基于沉积数值模拟的辫状河心滩演化
2020-04-25张宪国张育衡林承焰王宏伟
张宪国, 张育衡, 张 涛, 林承焰, 王宏伟
(1.中国石油大学(华东)深层油气重点实验室,山东青岛 266580; 2.山东省油藏地质重点实验室,山东青岛 266580;3.中国石化河南油田勘探开发研究院,河南南阳 473132; 4.山东科技大学地球科学与工程学院,山东青岛266590;5.中国石油大港油田采油六厂,河北沧州 061100)
辫状河油气储层在新生代陆相盆地中广泛发育,心滩作为其最重要的沉积单元成为油气储层研究的热点[1-5]。针对心滩内部结构,国内外学者开展了大量研究,涵盖露头、现代沉积和地下储层[6-11]。但主要是对心滩及其内部结构的静态刻画,对其形成过程的研究甚少[8-12],尤其是对地下心滩沉积的形成过程,缺乏深入认识。因此选取黄骅坳陷典型辫状河沉积实例,分析心滩储层构型并利用沉积数值模拟再现心滩的形成过程,认识心滩形成机制,指导地下储层构型刻画。
1 研究区地质概况
研究区位于黄骅坳陷羊二庄油田(图1),是黄骅坳陷赵家堡断层下降盘的一个穹隆背斜构造。基底之上自下而上发育古近系孔店组、沙河街组和东营组、新近系馆陶组和明化镇组以及第四系平原组(图2)。其中馆陶组和明化镇组是该油田的主要含油层系[13]。研究区馆陶组发育辫状河沉积,心滩是最主要的含油砂体类型[14]。经过40余年的开发,羊二庄油田进入高含水期。心滩砂体在开发中表现出较强的沉积非均质性,开发层内矛盾突出,故认识心滩内部结构成为预测剩余油分布和提高采收率的关键。
图1 研究区位置图Fig.1 Location of study area
图2 黄骅坳陷地层综合柱状图Fig.2 Comprehensive stratigraphic column of Huanghua Depression
2 解剖区心滩构型特征
辫状河河道迁移频繁,具有砂体连片发育的特点,砂体以心滩沉积为主,呈“叠覆泛砂体”的形态展布[15]。按照Miall的河流相储层构型划分方法[2,16],单一心滩沉积为四级构型单元,而心滩内部的加积单元为三级构型单元。
2.1 单一心滩识别与特征
地下储层辫状河沉积多是多期次叠加改造的残留沉积,其心滩沉积多以心滩复合体的形式存在,识别单一心滩是刻画心滩内部结构的前提和基础。研究区为开发后期密井网区,利用井点静态和开发动态资料可以有效识别单一心滩。
利用同一心滩砂体在测井相上的相似性可以初步对其进行识别。此外心滩底部的相对高程差也是单一心滩识别的一个依据。通常情况下,在一定范围内河床高程相对稳定,因此单一心滩的底部与标准层的相对距离具有稳定性,可以作为识别单一心滩的依据。单一心滩内部同期的落淤层沉积厚度横向变化符合自然规律,这也是识别单一心滩的一个辅助依据。
根据上述识别方法和原则,综合考虑心滩发育规模和平面形态,对解剖区的单一心滩进行识别。以图3所示的NgⅢ1-3单砂层典型心滩为例,在代表区域泛滥沉积的稳定泥岩标准层拉平之后,庄5-15-6井心滩底面深度为1 885.29 m,与邻近的庄5-15-2、庄5-15-3、庄5-15-5、庄5-15-10、庄5-15-3K以及庄5-15井同期次心滩砂体底面深度相近。而在相邻的庄G3井,同一单砂层心滩底界面深度为1 912.34 m,与前述的几口井深度差异大,因此庄G3井与前述各井钻遇的心滩不是同一个单一心滩。同时从落淤层发育情况看,庄5-15-6井与庄G3井落淤层发育位置及指示的垂积体厚度差异显著(图3(a)、(c))。
图3 解剖区心滩发育特征Fig.3 Sedimentary features of braided bars in detailed research area
研究区40余年的开发积累了大量动态资料,尤其是示踪剂监测数据,可以作为判断砂体连通性和单一心滩识别的辅助依据。以庄5-15-8井组为例,注水井庄5-15-8井注入示踪剂后,在位于同一心滩的监测井庄5-17K中有示踪剂显示,指示同一心滩内部砂体的良好连通性;而由于不同心滩之间四级构型界面的渗流屏障作用,位于邻近心滩的监测井庄5-15-2井未见到示踪剂显示。
2.2 心滩内部构型特征
以落淤层为界面的砂岩增生体叠置心滩模式是中国油气储层研究中使用最广的心滩沉积模式,落淤层由辫状河洪泛事件末期悬浮落淤沉积形成,具有指示事件性沉积的意义[4-5,11,15]。研究区心滩内落淤层以夹层的形式出现,其岩性以粉砂质泥岩和泥岩为主,在测井曲线上特征显著。以图3中庄5-15-5井所在的心滩为例,测井曲线上可以识别出4期落淤层沉积,在自然电位(SP)和自然伽马(GR)测井曲线上与围岩幅度差明显,孔隙度和渗透率均出现低值特征(图4)。
在解剖区选取完整的单一心滩,在心滩的头部、中部和尾部各选一口井建立连井剖面,在落淤层单井识别的基础上,结合落淤层沉积特点进行不同井点的落淤层对比(图3、5)。根据高程和单期垂向加积砂体的厚度变化趋势,庄5-15-2井位于心滩主体部位,发育5期落淤层,而位于心滩头部和尾部的庄5-15-5和庄5-15-6井均识别出4期落淤层沉积。位于心滩底部的一期落淤层规模较小,形成于心滩沉积早期,对应的其下部心滩垂积体仅覆盖庄5-15-6井和庄5-15-2井;随着心滩发育规模的增大,在顺流加积作用下,心滩顺流加积生长,向下游推进,在3口井上均钻遇心滩砂体。心滩沉积过程中,在向下游顺流加积的同时,心滩头部迎水面受到水流侵蚀作用,导致心滩头部增生砂体和落淤层难以沉积或保存,因此位于心滩头部的庄5-15-6井顶部一期落淤层不发育。
图4 庄5-15-5井心滩内落淤层及心滩增生体Fig.4 Slit layer and accretion sand body in braided bars of well Zhuang 5-15-5
图5 心滩内部结构(井点平面位置见图3)Fig.5 Reservoir architecture of braided bar (planar location of wells is in Fig.3)
3 心滩发育过程数值模拟
从研究区心滩构型来看,除了垂向加积外,在心滩形成过程中还存在侧向和顺流向的沉积作用。地下储层中保留的心滩形态及其内部结构是上述作用综合的结果。研究通过沉积过程的数值模拟,重现心滩形成过程,探究不同的沉积作用如何塑造心滩砂体沉积。基于泥沙水动力学的沉积过程数值模拟能够有效避免基于沉积物理模拟和现代沉积观测的沉积过程研究中存在的不足[17-19],越来越多地被应用于沉积过程和沉积机制的研究[17-23]。
3.1 模型与模拟参数
根据实例解剖区辫状河发育规模,建立3 km×20 km的模拟河段,纵向上设定3层网格;根据实例区构型单元尺度和研究精度要求,设定平面网格尺寸为50 m×50 m,确保单一心滩内有足够数量的网格显示其内部结构,以满足对模拟结果的观察和分析需要。根据现代沉积研究的观测尺度以及气候和降水量的周期性,同时考虑模拟运算量,将模拟时间设置为一年,模拟计算的时间步长设置为2 min,输出观测记录的时间步长为6 h。依据研究区古地貌恢复结果,将模型的地形坡度设置为0.1‰。
针对数值模拟中河流流量、含沙量等水文地质参数,采用参考沉积规模相似的现代河流相关参数的方法来确定。根据研究区辫状河构型刻画结果,以河道宽度、地貌(坡度)、沉积物类型和粒度、心滩规模和几何形态等为对比依据,选取与实例区具有很高相似性的黄河龙门水文站河段和潼关水文站河段,作为相似现代沉积参考河段。根据近年来龙门水文站和潼关水文站的水文资料,设置模拟的入口边界流量为40 m3/s(单位网格),沉积物总质量浓度为9 kg/m3。
3.2 心滩沉积演化分析
沉积过程模拟结果显示,在辫状河沉积开始阶段,沉积物在向下游搬运的过程中逐渐沉积下来,形成心滩的早期雏形。之后在垂向加积、顺流加积和侧向加积的作用下,心滩规模逐渐增大,同时心滩的形态也在不断的加积和侵蚀共同作用中产生变化和迁移(图6)。
3.2.1 顺流加积与垂向加积
在心滩发育过程中,心滩的头部受到水流的冲刷侵蚀,而滩尾处则以沉积作用为主,出现顺流逐渐生长的特征,在宏观上表现为心滩的整体顺流迁移。同时心滩顶部也在垂向加积作用下逐渐加厚(图7)。
以图7中标示的心滩为例,从模拟的948步到1 168步,根据平面上沉积物厚度随时间的变化可以看出,该心滩尾部顺流加积作用明显,在沉积物不断堆积的过程中形态从分叉状逐渐合并成一个完整的滩尾。心滩迎水面的侵蚀作用对心滩形态的塑造要弱于滩尾的加积作用,这一点在顺流向的纵向剖面图上更加显著。在模拟时间由948步到1 168步的过程中,滩头侵蚀长度为141 m,迁移速度为0.64 m/步,但滩尾加积范围达到298 m,迁移速度达到1.35 m/步(图8纵轴正值代表沉积,负值代表侵蚀;剖面位置见图7剖面线AB;图中红色虚线框为观测的心滩位置)。滩头侵蚀的速度和规模都要弱于滩尾的加积。
图6 辫状河心滩发育过程的模拟平面结果Fig.6 Simulation result of braided river deposition process on plane
心滩的垂向加积在剖面上最为显著。以初始沉积厚度为基准,在上述沉积过程中,心滩最大沉积厚度增加了0.3 m,从剖面上不同时间的砂体顶面高度可以看到(图8),垂向加积作用在心滩形成过程中具有普遍性,是主要的砂体沉积作用类型,但在不同阶段垂向加积的规模和速度存在差异。
3.2.2 侧向侵蚀与加积
在心滩顺流加积和垂向加积的过程中,由于心滩两侧水道的流速和水流能量差异,流速较高的一侧水道对心滩冲刷,常出现以侵蚀为主;流速较小的一侧水道对心滩的侵蚀速度慢或者发生砂体的加积,两侧水道对心滩作用的这种差异在宏观上表现为心滩侧向迁移。以图7中标示的心滩为例,从水流速度模拟结果的横剖面上可以看到(图9),该心滩两侧水道流速分别为0.87~1.09和0.64~0.87 m/s。左侧辫状水道流速大,对照该剖面上砂体厚度随时间的变化发现(图10),心滩左侧以侵蚀作用为主,砂体厚度随时间减小,靠近心滩出现水道下切,而右侧水道的侵蚀作用较弱,从剖面上的砂体厚度变化来看,右侧砂体加积。
图7 心滩顺流加积过程中的平面形态变化Fig.7 Planar evolution of braided bar with downstream accretion
图8 顺流向纵剖面上心滩砂体顶面与河床底部距离随时间的变化Fig.8 Variation of distance between braided bar top and channel bottom with time at downstream section
图9 河道横截面水流速度分布(剖面位置见图7剖面线DC)Fig.9 Distribution of water velocity in cross profile of channel (location of the profile is marked in Fig.7 as line DC)
图10 辫状河横剖面上心滩顶面与河床底部距离随时间的变化Fig.10 Variation of distance between braided bar top and channel bottom with time at crosssection
从图10的心滩横剖面砂体厚度变化可以看到,在模拟时间从1 020步到1 140步的过程中,心滩左侧侵蚀宽度约为26 m,右侧的侧向加积宽度约为6 m,侵蚀速度大于加积速度,在该剖面位置心滩横向宽度变小,宏观上呈现向右侧的迁移。在侧向迁移的同时,综合图7和图8的砂体厚度变化可以看到,心滩也出现整体向下游方向的迁移。
4 解剖区心滩发育过程
通过研究心滩内部结构的刻画结果和心滩沉积过程的数值模拟,对解剖区心滩发育过程进行探讨。解剖区心滩在形成初期规模较小,心滩生长过程中经历多次洪水期,心滩规模逐渐扩大。从保留下来的落淤层发育情况看,有明显地层记录的大规模洪水沉积事件有5期。在第一个大规模洪水期过后,心滩的发育雏形已经明确,心滩在顺流加积和头部侵蚀作用下,宏观上表现为整体的不断向下游迁移。在迁移过程中,由于头部侵蚀速率小于尾部的加积速率,因此心滩整体在顺流方向上尺度变大(图5、11)。在沉积数值模拟中也得到了相同的规律和定量化的依据。
心滩顶部的一期落淤层在侵蚀作用下发育范围局限,在庄5-15-6井处未能完整保留,在测井曲线上无法明显识别(图5);从纵剖面上看,第一期心滩规模小,这是在庄5-15-5井上没有看到第一期增生体顶部落淤层沉积的原因。其后在顺流加积作用下心滩顺流生长到庄5-15-5井位置,在该井处发育之后的几期增生砂体。从横剖面上看,心滩单侧加积作用明显,心滩头部和中部在右侧呈现出以侵蚀作用为主的特点,形成心滩两侧的不对称加积,在宏观上表现为心滩横向迁移(图11)。
图11 研究区心滩演化模式(井平面位置见图3)Fig.11 Evolution model of braided bar in study area (well position is as in Fig.3)
5 结 论
(1)将动静态资料相结合,刻画研究区单一心滩及其内部构型,发现垂向加积、顺流加积、侧向加积和侵蚀作用共同塑造心滩的形态和内部结构。
(2)心滩的形成是一个动态的过程,滩头的侵蚀与滩尾的顺流加积是一个同时的过程,但是二者的作用强度会存在差异,侵蚀作用会造成滩头部位落淤层发育差。心滩两侧河道的流速差异会造成心滩一侧加积而另一侧侵蚀,存在不对称的侧向加积。垂向加积伴随着心滩的整个生长过程,但是在不同阶段以及心滩的不同部位,垂向加积速率存在差异。
(3)辫状河水动力特征复杂,心滩的成因机制和影响因素多样,研究是对地下储层心滩发育的探讨,两岸地貌差异、物源变化、气候等因素对心滩发育的影响没有单独进行详细探讨,这是下一步需要关注的问题。此外基于泥沙水动力学的数值模拟多用在水利研究中,设计模拟时间尺度小于地质时间尺度,两个不同时间尺度上模拟结果的可对比性是沉积学家所关注的重点。考虑到季节周期对河流沉积的控制,年度内的沉积模拟对认识辫状河沉积演化具有参考意义。