纳米颗粒对含石蜡玻璃窗光热特性影响
2020-03-05张姝李天奎王泽美吴洋洋刘昌宇李栋
张姝 李天奎 王泽美 吴洋洋 刘昌宇 李栋
摘 要:含石蜡玻璃窗添加纳米颗粒可改善其热性能。考虑太阳辐射、温差传热及相变蓄能耦合作用下,建立含纳米颗粒石蜡玻璃窗的一维光热传输模型,研究含氧化铜纳米颗粒石蜡玻璃窗的动态光热特性,分析了纳米颗粒粒径和浓度对玻璃窗内表面温度、热流密度、太陽能透射率的影响。结果表明:纳米颗粒浓度和粒径对玻璃窗传热性和透射率都有影响,其中浓度的影响更大;随着浓度增大,玻璃窗内表面温度降低,太阳能透射率降低,石蜡融化和凝固时间缩短。推荐粒径10~20 nm、浓度低于1%。
关 键 词:纳米颗粒;石蜡;玻璃窗;光热特性
中图分类号:O 433.1 文献标识码: A 文章编号: 1671-0460(2020)01-0027-05
Influence of Nanometer Particles on Photothermal
Characteristics of Paraffin-coated Glass Windows
ZHANG Shu1, LI Tian-kui2, WANG Ze-mei2, WU Yang-yang2, LIU Chang-yu2, LI Dong1
(1. School of Civil Engineering and Architecture, Northeast Petroleum University, Heilongjiang Daqing 163318, China;
2. Qingdao Special Equipment Inspection and Testing Institute, Shandong Qingdao 266100, China)
Abstract: Adding nanoparticles to paraffin-coated glass windows can improve their thermal performance. Considering the coupling of solar radiation, temperature difference heat transfer and phase change energy storage, a one-dimensional photothermal transfer model of nano-particle paraffin glass window was established to study the dynamic photothermal characteristics of the copper oxide nano-particle paraffin glass window and analyze the effect of particle size and concentration of nano-particles on the inner surface temperature, heat flux density and solar transmittance of the glazing. The results showed that the nanoparticle concentration and particle size of nanoparticles had effect on the heat transfer and transmittance of the glass window, especially the concentration. With the increase of the concentration, the inner surface temperature of the glass window decreased, and the solar transmittance and the melting/solidification time of paraffin also decreased. The particle diameter of copper oxide nano-particle was recommended to be 10 nm to 20 nm and the concentration was less than 1%.
Key words: Nanoparticle; Paraffin; Glazing window; Photothermal characteristics
我国建筑能耗约占社会总能耗的三分之一,建筑能耗的50%是通过玻璃窗产生的,提高建筑窗户热工性能对建筑节能至关重要[1,2]。石蜡作为一种储能密度大、吸放热近似恒温的相变材料,添加在普通玻璃窗中可以有效提高其隔热性能。例如,Francesco等人[3]发现与传统玻璃窗相比,双夹层相变玻璃窗可提高室内热舒适性。Li Shuhong[4]等人发现添加石蜡的玻璃窗隔热效果优于真空玻璃。然而,石蜡导热性差导致蓄放热速度慢,影响其应用效果[5]。
(3d)
式中:Tref—参考温度, K;
Ts,Tl—分别为含纳米颗粒石蜡材料融化初始温度和液相温度, K;
c —含纳米颗粒石蜡材料比热, J·kg-1·K-1;
QL —含纳米颗粒石蜡材料相变过程的潜热, J·kg-1;
β —计算区域液相率。
外层玻璃外表面接受太阳辐射,x=0处边界条件如下:
(4)
式中: hout、Tout和Ta,out—分别为外层玻璃外表面对流换热系数,W·m-2·K-1;
外层玻璃外表面温度和环境温度, K;
qrad —外层玻璃外表面与外界环境辐射换热, W·m-2。
qrad计算式如下:
(5)
式中: qrad,air、qrad,sky和qrad,ground —分别为玻璃与大气、天空和地面的
辐射换热,(W·m-2)。
内层玻璃内表面在x=x1+ x2+ x3处边界条件为:
(6)
式中: hin、Tin和Ta,in —分别为内层玻璃内表面对流换热系数, W·m-2·K-1;
温度和室内温度, K。
含纳米颗粒石蜡热物性参数计算过程如下:
密度[11]:
(7)
式中: —納米颗粒体积浓度;
和 —分别为纳米颗粒和石蜡的密度, kg·m-3。
比热容[12]:
(8)
式中: NePCM、PCM、np —分别表示含纳米颗粒石蜡材料、石蜡和
纳米颗粒;
—相应介质密度, kg·m-3;
—相应介质比热, J·kg-1·K-1。
潜热量[13]:
(9)
式中:—石蜡的潜热量, J·kg-1。
导热系数[14]:
(10)
式中:dnp —纳米顆粒直径, m;
n —经验形状因子,n=3/ψ,
ψ—指颗粒的球形度,当颗粒为球形时n=3;
B —常数,1.38×10-23 J·K-1;
Cinteract —纳米颗粒作用参数,其值受纳米颗粒浓度及颗粒间
作用力的影响,本文取为0;
ξ —常数,1.428×108 m-1。
1.2 模型验证
本文模型涉及的求解方法在前期研究中得到验证[15-17]。但为进一步验证,通过文献[18]提出的实验方法验证该模型。室内空气温度和太阳辐射强度分别为288 K和650 W·m-2。hout和hin均是5.9 W·m-2·K-1。玻璃的吸收系数、折射率和发射率分别为19 m-1、1.5和0.88,玻璃和相变层厚度分别为4 mm和8 mm。含体积浓度0.000 5%氧化铝纳米颗粒石蜡的折射率和吸收系数分别为1.4、300 m-1(固态)和100 m-1(液态)。模拟初始温度是15 ℃。玻璃下表面热电偶测得玻璃表面温度受透过玻璃太阳能的影响,图2给出了太阳能透射率和温度的测量与模拟值对比,温度测量值和模拟值相差较大,这是因为热电偶测得温度包括玻璃表面温度和透过辐射附加的温度,为了消除辐射影响,引入等价温度Teq,其计算公式如下[19]:
(11)
式中:αT—热电偶表面吸收率,取0.69;
—玻璃装置透过率;
—模拟温度, ℃。
如图2所示,计算结果和实验曲线基本一致,说明本文建立的模型能够较好地模拟含纳米颗粒石蜡玻璃窗光热传输过程。
2 结果与分析
2.1 粒径的影响
为分析粒径对含纳米颗粒石蜡玻璃窗光热性能的影响,粒径取5、10、15、20和25 nm 5种情况,颗粒质量浓度为5%。
图3为不同粒径时含氧化铜纳米颗粒石蜡玻璃窗计算结果。由图3(a、b)可知,氧化铜粒径增加,窗内表面峰值热流和温度越大,但对其峰值延迟影响较弱。
从图3(c)可知,氧化铜粒径增加,玻璃窗太阳能透过量增加,但对其太阳能透过量峰值延迟影响较弱。同时由图可见,太阳能透过量在固态、融化阶段、液态和凝固阶段呈现出不同的变化特点:固态时增加缓慢,融化状态则快速增加,液态时不变,凝固状态时增加缓慢。由图3(d)可知,氧化铜粒径增加,石蜡融化和凝固时间均增加。同粒径5 nm相比,10 nm氧化铜纳米颗粒石蜡融化和凝固时间分别增加180和120 s。
2.2 濃度的影响
为分析浓度对纳米颗粒石蜡玻璃窗光热性能的影响,研究氧化铜纳米颗粒质量浓度为0.1%、0.5%、1%、5%和10%五种情况,纳米颗粒粒径为15 nm。
图4为不同浓度时含氧化铜纳米颗粒石蜡玻璃窗计算结果。从图4(a)可知,氧化铜浓度增加,内表面热流密度峰值越小。浓度0.5%时与0.1%相比较,时间延迟2 040 s。从图4(b)可知,氧化铜浓度增加,玻璃窗内表面温度峰值减小,峰值时间延迟。浓度0.5%与0.1%相比,时间延迟300 s。
由图4(c)可见,氧化铜浓度增加,玻璃窗太阳能透过量减小,峰值时间延迟,太阳能透过量固态时增加缓慢,融化状态则快速增加,液态时不变,凝固状态时增加缓慢。由图4(d)可知,氧化铜浓度增加,石蜡融化和凝固时间减少。浓度1%与5%相比,融化和凝固时间分别减少1 020 s和420 s。
3 结 论
对含纳米颗粒石蜡玻璃窗传热过程进行了一维非稳态数值研究,分析了粒径、浓度对其光热特性的影响,得出如下结论:
(1)粒径变化对传热效果影响较小。随着粒径增加,玻璃窗内表面温度和内表面热流升高,太阳能透射率增大,石蜡融化和凝固时间延长。
(2)相对于粒径,浓度影响更显著。随着浓度增加,玻璃窗内表面温度和内表面降低,太阳能透射率减小,石蜡融化和凝固时间缩短。
(3)兼顾提高蓄放热速率和增加太阳能得热量双重需求,添加氧化铜纳米颗粒的粒径应在10~20 nm之间,浓度应低于1%。
参考文献:
[1] 杨云桦,狄洪发. 低辐射能玻璃窗的节能研究[J]. 太阳能学报,200l,22(3):296-301.
[2] 曹毅然,张小松,金星. 透过玻璃窗的太阳散射辐射得热量测试与模拟研[J]. 太阳能学报,2010,31(10):1318-1323.
[3] Francesco G,Marco P,Matthias H. A Numerical Model to Evaluate the Thermal Behaviour of PCM Glazing System Configurations[J]. Energy and Buildings,2012,54:141-153.
[4] Li Shuhong,ZhongKecheng,Zhou Yingying,et al. Comparative study on the dynamic heat transfer characteristics of PCM-filled glass window and hollow glass window[J]. Energy and Buildings,2014,85:483-492
[5]Gowreesunker B L,Stankovic S A,Kyriacou P A. Experimental and Numerical Investigations of the Optical and Thermal Aspects of a PCM-Glazed Unit [J].Energy and Buildings. 2013,61:239-249.
[6]Huang Xin Peng,Tang Chao Quan,Shi Juan,et al. Heat Transfer Characteristics on Composite Phase Change Materials Filled with Foamed Aluminum and Paraffin Wax[J]. Journal of Southeast University,2017.
[7]王元明,丁云飛,吴会军. 石蜡/碳纳米管复合相变材料的性能研究[J]. 现代化工,2015,35(1):130-134.
[8]Wu Shu Ying,Zhu Dong Sheng,Zhang XiuRong,et al. Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM)[J]. Energy & Fuels,2010,24(3).
[9]Philip J,Shima PD. Thermal properties of nanofluids [J].Adv Colloid Interface Sci,2012;183-184:30-45.
[10]Li Dong,Ma TengFei,Liu ChangYu,et al. Thermal Performance of a PCM-Filled Double Glazing Unit with Different Optical Properties of Phase Change Material [J]. Energy and Buildings,2016,119:143-152.
[11]Vajjha R S,Das D K,Mahagaonkar B M. Density Measurement of Different Nanofluids and Their Comparison With Theory[J]. Petroleum Science & Technology,2009,27(6):612-624.
[12]Salma G,Souad H,Sadok B J. Experimental Study of the Cooling Performance of Phase Change Material with Discrete Heat Sources–Continuous and Intermittent Regimes[J]. Applied Thermal Engineering,2017,111:103-111.
[13]Parsazadeh M,Duan X. Numerical and Statistical Study on Melting of Nanoparticle Enhanced Phase Change Material in a Shell-and-Tube Thermal Energy Storage System[J]. Applied Thermal Engineering,2017,111:950-960.
[14]方晓鹏. 纳米流体热质传递机理及光学特性研究[D]. 南京理工大学,2012.
[15]Li Dong,Li Zai Wu,Zheng Yu Meng,et al. Thermal Performance of a PCM-Filled Double-Glazing Unit with Different Thermophysical Parameters of PCM[J]. Sol. Energy,2016,133:207-220.
[16]Li Dong,Ma TengFei,Liu Chang Yu,et al. Thermal Performance of a PCM-Filled Double Glazing Unit with Different Optical Properties of Phase Change Material[J]. Energy Build,2016,119:143-152.
[17] Liu Chang Yu ,Wu Yang ,Li Dong,et al. Effect of PCM Thickness and Melting Temperature on Thermal Performance of Double Glazing Units[J]. Build. Eng,2017,11:87-95.
[18]Liu Chang Yu,Wu Yang,Zhu Yong Jian,et al. Experimental investigation of Optical and Thermal Performance of a PCM-Glazed Unit for Building Applications[J]. Energy Build,2018(158):794-800.
[19]Kong X,Lu S,Li Y,et al. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application [J]. Energy and Buildings,2014,81:404-415.