电化学合成氨研究进展
2020-04-07刘畅刘先军刘淑芝于忠军崔宝臣
刘畅 刘先军 刘淑芝 于忠军 崔宝臣
摘 要:氨是生產化肥的原料,在人类的生产和生活中发挥着重要作用。工业合成氨在高温高压的苛刻条件下进行,造成了严重的能耗和污染。考虑到人类社会的可持续发展,开发生态友好型和能源依赖性较低的方法作为合成氨替代工艺迫在眉睫。电化学合成氨打破传统合成氨的热力学限制,能够实现由水和氮气直接常压合成氨,具有广阔的发展前景。根据电化学合成氨的工作温度范围分类,从高中低温电化学合成氨三方面综述了电化学合成氨领域的研究进展及现有技术存在的挑战,以期对电化学合成氨催化剂设计提供有益的参考。
关 键 词:电化学;合成氨;电催化剂;电解质
中图分类号:O646.5 文献标识码: A 文章编号: 1671-0460(2019)03-0655-05
Research Progress in Electrochemical Ammonia Synthesis
LIU Chang1, LIU Xian-jun1, LIU Shu-zhi1,2, YU Zhong-jun1, CUI Bao-chen1,2
(1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Heilongjiang Daqing 163318, China;
2. School of Chemistry Engineering, Guangdong University of Petrochemical Technology, Gangdong Maoming 525000, China)
Abstract: Ammonia is essential to life on the planet since it is used as a chemical feedstock for the synthesis of reactive nitrogen compounds. Industrial synthetic ammonia process is always carried out under harsh conditions of high-temperature and high-pressure, causing high energy consumption and severe pollution.In consideration of the sustainable development of human society, it is highly desirable to develop eco-friendly and less energy-dependent processes as substitutes in the production of ammonia. Electrochemical synthesis of ammonia is able to break the thermodynamical restriction. Direct synthesis of ammonia from water and nitrogen can be achieved via electrochemical method. Electrochemical synthesis of ammonia also has been regarded as the promising technology. In this paper, the latest research progress and remaining challenges in electrochemical synthesis of ammonia were introduced. Moreover, this paper can offer a helpful guidance for the reasonable design of electrocatalysts towards electrochemical synthesis of ammonia.
Key words: electrochemistry; synthesis of ammonia; electrocatalysts; electrolyte
在全球范围内,氨(NH3)是重要的工业化学品,每年合成约2亿t,是主要的最终产品,也是一种重要的中间体[1,2]。氨被广泛用于各种工业部门,包括能源、制冷、运输、化肥生产(超过80%的生产氨)和制药等[3,4]。液氨中的氢含量为17.6%(wt),且易于储存和运输,因此使用氨和相关化学品以及作为间接储氢材料受到了人们的广泛关注[5,6]。
目前,Haber-Bosch工艺是合成氨的主要技术手段,该工艺采用Fe基催化剂,以H2作为反应原料,与N2在高温(400~600 ℃)和高压(20~40 MPa)下发生反应。但该工艺能耗极高,还受热力学要求的限制,氢单程转化率低[7,8],且氢一般都是从天然气等化石燃料中获取的,制氢过程会产生大量的温室气体CO2[9,10]。随着化石燃料的减少以及全球变暖对环境的危害,开发更经济的可持续性Haber-Bosch合成氨替代工艺具有重要的理论价值和现实意义。
近年来,越来越多的专家学者开始致力于对常压下电化学合成氨的研究,并取得了令人瞩目的研究成果。本文从高温电化学合成氨(>500 ℃),中温电化学合成氨(100~500 ℃)以及低温电化学合成氨(<100 ℃)三个方面对研究进行了归纳总结。
1 高温电化学合成氨
高温电化学合成氨就是在高温下,利用质子导体作电解质的电化学合成氨方法。在高温含氢条件下,钙钛矿型陶瓷具有很高的质子导电率[11],一经发现便引起了人们的重视。1996年,Panagos和Stoukides等[12]提出可将高温质子导体用于电化学合成氨的理论模型。Marnellos等[13]在1998年首次报道了以固体氧化物质子导体作电解质,以Pd作阴极催化剂实现了电化学合成氨,最高产氨速率为4.5×10-9 mol·s-1·cm-2,最高电流效率为78%,引领了电化学合成氨的发展。此后,质子导体作为电解质高温电化学合成氨研究愈加活跃。2005年,Wang等[14]将萤石结构型复合氧化物La1.95Ca0.05M2O7?δ(M=Ce、Zr)作电解质电化学合成氨,在520 ℃下,La1.95Ca0.05Ce2O7?δ和La1.95Ca0.05Zr2O7?δ的最高产氨速率分别为1.3×10-9 mol·s-1·cm-2和2.0×10-9 mol·s-1·cm-2。同年,Li等[15]采用烧结的钙钛矿型复合物作为固体电解质,以Ag-Pd合金作为电极进行电化学合成氨,最高产氨速率达2.16×10-9 mol·s-1·cm-2。Zhang等[16]以La0.9Sr0.1Ga0.8Mg0.2O3?α(LSGM)为电解液,在常压下成功合成了氨。阴极室产氨速率为2.37×10-9 mol·s-1·cm-2,电流效率达70%以上。Xu等[17]以Ba0.98Ce0.8Y0.2O3-α+ 0.04ZnO为电解质,在500 ℃下,最高产氨速率为2.36 ×10-9 mol·s-1·cm-2。2015年,Vasileiou等[18]采用BaCe0.2 Zr0.7Y0.1O2.9(BCZY27)为电解质,以Ni-BZCY27为阴极,Rh膜为阳极。在550 ℃下电化学合成氨的最高产氨速率为2.9×10-9 mol·s-1·cm-2。
质子导体作电解质通常在高温下才具有明显的质子导电能力,但氨在高温下会分解,从热力学角度上来说并不利于氨的合成。因此,高温电化学合成氨的产氨速率多年以来一直都不高,很难有所突破。
2 中温电化学合成氨
中温电化学合成氨条件相对温和,近年来熔盐电解质体系和复合电解质体系在这一领域占据着重要位置。Murakami等[19]使用熔融LiCl-KCl-Li3N和LiCl-KCl-CsCl-Li3N为电解质,研究了由N2和各种氢源(H2、H2O、CH4、H2S)的电化学合成氨反应[20-25]。但这种以熔融氯化物为基础的电化学合成氨产氨速率很低。2015年,Kim等[26]研究了Ti、Fe、Co和Ni电极在LiCl-KCl-CsCl电解质中电化学合成氨的电化学性能,活性顺序从大到小依次为Co>Ni>Fe>Ti,认为电阻率和润湿性是决定熔融氯化物系统中N2还原催化活性的关键因素。2016年,在常压和327 ℃下,该研究团队在LiCl-KCl-CsCl中加入纳米Fe2O3进行电化学合成氨,最高产氨速率为3.0×10-10 mol·s-1·cm-2,电流效率为0.14%;随后在该体系中加入CoFe2O4悬浮催化剂,最高产氨速率为1.78×10-10 mol·s-1·cm-2,电流效率为0.17%[27]。
除了熔融氯化物体系外,Licht等[28,29]提出了由空气和水蒸气在纳米Fe2O3的熔融氢氧化物悬浮液中的电化学合成氨途径。在200 ℃下,在摩爾比为0.5 NaOH/0.5 KOH的电解液中,阴阳极分别为蒙乃尔筛网和镍片,在电流密度为2 mA·cm?2,电压为1.2 V的条件下,产氨速率达2.4×10-9 mol·s-1·cm-2,电化学合成氨电流效率为35%。在该体系下运行6 h后,产氨速率在前4 h下降到平均值的85%,纳米Fe2O3在电解液中的简单分散,在电解过程中会发生团聚,不利于电池的长期稳定性。我们课题组在活性炭(AC)上负载Fe2O3制备出Fe2O3/AC催化剂,活性炭载体的密度与熔盐的密度相近,进行电解反应时催化剂不会发生团聚和沉淀的现象,比单一纳米Fe2O3催化剂稳定性更好。更重要的是采用Fe2O3/AC催化剂会显著抑制水电解产氢的副反应。在250 ℃下,最高产氨速率为8.27×10-9mol·s-1·cm-2,电流效率为13.7%[30,31]。
采用熔盐-离子导体陶瓷膜为复合电解质进行电化学合成氨的另一重要研究领域。Amar等[32]采用Ce0.8Gd0.2O2?δ陶瓷膜-(Li, Na, K)2CO3作为复合物电解质,钙钛矿氧化物Pr0.6Ba0.4Fe0.8Cu0.2O3?δ作为催化剂,在400 ℃下,电压为1.4 V时,电化学合成氨的最高产氨速率为1.07×10-10mol·s-1·cm-2。该课题组在该领域进行了一系列电化学合成氨研究[33-39]。虽然在加入碳酸盐混合电解质之后离子电导率有了明显提高,最高产氨速率为4.0×10-10 mol·s-1·cm-2,但电化学合成氨温度在400 ℃左右,仍然避免不了氨的热分解。
3 低温电化学合成氨
早在自上个世纪90年代,利用液体电解质进行低温电化学合成氨,就有了相关的报道,但过低的电流效率使其发展停滞不前。最近,因Au纳米粒子体系的优异性能[40],利用液体电解质进行电化学合成氨重新开始活跃起来。在水溶液电解质中,以纳米多孔石墨碳为载体的Au纳米颗粒作为催化剂,电化学合成氨产氨速率为4.6×10-9mol·s-1·cm-2[41]。Wang等[42]采用Au1催化剂,在室温下进行电催化还原N2产氨,电流效率为4.02%。Qin等[43]采用碳负载单位点Au为电催化剂,产氨速率为3.79×10-11mol·s-1·cm-2,电流效率达12.3%。Shi等[44]在TiO2上嵌入Au亚纳米(≈0.5nm)团簇进行电催化N2还原反应,产氨速率为21.4μg·h-1·mg cat.-1,电流效率为8.11%。Li等[45]以A-Au/CeOx-RGO为阴极催化剂,进行电化学N2还原反应产氨,产氨速率为8.3μg·h-1· mg cat.-1,电流效率为10.10%。Nazemi等[46]以中空Au纳米粒子作为电催化剂,在0.5M LiClO4水溶液中研究电化学N2还原反应的电催化活性,从20 ℃升温至50 ℃时,由于传质速率较快,产氨速率和电流效率都有明显的提高,产氨速率从2.3到达2.82 ?g·cm-2·h-1,电流效率从30.2%升至40.55%。相对较高的电流效率是因为与其他贵金属相比,Au的H2分解反应活性较低[47]。
贵金属受限于稀有性和价格,采用廉价金属催化剂作为替代是学术界关注的重点。Chen等[48]以KHCO3水溶液为电解质,使用负载在碳纳米管(CNT)上的Fe纳米颗粒作为催化剂,在室温常压下进行电化学合成氨,产氨速率为3.59×10-12 mol·s-1·cm-2。Kim等[49]以多孔镍电极为阴极,Pt板为阳极。以有机溶剂异丙醇/去离子水为电解质,加入H2SO4为支持电解质,在常温常压下进行电化学合成氨,产氨速率为1.54×10-11mol·s-1·cm-2,电流效率为0.89%。与水相比,异丙醇能溶解更多的N2,是很有前途的电化学合成氨电解质,但异丙醇在阴极上电解时易还原,乙二胺(EDA)阴极稳定性相对较高,所以该课题组[50]又开发了一种基于EDA作为阴极溶剂的新型电解槽用于电化学合成氨,产氨速率为3.58×10-11 mol·s-1·cm-2,电流效率为17.2%。Wu等采用MoS2 / rGO为电催化剂,在0.1 M LiClO4溶液体系中产氨速率为24.82 μg·h-1·mg cat.-1,电流效率为4.58%[51]。Yang等[52]利用氮化钒(VN0.7O0.45)纳米粒子在温和条件下进行电化学产氨,产氨速率为3.3×10–10
mol·s–1·cm–2,电流效率为6.0%。Han等[53]采用Mo单原子催化剂,在室温KOH水溶液电解液中产氨速率为34.0 μg·h-1·mg cat.-1,电流效率为14.6%。无论采用贵金属催化剂还是非贵金属催化剂,水溶液电解质体系电化学合成氨面对的主要问题是室温下催化剂活性不如高温体系,同时因析氢(HER)过电位低,与氮气还原发生竞争,导致电流效率亦逊于高温体系,发展能克服HER竞争的高活性催化剂是其未来发展方向之一。
低温电化学合成氨还可以用质子交换膜作为电解质,实现在低温甚至在室温下电化学合成氨。聚合物质子交换膜(PEM)是低温条件下对质子导通并对电子绝缘的功能高分子膜。在PEM中,Nafion膜化学稳定性高质子导电性强,是良好的质子交换膜材料[54]。新疆大学刘瑞泉课题组在这一方面进行了系列研究,王进等[55]制备了Ce0.8Sm0.2O2-δ(SDC)和 Sm0.5Sr0.5CoO3-δ(SSC)超细粉体,分别以Ni-SDC和SSC为阴极,磺化聚砜质子交换膜为电解质,Ni-SDC 金属陶瓷为阳极,Ag-Pt网做集流体组成单电池,在80 ℃时产氨速率达到6.5×10-9mol·s-1·cm-2。Zhang等[56]将阴极换作SmBaCuMO5+δ(M = Fe,Co,Ni)(SBCM)粉末烧成的陶瓷颗粒,Nafion质子交换膜为电解质,Ni-SDC作为阳极,在低温常压下进行电化学合成氨。80 ℃时,最高产氨速率可达8.7×10-9mol·s-1·cm-2。随后,韩慧等[57]采用SmCo0.8 Fe0.1Ni0.1O3为阴极,在80 ℃和常压条件下,产氨速率为9.69×10-9mol·s-1·cm-2。Xu等[58]通过改变SFCN中Fe、Ni的含量来影响阴极的催化性能,获得电化学合成氨领域目前的最高产氨速率,高达1.13×10-8mol·s-1·cm-2,电流效率为90.4%。但因为氨是弱碱,会与质子交换膜发生反应,影响其使用寿命。
4 结语与展望
高温质子电解质电化学合成氨克服了高压的条件,产氨速率虽多年来都没有明显的提高,但高温条件会获得相对较高的电流效率,引领了电化学合成氨的发展。中温电化学合成氨条件相对温和,中温区的温度氨依然会发生热分解,但其中的熔盐电解质体系电导率很高,是电化学合成氨的重要部分。质子交换膜材料虽稳定性和质子导电能力比较差,酸性膜还会与氨发生反应,但采用质子交换膜作电解质实现了低温常压下电化学合成氨,并获得了此领域目前的最高产氨速率和电流效率;液体电解质在室温下催化剂活性和电流效率虽稍逊于高温体系,但水溶液电解质来源广泛,在电化学合成氨领域大有可为。
总之,虽然各国在电化学合成氨领域取得了一定的进展,但是想要取代Haber-Bosch法并应用到工业生产中,还要有很长的路要走。寻找更加适合的催化剂或者提高现有催化剂的活性、选择性以及稳定性都是面对的主要挑战,研究出产氨速率更高,反应条件更加经济温和的电化学合成氨方法具有重要的现实意义,也是电化学合成氨领域奋斗的目标。
參考文献:
[1]Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68.
[2] 谈薇. 甲烷氮气常压合成氨催化剂的制备及性能研究[D].西北大学, 2016.
[3] Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465.
[4] Vancini C A, Bourgars D J. Synthesis of ammonia, by Carlo Antonio Van Cini. Translated by Lydia Pirt, Edited by Douglas J. Borgars[M]. Macmillan, 1971.
[5] Lan R, Tao S. Direct ammonia alkaline anion-exchange membrane fuel cells[J]. Electrochemical and Solid-State Letters, 2010, 13(8): B83-B86.
[6] Klerke A, Christensen C H, N?rskov J K, et al. Ammonia for hydrogen storage: challenges and opportunities[J]. Journal of Materials Chemistry, 2008, 18(20): 2304-2310.
[7] Marnellos G, Zisekas S, Stoukides M. Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors[J]. Journal of Catalysis, 2000, 193(1): 80-87.
[8] Kyriakou V, Garagounis I, Vasileiou E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13.
[9] Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68.
[10]苏江, 王阳峰. 制氢装置建模分析与优化研究[J]. 当代化工, 2018, 47(07): 1519-1522.
[11]wahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3: 359-363.
[12]Panagos E, Voudouris I, Stoukides M. Modelling of equilibrium limited hydrogenation reactions carried out in H+ conducting solid oxide membrane reactors[J]. Chemical engineering science, 1996, 51 (11): 3175-3180.
[13]Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100.
[14]Wang J D, Xie Y H, Zhang Z F, et al. Protonic conduction in Ca2+-doped La2M2O7(M= Ce, Zr) with its application to ammonia synthesis electrochemically[J]. Materials research bulletin, 2005, 40(8): 1294-1302.
[15]Li Z J, Liu R Q, Xie Y H, et al. A novel method for preparation of doped Ba3(Ca1.18Nb1.82)O9?δ: Application to ammonia synthesis at atmospheric pressure[J]. Solid State Ionics, 2005, 176(11-12): 1063-1066.
[16]Zhang F, Yang Q, Pan B, et al. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3?αceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure[J]. Materials Letters, 2007, 61(19-20): 4144-4148.
[17]Zhang M, Xu J, Ma G. Proton conduction in BaxCe0.8Y0.2O3?α + 0.04 ZnO at intermediate temperatures and its application in ammonia synthesis at atmospheric pressure[J]. Journal of materials science, 2011, 46(13): 4690-4694.
[18]Vasileiou E, Kyriakou V, Garagounis I, et al. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2015, 275: 110-116.
[19]Murakami T, Nishikiori T, Nohira T, et al. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure[J]. Journal of the American Chemical Society, 2003, 125(2): 334-335.
[20]Murakami T, Nohira T, Ogata Y H, et al. Electrochemical window of a LiCl-KCl-CsCl melt[J]. Electro-chemical and solid-state letters, 2005, 8(1): E1-E3.
[21]Murakami T, Nohira T, Goto T, et al. Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure[J]. Electrochimica acta, 2005, 50(27): 5423-5426.
[22]Murakami T, Nohira T, Araki Y, et al. Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a nonconsumable anode[J]. Electrochemical and solid-state letters, 2007, 10(4): E4-E6.
[23]Murakami T, Nohira T, Ogata Y H, et al. Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source[J]. Electrochemical and Solid-State Letters, 2005, 8(4): D12-D14.
[24]Murakami T, Nohira T, Ogata Y H, et al. Electrochemical synthesis of ammonia and coproduction of metal sulfides from hydrogen sulfide and nitrogen under atmospheric pressure[J]. Journal of The Electrochemical Society, 2005, 152(6): D109-D112.
[25]Murakami T, Nishikiori T, Nohira T, et al. Electrolytic ammonia synthesis from hydrogen chloride and nitrogen gases with simultaneous recovery of chlorine under atmospheric pressure[J]. Electrochemical and Solid-State Letters, 2005, 8(8): D19-D21.
[26]Kim K, Kim J N, Yoon H C, et al. Effect of electrode material on the electrochemical reduction of nitrogen in a molten LiCl–KCl–CsCl system[J]. International Journal of Hydrogen Energy, 2015, 40 (16): 5578-5582.
[27]Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte[J]. Korean Journal of Chemical Engineering, 2016, 33(6): 1777-1780.
[28]Licht S, Cui B, Wang B, et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide sus-pensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640.
[29]Li F F, Licht S. Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3[J]. Inorganic chemistry, 2014, 53(19): 10042-10044.
[30]Cui B, Zhang J, Liu S, et al. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon[J]. Green Chemistry, 2017, 19(1): 298-304.
[31]张建华. 由水和氮气直接常压电化学合成氨研究[D].东北石油大学,2018.
[32]Lan R, Alkhazmi K A, Amar I A, et al. Synthesis of ammonia directly from wet air at intermediate temper-ature[J]. Applied Catalysis B: Environmental, 2014, 152: 212-217.
[33]Amar I A, Lan R, Petit C T G, et al. Electrochemical synthesis of ammonia using Fe3Mo3N catalyst and carbonate-oxide composite electrolyte[J]. International Journal of Electrochemical Science, 2015, 10(5): 3757-5766.
[34]Amar I A, Lan R, Petit C T G, et al. Electrochemical synthesis of ammonia based on Co3Mo3N catalyst and LiAlO2–(Li, Na, K)2CO3 composite electrolyte[J]. Electrocatalysis, 2015, 6(3): 286-294.
[35]Lan R, Alkhazmi K A, Amar I A, et al. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst[J]. Electrochimica Acta, 2014, 123: 582-587.
[36]Amar I A, Petit C T G, Mann G, et al. Electrochemical synthesis of ammonia from N2 and H2O based on (Li, Na, K)2CO3–Ce0. 8Gd0. 18Ca0.02O2?δcomposite electrolyte and CoFe2O4 cathode[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4322-4330.
[37]Amar I A, Lan R, Tao S. Electrochemical synthesis of ammonia directly from wet N2 using La0.6Sr0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δ composite catalyst[J]. Journal of The Electrochemical Society, 2014, 161(6): H350-H354.
[38]Amar I A, Petit C T G, Lan R, et al. Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4 FeO3?δCe0.8Gd0.18Ca0.02O2?δ composite cathode[J]. RSC Advances, 2014, 4(36): 18749-18754.
[39]Amar I A, Lan R, Tao S. Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3?δCe0.8Gd0.18Ca0.02O2?δ composite cathode[J]. RSC Advances, 2015, 5(49): 38977-38983.
[40]Bao D, Zhang Q, Meng F L, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Advanced Materials, 2017, 29(3): 1604799.
[41]Wang H, Wang L, Wang Q, et al. Ambient electrosynthesis of ammonia: electrode porosity and composition engineering[J]. Angewandte Chemie International Edition, 2018, 57(38): 12360-12364.
[42]Wang X, Wang W, Qiao M, et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia[J]. Science bulletin, 2018, 63(19): 1246-1253.
[43]Qin Q, Heil T, Antonietti M, et al. Single‐site gold catalysts on hierarchical N‐doped porous noble carbon for enhanced electrochemical reduction of nitrogen[J]. Small Methods, 2018, 2(12): 1800202.
[44]Shi M M, Bao D, Wulan B R, et al. Au sub‐nanoclusters on TiO2 toward highly efficient and selective elec-trocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550.
[45]Li S J, Bao D, Shi M M, et al. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Advanced Materials, 2017, 29(33): 1700001.
[46]Nazemi M, Panikkanvalappil S R, El-Sayed M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323.
[47]Wang J, Yu L, Hu L, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature communications, 2018, 9(1): 1795.
[48]Chen S, Perathoner S, Ampelli C, et al. Electrocatalytic synthesis of ammonia at room temperature and at-mospheric pressure from water and nitrogen on a carbon‐nanotube‐based electrocatalyst[J]. AngewandteChemie International Edition, 2017, 56(10): 2699- 2703.
[49]Kim K, Lee N, Yoo C Y, et al. Communication-Electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016, 163(7): F610-F612.
[50]Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016, 163(14): F1523-F1526.
[51]Li X, Ren X, Liu X, et al. A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(6): 2524-2528.
[52]Yang X, Nash J, Anibal J, et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(41): 13387-13391.
[53]Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation[J]. Angewandte Chemie International Edition, 2019, 58(8): 2321-2325.
[54]劉淑芝,韩伟,刘先军,崔宝臣.电化学合成氨研究进展[J].化工学报,2017,68(07):2621-2630.
[55]王进,刘瑞泉.SDC和SSC在低温常压电化学合成氨中的性能研究[J].化学学报,2008(07):717-721.
[56]Zhang Z, Zhong Z,Liu R Q. Cathode catalysis performance of SmBaCuMO5+ δ (M= Fe, Co, Ni) in ammonia synthesis[J]. Journal of Rare Earths, 2010, 28(4): 556-559.
[57]韩慧,刘瑞泉.SmCo0.8Fe0.2-xNixO3(x=0,0.1,0.2)粉体在低温常压电化学合成氨中的阴极催化性能[J].化学通报,2009,72(11):998-1002.
[58]Xu G C, Liu R Q, Wang J. Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3?xNxO3 (x= 0?0.3) cathode at atmospheric pressure and lower temperature[J]. Science in China Series B: Chemistry, 2009, 52(8): 1171-1175.
(上接第611页)
参考文献:
[1] Wang Z-Q, Bu Z-W, Cao T-T, et al. A novel and recyclable catalytic system for propylene carbonate synthesis from propylene oxide and CO2[J]. Polyhedron, 2012,32:86–89.
[2]卜站伟,王志强,杨立荣,等. 反式-二氯四吡啶合钌的制备及催化性能研究[J]. 河南大学学报:自然科学版, 2010,40(4):366-370.
[3] Sakakura T, Choi J C, Yasuda H. Transformation of Carbon Dioxide [J]. Chem Rev, 2007, 107 (6): 2365-2387.
[4] Jutz F, Grunwaldt J-D. Alfons Baiker. In situ XAS study of the Mn(III)(Salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2 [J]. J Mol Catal A: Chem, 2009,297: 63–72.
[5] Sibaouih A, Ryan P, Axenov K V, Sundberg M R., Leskel M, Repo T. Efcient coupling of CO2 and epoxides with bis(phenoxyiminato) cobalt (III)/Lewis base catalysts [J]. J Mol Catal A: Chem, 2009, 312: 87-91.
[6] Dai W-L, Luo S-L, Yin S-F, et al. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts [J]. Appl Catal A: Gen, 2009, 366: 2-12.
[7]高志文, 肖林飛, 陈静,等. 二氧化碳与环氧化合物合成环状碳酸酯的研究进展 [J]. 催化学报, 2008, 29 (9): 831-838.
[8] Kossev K, Koseva N, Troev K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194: 29-37.
[9] Du Y, Cai F, Kong DL,et al. Organic solvent -free process for the synthesis of Propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins[J]. Green chemistry, 2005, 7:518-523.
[10] Xie HB, Li SH, Zhang SB. Highly active, hexabutylguanidi -nium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2006, 250:30-34.
[11] Lu XB, Liang B, Zhang YJ, et al. Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic[J]. Journal American Chemical Society, 2004, 126, 3732-3733.
[12] Jing H, Edulji SK, Gibbs JM, et al. (Salen)tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide[J]. Inorganic chemistry, 2004, 43:4315-4327.
[13] Paddick RL, Nguyen ST. Chiral (salen) Co catalyst for the synthesis of Cyclic Carbonate[J]. Chemical Communications, 2004, 14:1622 -1623.
[14]孫潇磊,张志,张建,等. 二氧化碳和环氧丙烷合成碳酸丙烯酯热力学计算[J]. 当代化工, 2016,45(7):1523-1526.
[15] Wang Z-Q, Bu Z-W, Ren T-G, et al. Mechanistic aspects of the cycloaddition of CO2 with propylene oxide using the trans- Ru(py)4Cl2 catalyst [J]. Reac Kinet Mech Cat, 2011,103:133–140.
[16] 齐红卫,王志强,曹婷婷,等. 反式-二氯四吡啶合钌催化CO2制备碳酸丙烯酯机理探讨[J]. 河南大学学报:自然科学版, 2012,42(1):42-45.