用氢氟酸刻蚀的方法制成。并联填砂管模型为采用石英砂手工填制而成的渗透率分别为1 610 和4 916 mD的填砂管。
1.2 实验设备及步骤
非均质微观模型驱替实验 高温微观驱替物理模拟实验装置由注入系统、数字摄像系统、微观模型夹持器系统(包括高温高压可视釜及内部的加热控温装置)等组成(图1)。实验步骤为:①将非均质微观模型抽真空。②饱和模拟地层水。③饱和油。④水驱油至模型不出油为止。⑤注入泡沫。⑥后续水驱至含水率为98%以上,后续水驱用水经过亚甲基蓝染为蓝色。实验条件为回压设置为3 MPa,气液比为1∶2,泡沫剂质量分数为0.4%,实验温度为150 ℃。
图1 高温微观驱替物理模拟实验装置Fig.1 Experimental apparatus of physical simulation on high temperature microscopic displacement
并联填砂管模型泡沫驱实验 实验装置由模型系统、动力系统、温度控制系统、压力控制系统、回压控制系统和数据采集系统6个模块组成(图2)。为了进行对比研究,并联填砂管模型泡沫驱实验步骤和实验条件与非均质微观模型驱替实验保持一致。
2 实验结果与分析
2.1 微观渗流特征及驱油机理
通过非均质微观模型驱替实验,将泡沫驱分为混气水驱油、表面活性剂驱油和泡沫驱油3 个显著渗流区(图3)。不同渗流区形成的原因不同且驱油机理也不同。
混气水驱油渗流区 该区形成的主要原因为:水驱后注入的泡沫优先进入水驱时形成的水流优势通道,遇水后泡沫剂溶液被稀释,接触到残余油的泡沫会由于液膜上部分表面活性剂进入油相而导致泡沫液膜破裂。同时,在泡沫运移过程中,泡沫剂在多孔介质表面的吸附加剧了泡沫的破裂。泡沫破裂后,由于气体的密度和黏度小,渗流速度快,在模型中主要沿着水驱时优势通道窜流,在泡沫驱替前沿形成了混气水驱油渗流区。混气水驱油渗流区的驱油机理为:由于该区不存在完整的气泡,气体聚集成大的气柱或气团居于大孔隙的中央,气柱或气团沿着水驱时形成的水流优势通道运移,被气体挤向孔隙边缘或驱出,最终气体很快突破到模型出口。
表面活性剂驱油渗流区 该区主要形成原因为:气泡进入模型发生破裂,氮气与泡沫剂溶液分离,由于泡沫剂溶液渗流速度滞后于气体,从而形成了表面活性剂驱油渗流区。表面活性剂驱油渗流区的驱油机理为:泡沫剂溶液通过降低界面张力和乳化剥离,形成了大量的水包油乳状液;水为外相,降低了油相的渗流阻力,乳化携带和乳化捕集作用能够提高洗油效率并增大波及区域。
泡沫驱油渗流区 该区主要形成原因为:经过混气水驱油和表面活性剂驱油后,剩余油大幅减少,后续泡沫能够稳定存在,形成了泡沫驱油渗流区。泡沫驱油渗流区的驱油机理为:该区泡沫优先进入到大孔道中,尤其在大孔隙的中央驻留封堵,小气泡能够进入到大气泡无法进入的小孔隙,起到与大气泡等效的封堵作用。同时,由于实验模型亲水,可观察到水位于孔隙表面,油吸附在泡沫和多孔介质表面水膜的中间,具有所谓的“界面夹带”作用,进一步提高了洗油效率。
图2 并联填砂管模型泡沫驱实验装置Fig.2 Experimental apparatus of parallel sand-packed pipe model for foam flooding
图3 泡沫驱渗流区划分Fig.3 Division of percolation zones of foam flooding
2.2 非均质微观模型泡沫驱油效果
渗透率级差为1∶3 的非均质微观模型,不论高渗透条带还是低渗透条带,水驱后进行泡沫驱和后续水驱均先后形成了不同的渗流区。
水驱 水驱阶段的驱油效果(图4)显示,高渗透条带和低渗透条带由于渗透率级差产生差异化渗流,水进入高渗透条带形成水流优势通道,直至水突破高渗透条带,低渗透条带完全未被动用,驱替不均衡。
图4 水驱阶段驱油效果Fig.4 Displacement effect on water flooding
图5 泡沫驱初期的驱油现象和结束时的驱油效果Fig.5 Flooding phenomenon at early stage of foam flooding and flooding effect at end of foam flooding
泡沫驱 分析图5 可见,泡沫进入到非均质微观模型后,高渗透条带出现明显的混气水驱油渗流区、表面活性剂驱油渗流区和泡沫驱油渗流区,而低渗透条带只出现了混气水驱油渗流区和一小段表面活性剂驱油渗流区。这是因为,高渗透条带在混气水驱油和表面活性剂驱油阶段封堵作用有限,只有当泡沫进入高渗透条带保持稳定且占据孔隙后,才能大幅度降低气相(泡沫)的渗透率,增加了气相的渗流阻力,扩大了波及区域。由于孔隙的不规则性,气泡两侧曲率不同,产生了贾敏效应。随着进入到高渗透条带泡沫量的增加,贾敏效应叠加,泡沫的流动阻力大幅增加,当增加到超过低渗透条带的流动阻力后,泡沫便进入到低渗透条带,低渗透条带剩余油多,泡沫进入后遇油消泡,从而形成了混气水驱油渗流区和表面活性剂驱油渗流区(图5a)。由于泡沫的封堵作用,液流发生转向,泡沫驱后高渗透条带和低渗透条带的波及区域显著增大(图5b)。
后续水驱 后续水驱的驱油效果(图6)表明,高渗透条带泡沫被驱出,后续水驱形成新的水流优势通道,波及面积(染色区域)低于泡沫驱时的波及面积,泡沫驱和后续水驱波及区域未重叠部分的剩余油始终难以动用。后续水驱未突破高渗透条带之前,随着注入压力上升,染色水进入低渗透条带,待染色水突破高渗透条带后,低渗透条带流体不再运移。这是由于高渗透条带被染色水突破后,该条带的泡沫失去高、低渗透条带间的液流转向作用,加之低渗透条带残余泡沫的封堵作用,使得低渗透条带残余油很难被动用。
图6 后续水驱的驱油效果Fig.6 Displacement effect on subsequent water flooding
采用图像分析法定量分析不同驱替阶段的波及系数[16]。结果(图7)表明:高渗透条带的水驱波及系数为52.4%,泡沫驱增至100%,后续水驱降至74.3%;而低渗透条带的波及系数一直增大,水驱阶段为0,泡沫驱增至44.7%,后续水驱增至65.6%。由此可见,泡沫驱抑制了非均质性的影响,改善了驱替的均衡程度,起到了调驱的作用。
图7 不同驱替阶段波及系数变化Fig.7 Variation of sweep efficiency at different displacement stages
2.3 并联填砂管模型泡沫驱油效果
图8 不同驱替阶段分流率和驱油效率的变化Fig.8 Variation of fluid diversion rates and displacement efficiency at different displacement stages
由图8a 可以看出:水驱阶段,低渗透管未动用,驱替不均衡。泡沫驱阶段,泡沫首先进入高渗透管,由于泡沫驱存在3 个区,泡沫驱初期,高渗透管的分流率并未立刻减小,而是有一定的滞后性。随着泡沫驱的进行,驱替压力增加,低渗透管被驱替,分流率增加,最高达75%,而高渗透管分流率降至25%。当泡沫驱的注入压力增加到一定程度时,泡沫进入低渗透管,驱替压力增幅大于高渗透管后,高渗透管的分流率增加,低渗透管的分流率降低。后续水驱阶段,高渗透管分流率迅速增至100%,低渗透管分流率则降为0。
不同驱替阶段高、低渗透管的驱油效率(图8b)表明:水驱平衡时,高渗透管驱油效率最高为31.32%,低渗透管驱油效率为0;泡沫驱阶段,高渗透管驱油效率提高至47.97%,比水驱提高了16.65%,同时低渗透管的驱油效率由0 提高至43.56%;后续水驱阶段,高渗透管的驱油效率进一步增大,提高了4.18%,达52.15%,而低渗透管的驱油效率为44.31%,仅提高了0.75%。从驱油效率上看,泡沫驱大大改善了高、低渗透管的驱替平衡。
3 问题与对策
3.1 低渗透条带见效滞后效应与对策
非均质微观模型驱替实验结果表明,泡沫驱分为混气水驱油、表面活性剂驱油和泡沫驱油3 个连续的渗流区,每个渗流区的形成原因和驱油机理不同。其中,混气水驱油和表面活性剂驱油的机理主要是提高洗油效率,而泡沫驱油机理主要是靠封堵作用扩大波及区域,同时兼具洗油作用。混气水驱油和表面活性剂驱油时,注入泡沫未起到有效封堵作用,导致低渗透条带注泡沫初期见效滞后。为了强化泡沫的封堵作用,可考虑水驱后先注入驱油剂溶液段塞,进一步降低残余油饱和度,驱油剂在多孔介质表面优先被吸附,同时起到牺牲剂作用,可以降低泡沫剂在多孔介质表面的吸附。先注入驱油剂溶液驱油再注入泡沫驱油的驱替方式,可以增强泡沫注入初期高渗透条带的泡沫稳定性,缩短低渗透条带的见效时间,可以大幅度地改善泡沫的调驱作用,使得低渗透条带快速见效,提高驱油效率。
3.2 泡沫驱存在封堵有效期与对策
非均质微观模型注入泡沫后,泡沫能够抑制非均质性导致的高渗透条带和低渗透条带的差异渗流,改善驱替均衡程度。非均质微观模型泡沫驱替现象及实验结果亦显示,高渗透条带的波及系数由泡沫驱前的52.4%提高至100%,低渗透条带波及系数由0 增至44.7%。但是,泡沫驱后进行后续水驱时,高渗透条带的波及系数又降至74.3%,低渗透条带波及系数小幅增至65.6%后,残余油不再被动用。并联填砂管模型泡沫驱油实验的分流率和驱油效率也呈现相同的规律,说明泡沫驱时的封堵作用在后续水驱时存在封堵有效期。为了节约用气成本,进一步改善非均质储层的驱替均衡程度,建议泡沫段塞和水驱间歇进行,才能逐次递进式改善驱替的均衡程度,克服非均质性对驱油效果的影响。
3.3 实验研究的局限性及下一步研究方向
实验采用渗透率级差为1∶3 的非均质微观模型,一方面由于渗透率级差的影响,另一方面由于稠油黏度大的影响,水驱阶段高渗透条带突破后,低渗透条带仍未被波及。注入泡沫后,泡沫封堵高渗透条带,起到调驱作用,低渗透条带被动用。后续水驱,注入水优先沿高渗透条带的大孔道运移,由于多孔介质中泡沫的封堵,注入压力升高,染色水可以进入低渗透条带驱油。待后续水驱再次突破高渗透条带形成新的优势通道后,低渗透条带流体再一次停滞,注入水一直沿着高渗透条带渗流不再出油。下一步应开展不同渗透率级差的非均质微观模型泡沫驱替实验,研究渗透率级差和油相黏度对驱替均衡程度的影响,同时进行泡沫封堵有效期研究,后续水驱至不再出油后采用间歇注入泡沫的方式考察对驱油效率和剩余油饱和度分布的影响。
4 结论
首次采用非均质微观模型进行泡沫驱可视化驱油实验,揭示泡沫驱过程沿注入方向形成混气水驱油、表面活性剂驱油和泡沫驱油3 个显著渗流区的形成原因及驱油机理。可视化地展现了泡沫抑制差异渗流,改善驱替均衡程度的过程。在水驱、泡沫驱和后续水驱的驱油过程中,高渗透条带的波及系数由水驱油时的52.4%增至泡沫驱油时的100%,后续水驱油时波及系数又降至74.3%。低渗透条带的波及系数由水驱油时的0大幅增至泡沫驱油时的44.7%,后续水驱油时增至65.6%。
渗透率级差为1∶3的并联填砂管模型泡沫驱油实验的分流率及驱油效率随驱替过程的变化规律验证了非均质微观模型中泡沫驱的驱油特征和驱油效果。