第三代人工智能的发展趋势
2020-04-10
人工智能从1956年第一次提出来,已经发展了63年多,最初的第一代人工智能是用计算机来解决问题,第二代是以AlphaGo为标志的深度学习,但是深度学习是基于真正的大数据,在目前似乎也遇到了瓶颈,于是,科学家们提出了第三代人工智能,但是目前来看,还没有人真正明确第三代人工智能是什么,但是其趋势是清晰的。
把数据驱动和知识驱动结合起来
人工智能的四大基础是:知识、数据、算法和算力,回顾历史,这四个因素都在不断地发挥作用。第一代人工智能也叫符号人工智能,比较强调知识对智能的作用,因為那时算法和算力都还没有跟上。
进入新世纪后,深度学习把大家的目标凝聚到了数据上,这时大数据的出现,再加上很好的算法,就形成了基于概念的深度学习,再加上云计算等手段,使以数据为基础的连接主义模型得到了极大推广和应用。
数据主义喊了许多口号,按照大数据建起来的人工智能系统似乎不可信、不可靠、不安全、不易推广,这都是目前用深度学习进行人工智能研究带来的问题。唯一的办法,就是重新引入知识,把数据驱动和知识驱动结合起来,达成可信安全的第三代人工智能。
常识往往不在数据里
自然语言理解是人工智能领域最核心的问题。不管做机器翻译也好,做自然语言应用也好,都试图通过分析符号序列来理解相关内容,这是第一代人工智能所谓符号主义的核心做法。到了第二代人工智能,又走上深度学习的道路,这条路充满希望,但又非常危险,因为解决不了可信安全的问题。
比如机器翻译现在只能翻译不重要的东西,因为翻错了也没有关系,真正重要的场合还需要人力同声翻译。机器最大的问题,就在于它缺乏常识,根本不知道自己不知道,这是一个很大的问题。
所以常识是必要的,简单翻译几句话也需要大量常识积淀,“说你行,不行也行”,机器没有常识,就很难理解这句话,人反而觉得很简单,这就是常识的重要性。但常识库的建立非常之难,现在没法从数据中去建立常识库,因为常识往往不表示在数据之中。
建立常识,必须下功夫去做,只有这个问题解决了,自然语言的理解才能达到目标。而自然语言理解,则是第三代人工智能的终极目标,这是一个艰巨的任务。如果这个问题解决了,人工智能的其他问题将会迎刃而解。