人工智能与创造性劳动
2020-04-22白惠仁
白惠仁
摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。
关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识
中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2020)01-0154-03
产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。
该书更为重要的贡献在于讨论了人工智能技术对于社会生产方式的挑战和变革作用。书中提出:“人工智能的替代效应是建立在对人类劳动数据化和逻辑化的基础上的,探索自在自然的创造性劳动是不可数据化和逻辑化的。因此,人工智能只能围绕既有的对象进行重复性生产,替代重复性劳动;而人类则能够探索自在自然,从而摸索新技术、建构新对象,进行创造性劳动。也就是说,机器所不能替代的人类劳动的‘硬核是探索自在自然的劳动,是创造对象和掌握技术的‘创造性劳动。”[1]25作者将马克思的“劳动”概念区分为“重复性劳动”和“创造性劳动”,进而指出人工智能是对机器大工业的否定,它将替代人类劳动中可以重复、可以数据化的部分,但创造性劳动是人类劳动的本质,是人工智能所不能替代的。
作者提出:“人工智能可以在将重复性劳动数据化的基础上,对人类劳动进行模仿,从而取代任何形式的重复性劳动。但人工智能却不能取代人类的创造性劳动,创造性劳动是通过探索自在自然,经过反复的摸索与实验、征服反常和偶然、掌握技术、创造对象、实现对象从无到有的过程的劳动,这是一种原生性的劳动。”[1]27作者认为,创造性劳动是对马克思的“自在自然”的探索,“自在自然”是在人类的现有认知能力之外,却以反常和失败等形式向人类显现其自身。然而,在认知实践当中,机器学习已经可以帮助人类探索认知能力之外的“自然”,当然这种“自然”并不以反常或失败的形式存在。作者也指出:“尤其是在大数据和云计算的背景之下,机器学习的速度远超人类的认知极限,甚至可能在数据中找到人尚未发现的方法和规则。”[1]35因此,在认知劳动方面,我们可以在作者的概念框架下进一步区分出人工智能对人类“创造性劳动”的辅助作用,具体表现为三个方面:人工智能提高科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。
一、人工智能能够提升科学知识生产效率
机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。
二、人工智能擅于提取和传递默会知识
波兰尼(Michael Polyani)提出了默会知识(tacit knowledge)的概念,以区别于可以明述的知识(explicit knowledge),明述知识是用语言文字来表达的知识,如科学知识,默会知识则是我们知道但通常不加言述或者不能充分言述的知识[2]。默会知识具有以下几个特点:难以用语言文字描述,不易传播、记录和积累;获取默会知识主要依靠亲身体验;默会知识呈分布式存在,难以整合。这些特点导致我们很难有效运用默会知识,而机器学习的大规模运用使得人工智能系统非常擅于处理默会知识。作者敏锐地意识到了这一特点——“以往我们所说的‘默会知识、手工技艺技巧,以及复杂程度远超人类认知能力之外的一些潜在规则,也都不再是一个个‘黑箱,机器可以基于将人类劳动的过程还原成物理量和数据,再通过机器学习找到其内在的规律,从而取代人类劳动。”[1]56
在当前人类社会所有已经产生的信息中,文字只占极少的比例,大量的信息以图片和视频方式呈现,其中蕴含了大量需要通过亲身体验才能获取的默会知识。如果有办法将事物状态用图片或视频记录下来,就有可能使用机器学习从中萃取出知识。很多电影公司已经使用人工智能系统观看大量人类历史上的影视作品,从而归纳提取出经典桥段,创作出新的配乐、台词和预告片以供人类借鉴。更为重要的是,由人工智能系统获取的默会知识是以神经网络参数集的形式存在的,这对人类而言仍然不可描述,也难以在人类之间传递,但却非常易于在人工智能系统间传播。例如,一台掌握驾驶技能的自动驾驶汽车只要将参数集分享出来就可以快速让所有汽车学会这项技能,而且可以实现机器间的协同行动。
三、人工智能可以产生某种机器知识
如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGo Zero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGo Zero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,Gregory Wheeler在《Machine Epistemology and Big Data》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]
机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。
相较之下,机器知识可以被刻画为数据在时空中的关系,这些关系表现为某种模式,对模式的识别就是认知,识别出来的模式就是知识,用模式去预测就是知识的应用。这些数据在时空中的关系只在少数情况下才能用数学工具进行表达,而多数情况下知识表现为数据间的相关性的集合,这些相关性只有一小部分可以被人类感知和理解。这源于人类感受能力的局限性:人类只能感受部分外界信息,人类的感官经验局限在三维的物理空间和一维的时间。因此,当数据无法被感知,它们之间的关系又无法用数学工具表达时,这些数据间的关系就超出了人类的理解能力之外而属于机器知识。当前机器学习的主流形式——人工神经网络的最大特点就是发现并记忆数据中的相关性,例如在看了很多汽车图片后会发现汽车都有四个轮胎,人类对图片这类直观的数据间的相关性也能发现并记忆一部分,这就是默会知识。但当数据量很大且不直观时,例如股票市场的数据或者核电站的内部数据,人类就无法应对了。而随着人工神经网络层级和数量的增加,人工智能系统能够处理大规模的复杂数据,这就是机器知识。机器知识当前的主要表现形式类似于AlphaGo Zero中的神经网络的全部参数。
概言之,科学知识和默会知识多是基于信息的因果性知识,而机器知识多是基于数据的相关性知识。此外,科学知识是易于记录、易于陈述、易于传递的;默会知识是难以记录、难以陈述、可传递的;机器知识则是可记录、不可陈述、易于在机器间传递的。
四、人工智能发展的局限性
当然,基于人工神经网络的机器学习仍有两个核心的局限性导致人工智能系统还不足以承担创造性劳动。第一个局限是,人工神经网络需要依赖特定领域的先验知识,也就是需要特定场景下的训练,这是因为人工神经网络的学习本质上是对相关性的记忆,人工神经网络将训练数据中相关性最高的因素作为判断标准。这个问题在自动驾驶汽车中表现的非常突出,鉴于道路交通情境的复杂性和交通标示的多样性,自动驾驶系统难以避免很多交通事故。第二个局限是,人工神经网络无法解释产生某个结果的原因,这种不可解释性在许多涉及安全和公共政策的领域显现的比较突出,例如在智能医疗中,人工神经网络在影像识别和辅助诊断中都对其结果缺乏医学上的解释性,都需要专业医生的复核。
基于人工神经网络的人工智能系统在记忆和识别这两个基础智能方面超越了人类,但在推理、想象等高级智能方面还相差较远。与人类相比,人工智能无法承担创造性劳动的原因还不止于以上的局限性,还包括:人工智能没有常识和物理世界的模型;人工智能没有自主和自发的通用语言能力;人工智能没有想象力,需要大量常识、反事实假设和推理能力;最重要的是人工智能没有自我意识。自我意识的缺乏导致能够产生机器知识的人工智能系统仍然无法被视为认知主体,其知识的“创造性劳动”是一种无意识认识活动。
五、结语
人工智能系统在提升科学知识生产效率、处理默会知识以及产生机器知识方面的优势,使得我们在创造性劳动中很难将其排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。脑机接口(brain-computer interface)是当前一个重要的人机协作研究方向,而其中最激进的方式是马斯克提出的Neuralink,即通过柔性电极对接在人脑的神经网络上,Neuralink要解决的是人类的信号输入与输出,但其问题在于人类的高级思维(如逻辑推理或描述场景)必须依赖语言,而目前基于人工神经网络的机器学习能力主要是对环境的识别能力,还远没有达到语言和逻辑推理,但人类智能通过语言进行沟通。这背后就隐含了人类的科学知识与人工智能系统的机器知识之间的不可通约,以上例子也表明基于人机协作的创造性劳动还有很大的技术障碍需要克服。
参考文献:
[1]崔政.科学技术知识的政治经济学研究[M].石家庄:河北人民出版社,2019.
[2]郁振华.当代英美认识论的困境及出路——基于默会知识维度[J].中国社会科学,2018(7).
[3]Gregory Wheeler.Machine epistemology and big data[A].in McIntyre,Lee,and Alex Rosenberg,eds.The Routledge Companion to Philosophy of Social Science[C].Taylor & Francis,2016.
[4]董春雨,薛永红.机器认识论何以可能?[J].自然辩证法研究,2019(8).