TiO2光催化降解有机污染物的研究进展
2020-04-21萨嘎拉徐爱菊
王 菠,萨嘎拉,徐爱菊
(内蒙古师范大学化学与环境科学学院,内蒙古自治区绿色催化重点实验室,内蒙古 呼和浩特 010022)
光催化已成为解决当前能源短缺和环境污染问题的有效途之一[1]。在有机物染物降解中[2],光催化技术可有效的将污染物彻底矿化为H2O、CO2、N2等小分子,从根本上消除对环境的二次污染[3]。
二氧化钛(TiO2)因无毒、性质稳定、氧化-还原可逆性强以及低成本,成为光催化材料的研究热点[4]。TiO2禁带较宽,只能吸收紫外光(<387 nm)辐射[5],而太阳光谱只有7%紫外光,50%可见光 [(400~760) nm)],43%红外光(>760 nm)[6]。通过形貌调控、优化结构、控制组成、元素掺杂、染料敏化以及调控能带等途径[7],拓宽TiO2光响应范围和抑制载流子复合,提高太阳光的利用率。
本文主要介绍TiO2结构和性能,TiO2改性方法和降解有机污染物活性,改性方法主要包括金属掺杂、非金属掺杂、共掺杂、半导体复合-异质结和染料敏化。
1 TiO2结构和污染物氧化机理
TiO2属于n型半导体,有锐钛矿(anatase)、金红石(rutile)和板钛矿(brookite)三种晶型,锐钛矿型和金红石型均属四方晶系,由TiO6八面体组成[3]。a-型TiO2是常用的半导体光催化材料,但结构不稳定,容易转变为r-型[6]。a-TiO2禁带宽度3.2 eV (387 nm),导带电位-0.5 eV,r-TiO2禁带宽度3.0 eV(410 nm),导带电位-0.3 eV[3],O2(O2/O2-标准电极电位-0.33 eV)吸附在锐钛矿a-型TiO2表面,容易得到导带电子,有效抑制了导带电子与价带空穴复合,进而提高光催化性能,光催化过程如下:
当光辐射能量hv大于禁带宽度Eg时,价带(VB)的电子激发到导带(CB),产生VB(eˉ)-CB(h+)对。溶解氧和水与VB(eˉ)-CB(h+)相互作用,最终产生·OH、·O2ˉ、·OOH具有强氧化性的自由基,把吸附在TiO2表面的污染物氧化。
2 TiO2改性方法和降解有机污染物活性
近年来将改性TiO2用于有机污染物光催化降解的文献报道很多,在拓宽其光响应范围和抑制载流子复合方面取得了很好的成果,部分成果总结见表1。
表1 改性TiO2对有机污染物光催化降解性能Table 1 Degradation of organic pollutants by photocatalysis over modified TiO2
2.1 金属掺杂改性
Xing Huan等[1]制备了Ti3+自掺杂a-TiO2单晶,氧空位作为电子陷阱。结果表明,催化剂的苯酚光降解活性显着增加。Nair S B等[9]采用电化学还原方法制备自掺杂TiO2纳米管(TONT),引入Ti3+离子和氧空位减小带隙,可见光照射下亚甲基蓝降解达97%。Kundu A等[10]采用水解法合成Ti3+自掺杂的TiO2/RGO复合材料,在太阳光照射下罗丹明B的光降解率达100%,这主要是由于还原氧化石墨烯修饰的纳米二氧化钛具有吸附和光催化的协同作用,RGO光敏特性将催化剂的光吸收扩展到可见光区。Kerrami A等[11]通过溶胶-凝胶法合成了Fe3+掺杂质量分数0.2%的TiO2,紫外光下照射10 min,丙烯酸红去除率100%,原因主要是 Fe3+代替Ti4+引起电荷不平衡和结构缺陷的协同组合效应。Xu Jiajie等[2]在TiO2微球表面上组装FeCMPs共轭微孔聚合物,引发界面电荷转移(IFCT)效应,在可见光下甲基橙最高降解率95.5%。Mahlambi M M等[12]采用逐层自组装技术制备了金属掺杂的二氧化钛叠层膜M-TiO2-10层,催化剂的多孔结构、不规则的表面形貌和高比表面积提高了可见光下罗丹明降解效率。Jin Qi等[13]在金属Ti衬底上制备了TiO2纳米层状薄膜,再掺杂镍,这种分层结构提供了高比表面积和高活性位点,电子转移通路高度有效,抑制了电荷复合,扩展了催化剂的光吸收范围,在Xe灯下照射2 h,罗丹明B降解率达95%。Pol R等[8]通过两步水热法制备了Ni、Pt和Ni/Pt负载型高孔隙度TiO2光催化剂,用于UV-vis光下降解罗丹明B,由于Ni掺杂有磁性,在弱磁场中能快速回收并重复使用,经过4个循催化后性能仍稳定。Shi Liang等[14]制备Gd-TONT催化剂,Gd/Ti质量分数为0.5%时,锐钛矿相催化剂有较好的结晶度和较大的比表面积,紫外光下降解甲基橙性能最佳。Singh K等[15]采用水剂热法合成了Gd掺杂介孔TiO2微球锐钛矿相催化剂,Gd3+的4f轨道可提高光催化性能和能量转换效率,Gd掺杂量1 mmol,可见光下亚甲基蓝降解率92.37%。
2.2 非金属掺杂改性
Alam U等[16]采用水热法合成了Bi掺杂TiO2NT/石墨烯复合催化剂,嵌在TiO2纳米管中的Bi与石墨烯的协同作用促进了界面电荷的转移,提高可见光效率。Wang Weikang等[5]采用一步焙烧法合成了掺硼TiO2(a/r可调)光催化剂,两相界面间的电子转移有利于电荷分离,B少电子结构提供电荷陷阱,提高了对莠去津(atrazine)的降解能力。
2.3 共掺杂
Kuvarega A T等[17]通过溶胶-凝胶合成了N、Pd共掺杂TiO2纳米催化剂,PdO纳米颗粒(5 nm) 均匀分散在TiO2表面,可见光下照射3 h,伊红黄(eosin yellow)去除率99.9%,Pd-TiO2界面的肖特基势垒充当电子陷阱位点,延长了空穴的寿命,增强光活性。Sharotri N等[18]合成了Mn-N共掺杂TiO2(60 nm),Mn2+掺杂在N-TiO2晶格中,TiO2带隙变窄,可见光下,喹硫磷(uinalphos)和2-氯苯酚的降解率分别为87.5%和91.7%,Mn2+抑制了电子-空穴对的复合。Lv Tianping等[19]合成了V、Co共掺杂TiO2光催化剂,可见光照射1 h,亚甲基蓝降解率为92.12%,V和Co共掺杂使TiO2晶格畸变偶极矩增大,光生载流子的复合速率降低,从而促进了电荷的分离。Sayed M等[20]合成了Mn2+和Co2+共掺杂的多孔圆柱型TiO2,禁带宽度Eg低至2.10 eV,太阳光下80 min,依诺沙星光催化降解达96.15%。Wang Haitao等[21]利用金属有机骨架(MOFs)制备了多孔碳掺杂的纳米结构C-ZnO/TiO2@ZIF-8,这种结构有利于光吸收和电子空穴分离,对亚甲基蓝具有高吸附亲和性,可见光和紫外光下的催化活性都显着提高。Li Wangli等[22]采用Au、Ag双金属修饰TiO2纳米复合膜(嵌入醋酸纤维素膜CA),具有良好的结晶性和高孔隙率,掺入Au和Ag不仅使膜具有双金属纳米颗粒的协同作用,还可以使膜具有良好的抗菌活性。
2.4 半导体复合-异质结
Liu Chao等[23]通过焙烧获得类石墨烯状碳平面嫁接的g-C3N4,再与TiO2偶联构造三元异质结构(碳平面/g-C3N4/TiO2纳米复合材料),该异质结扩展至可见光吸收,可见光下可降解亚甲基蓝(98.6%)、四环素(94.0%)和诺氟沙星(95.3%),且具有良好的循环稳定性。石墨烯层碳平面使三元异质结充分接触,提高电荷分离效率并抑制光催化电子-空穴对的重组。Zhang Rui等[24]通过水热途径在SnO微花(F-SnO)表面修饰TiO2纳米颗粒,设计了p-n异质结光催化剂TiO2/F-SnO,对甲苯胺蓝去除能力显著增强,循环24 h后光催化活性仍然稳定。p-n异质结可有效分离电荷,且层结构提供了大的比表面积,p-n异质结和分层结构的协同效应提供了足够的活性位点和更强的氧化还原能力。
2.5 染料敏化
有机染料一般对可见光吸收强,在TiO2表面吸附与其能带匹配的有机染料,利用染料敏化将其光响应延伸至可见区。Jennyfer D-A等[25]分别用伊红黄(EY)和罗丹明B(RHB)两种染料对TiO2的进行染料敏化,在可见光下照射3 h,降解乙酰氨基芬(ACF)分别为61.8%和58.4%,降解双氯芬酸(DFC)分别为83.4%和34.6%。TiO2-RHB-ACF体系中,RHB对TiO2不具有良好的敏化作用,无协同作用,添加RHB并不能改善ACF的降解效果。采用EY作为敏化剂时,DCF的降解率提高至83.4%,表明敏化与光催化之间存在协同性。Murcia J J等[26]通过溶胶-凝胶法制备了TiO2纳米管,分别应用增感剂奎宁唑 (Q)和锌卟啉(P)敏化催化剂,对苯酚和甲基橙光降解的效果与所用染料敏化剂有很大关系,锌卟啉敏化的TiO2纳米管可实现甲基橙光催化的最有效降解。
3 结 语
通过晶型结构、形貌、颗粒和结晶度调控得到纳米、多孔、薄膜和高比表面积a-TiO2;通过金属、非金属、共掺杂等降低禁带宽度,电荷不平衡和结构缺陷以及界面电荷转移之间的协同效应,提供高效电子转移通路;通过半导体复合-异质结,抑制载流子复合,染料敏化等拓宽光响应范围,提高光催化和能量转换效率提高太阳光的利用率。