APP下载

拔节期干旱胁迫下冬小麦品种间产量及生理响应的差异*

2020-02-28黄桂荣王雅静张欣莹钟秀丽

中国农业气象 2020年1期
关键词:导度抗旱性气孔

封 富,黄桂荣,王雅静,张欣莹,王 涛,钟秀丽

拔节期干旱胁迫下冬小麦品种间产量及生理响应的差异*

封 富,黄桂荣,王雅静,张欣莹,王 涛,钟秀丽**

(中国农业科学院农业环境与可持续发展研究所/农业部旱作节水农业重点实验室,北京 100081)

拔节期干旱是影响冬小麦产量的重要灾害,揭示不同品种对干旱胁迫生理响应的差异,可为鉴选与培育抗旱品种提供指导。选取黄淮海平原不同冬麦区种植面积较大的晋麦47、洛旱2号、石家庄8号、豫麦18和郑麦9023共5个品种和1个抗逆性较弱的品种偃麦20,利用防雨棚开展盆栽试验研究。从籽粒产量以及气孔特性、膜稳定性和渗透调节特性等方面,分析拔节期受水分胁迫后,各品种抗旱性和干旱胁迫响应途径的差异。结果表明:(1)灌溉条件下,晋麦47、洛旱2号和石家庄8号产量较高,豫麦18和偃麦20产量较低。拔节期受干旱胁迫后,晋麦47、洛旱2号和豫麦18产量较高,石家庄8号和偃麦20产量较低。可见,以籽粒产量为抗旱性评价的核心指标,晋麦47、洛旱2号和豫麦18抗旱性较强,石家庄8号和偃麦20抗旱性较弱,郑麦9023抗旱性居中。(2)3个抗旱品种间干旱胁迫响应途径并不一致。与抗旱性较弱的石家庄8号和偃麦20相比,拔节期干旱胁迫下,豫麦18气孔导度较低,气孔调节能力强;洛旱2号细胞渗透势较低,渗透调节能力较强;洛旱2号膜离子渗漏率较低,膜稳定性较强;晋麦47在气孔调节、渗透调节和膜稳定性调节方面与抗旱性较弱的品种无显著差异。研究结果说明,冬小麦品种间响应干旱胁迫的关键途径存在差异。因而品种的抗旱性难以通过单一生理指标科学评价,需要多指标联合鉴定。

冬小麦;产量;抗旱性;气孔调节;渗透调节;膜稳定性调节

小麦(L.)是世界上广为种植的粮食作物,为中国第二大作物[1]。干旱缺水已成为制约中国小麦持续增产的关键因素[2]。小麦拔节期,干旱发生频繁,对产量的危害较重。提高小麦品种的抗旱性是突破雨养地区小麦产量的有效途径之一。揭示品种之间对干旱胁迫生理响应的差异,可以为品种的抗旱性评价与遗传改良提供依据。

迄今为止,研究者开展了大量关于植物响应干旱胁迫的生理与分子机理的研究。植物受到干旱胁迫后,早期的响应表现为ABA水平迅速上升,诱导叶片气孔导度下降,从而抑制蒸腾作用,减少水分丧失[3−4]。ABA水平升高同时还激活多种细胞与生理响应[5],表现为脯氨酸、甜菜碱、可溶性糖等渗透调节物质大量积累[6],降低细胞渗透势,缓解水分亏缺状态下细胞原生质以及胞内功能蛋白的脱水胁迫[7]。光合作用随气孔导度减小以及光合酶类活性的降低而下降[8]。光合作用与正常呼吸作用因受到干旱胁迫的抑制引起活性氧大量产生,对DNA、蛋白质以及生物膜脂质产生氧化损伤[9]。大量膜脂的过氧化引起生物膜的流动性和稳定性下降,离子大量外渗,打破细胞内离子平衡,细胞正常代谢被破坏。植物已经进化出应对过氧化损伤的策略,如降低光合作用、产生抗坏血酸、谷胱甘肽等抗氧化剂以及过氧化物酶、超氧化物歧化酶等抗氧化酶类清除活性氧[6,10],维持生物膜的稳定性。

植物的抗旱性是多基因控制的数量性状,植物对干旱胁迫的适应也是多途径的。但不同作物种类以及同种作物的不同品种之间,在干旱胁迫响应的关键途径方面可能存在差异。本研究选取黄淮海平原不同冬麦区种植面积较大的5个品种和1个抗逆性较弱的品种开展研究,从籽粒产量以及气孔特性、膜稳定性和渗透调节特性3个方面,分析拔节期受水分胁迫后,抗旱性与干旱胁迫响应途径之间的差异,以期为利用生理指标进行抗旱性评价和耐旱品种鉴选提供指导。

1 材料与方法

1.1 材料

选用晋麦47、洛旱2号、豫麦18、石家庄8号、郑9023和偃麦20共6个冬小麦品种为材料,各品种特性见表1。在2017年10月−2018年6月,于中国农业科学院农业环境与可持续发展研究所顺义科学实验站,采用盆栽方法开展实验。塑料盆直径36cm,高30cm,底直径28cm,盆底留直径1cm的排出孔。取耕层土壤,与有机肥充分混合,先用5mm筛子过筛,再混匀。土壤总氮0.109g×kg−1,有效磷24.5mg×kg−1,速效钾106mg×kg−1,pH为7.7。每盆先装土17.0kg,播种后再覆土1.0kg。于2017年10月1日播种,每盆均匀点播40粒种子。出苗后30d第一次间苗,去除长势弱小幼苗5株。返青后第二次间苗,每盆定苗30株。入冬前将盆体埋入土中越冬,春季气温回升后取出。

1.2 水分处理

每个品种均设置两种水分处理,充分灌溉(WW)和干旱胁迫(DS),土壤含水量分别为最大田间持水量(FC)的75%和45%。FC按如下方法测定:取过筛后混合均匀的土壤适量,装入3个铝盒中,带回实验室,用烘干法测定土壤含水量。另取3个塑料盆,各装入18kg土壤,测定土壤最大田间持水量(FC)。具体方法为,先将土壤浇透水,用塑料膜覆盖盆口防止表面蒸发失水。让过量的水从盆底排水孔流出,至排水孔不再有水分渗出,即盆中土壤重量不再变化,此时土壤含水量即为土壤FC。按照FC的75%和45%计算WW和DS处理的初始重量。

表1 试验品种名称及特性

采用称重法控制土壤水分,每天日落后1~2h浇水,至各处理的初始重量。控水时间从2018年4月5日冬小麦进入拔节期开始,至4月25日冬小麦拔节末期结束。其余时间正常管理。盆栽小麦置于塑料防雨棚内,降雨时放下防雨棚遮蔽雨水,晴天将雨棚卷起,让植物接受自然光照,并在开放环境下生长。每个品种均进行两个水分处理,每处理6个重复。

1.3 项目测定

气孔导度测定:分别于干旱胁迫5d、10d、15d后,利用便携式近红外气体分析仪(LI-COR,美国)测定叶片气孔导度。取主茎上部第一片完全展开叶,每盆测3片,取均值。

饱和渗透势测定:将3片小麦叶片置于装有去离子水的自封袋中,吸水8h,使其达到饱和状态(RWC=100%);取出,用吸水纸吸干表面水分,密封后迅速放入低温冰箱中冷冻。测定前取出,室温下融化30min,榨取汁液,取10μL用冰点渗透压计(美国)测量渗透摩尔浓度。计算饱和渗透势,即

膜离子渗漏率的测定:参照Welti等[11]的方法利用电导仪测定。取3枚小麦叶片,置于25mL去离子水中,在23℃水浴下轻微振荡1h,测定初电导值;溶液在100℃下煮沸10min,冷却至23℃,测定总电导值。

离子渗漏率=初电导值/总电导值 (2)

籽粒产量:成熟后,将各盆内植株收获,装于网袋,自然晒干后人工脱粒,用电子秤(美国,精确到0.01g)称重。

单株籽粒产量=总产量/株数 (3)

1.4 数据处理

采用Microsoft Excel 2013作图,用Origin 2018 64bit软件统计分析数据。

2 结果与分析

2.1 不同品种冬小麦产量对拔节期干旱胁迫的响应

由图1可见,在充分灌溉条件下(WW),晋麦47、洛旱2号、石家庄8号产量较高,显著高于豫麦18和偃麦20(P<0.05),郑麦9023产量居中。拔节期受干旱胁迫(DS),与WW处理相比,各品种产量均显著降低。晋麦47、洛旱2号和豫麦18降低幅度较小,分别是57.7%、57.6%和53.5%。郑麦9023、石家庄8号和偃展20降低幅度较大,分别为58.6%、65.3%和60.1%。导致干旱胁迫下各品种的产量排序发生变化,晋麦47、洛旱2号和豫麦18产量较高,显著高于石家庄8号和偃麦20(P<0.05),郑麦9023居中。可见,晋麦47和洛旱2号在灌溉条件下能够充分利用水分,获得高产,在干旱条件下,也能够抵御干旱,获得较高产量。石家庄8号在灌溉条件下,产量与晋麦47和洛旱2号无显著差异,但在干旱条件下,产量显著低于这2个品种。豫麦18与石家庄8号的表现相反,在干旱胁迫下,其产量与晋麦47和洛旱2号无差异,但在灌溉条件下,产量显著低于晋麦47和洛旱2号。偃麦20在灌溉条件和干旱条件下产量均较低。郑麦9023在两种水分条件下均属于中等产量品种。以产量为抗旱性核心评价指标来看,6个试验品种中,晋麦47、洛旱2号和豫麦18抗旱性较强,石家庄8号和偃麦20抗旱性较弱,郑麦9023抗旱性居中。

图1 拔节期灌溉(WW)和干旱(DS)条件下不同冬小麦品种单株籽粒产量的比较

注:小写字母表示干旱条件下品种间的差异显着性,大写字母表示充分灌溉条件下品种间的差异显着性。短线表示均方差。下同。

Note:Lowercase indicates the difference significance among treatments under DS condition, and capital letter indicates the difference significance among treatments under WW condition. The bar means square error. The same as below.

2.2 不同品种冬小麦叶片气孔导度对拔节期干旱胁迫的响应

从图2可以看出,充分灌溉条件下(WW),无干旱胁迫发生时,品种间气孔导度存在显著差异。晋麦47、洛旱2号和石家庄8号的气孔导度较高,显著高于豫麦18、偃麦20和郑麦9023(P<0.05)。结合图1还可知,充分灌溉条件下,品种间气孔导度的差异与品种间产量的差异趋势相近。统计分析结果表明,二者之间存在极显著正相关性(R2=0.89)。干旱胁迫下(DS),不同品种叶片气孔导度均显著下降,但品种间下降幅度不同,导致品种间气孔导度存在显著差异(P<0.05)。干旱胁迫5d,抗旱性较强的洛旱2号和豫麦18气孔导度较低,显著低于抗旱性弱的石家庄8号和偃麦20,晋麦47和抗旱性中等的郑麦9023气孔导度居中。但随着胁迫时间延长至10d,豫麦18 气孔导度最低,显著低于郑麦9023和偃麦20(P<0.05),晋麦47、洛旱2号和石家庄8号居中。胁迫至15d,豫麦18气孔导度依然最低,显著低于晋麦47。洛旱2号、石家庄8号、郑麦9023和偃麦20居中。总体来看,随着干旱胁迫时间延长,3个抗旱品种仅豫麦18气孔导度保持最低,而晋麦47和洛旱2号与抗旱性弱的石家庄8号和偃麦20无显著差异。

图2 两种水分处理(WW和DS)5d、10d和15d后不同冬小麦品种叶片气孔导度的比较

2.3 不同品种冬小麦叶片细胞渗透势对拔节期干旱胁迫的响应

在灌溉条件下(WW),无干旱胁迫发生时,6个试验品种的饱和渗透势存在显著差异(表2)。洛旱2号和石家庄8号较低,豫麦18较高(P<0.05)。干旱胁迫下(DS),6个品种均发生渗透调节响应,饱和渗透势较灌溉条件下显著下降。干旱胁迫持续10d,各品种的饱和渗透势与灌溉条件下的差异达到最大。但胁迫持续15d后,处理间的差异并未持续升高,反而低于胁迫10d的差异。表明胁迫时间过长,损伤严重时,渗透调节能力下降。由表2还可知,品种间对干旱胁迫的渗透调节响应存在显著差异(P<0.05)。抗旱品种洛旱2号在胁迫15d内饱和渗透势一直最低,表明该品种的渗透调节能力显著高于其它品种。但是,抗旱性强的晋麦47和豫麦18的饱和渗透势并未降至与洛旱2号相近的水平,只是达到与抗旱性较弱的品种石家庄8号和偃麦20无显著差异的水平。

表2 两种水分处理(WW和DS)5d、10d和15d后6个品种叶片细胞渗透势比较

2.4 不同品种冬小麦叶片细胞膜稳定性对拔节期干旱胁迫的响应

由图3可以看出,灌溉条件下(WW),没有干旱胁迫发生时,品种间膜离子渗漏率存在显著差异(P<0.05)。洛旱2号和石家庄8号较低,显著低于晋麦47、豫麦18、郑麦9023和偃麦20。在干旱胁迫15d后,6个品种膜离子渗漏率均显著上升,但品种间升高幅度不同。抗旱性弱的石家庄8号、偃麦20和抗旱性居中的郑麦9023升幅均较大,抗旱性强的洛旱2号和豫麦18升幅较小,洛旱2号的膜离子渗漏率最低。抗旱品种晋麦47,无论是干旱胁迫下还是灌溉条件下,其膜离子渗漏率升高的幅度,均与抗旱性较弱的石家庄8号和偃麦20无显著差异。

图3 两种水分处理(WW和DS)15d后不同品种细胞膜离子渗透率的比较

3 结论与讨论

6个试验品种对水分条件的产量响应存在差异。灌溉条件下,晋麦47、洛旱2号和石家庄8号产量较高,豫麦18和偃麦20产量较低,郑麦9023居中。拔节期受干旱胁迫后,晋麦47、洛旱2号和豫麦18产量较高,石家庄8号和偃麦20产量较低,郑麦9023居中。晋麦47 和洛旱2号在灌溉条件下能够充分利用水分,获得高产,在干旱条件下,也能够抵御干旱,获得较高产量。在灌溉条件下,石家庄8号产量与晋麦47和洛旱2号无显著差异,为丰产品种,但在干旱条件下,其产量显著低于这2个品种,因而不适于在降水偏少、又不具备灌溉条件的雨养地区种植。豫麦18在干旱胁迫下产量与晋麦47和洛旱2号无显著差异,在灌溉条件有限或较干旱地区能够获得较高产量,但在灌溉条件下,其产量显著低于晋麦47和洛旱2号,因而不适宜在降水充沛或者灌溉条件良好的地区种植。偃麦20在灌溉条件和干旱条件下产量均较低。郑麦9023属于两种水分条件下均偏中等的品种。因此,明确品种对不同水分条件的产量响应特性,结合地区水分条件科学选用品种是提高作物产量的有效途径。

以籽粒产量为抗旱性核心评价指标,晋麦47、洛旱2号和豫麦18抗旱性较强,石家庄8号和偃麦20抗旱性较弱,郑麦9023抗旱性居中。但不同抗旱品种对干旱胁迫响应的途径并不一致。气孔调节是陆地植物适应胁迫环境的重要机制[12]。植物遭受土壤干旱[13−15]、大气干旱[16−19]和盐胁迫[20]等逆境均会降低气孔导度,减少蒸腾失水。但是品种间气孔响应敏感性[21]、下降幅度[22−23]以及随胁迫时间下降的规律存在差异[16]。本试验6个品种在干旱胁迫下气孔导度均下降。但是抗旱性强的品种仅豫麦18气孔导度较低,而洛旱2号和晋麦47的气孔导度与抗旱性弱的石家庄8号和偃麦20并无显著差异。渗透调节也是植物适应干旱环境的重要途径[24−26]。干旱胁迫下,植物大量合成渗透调节物质,包括脯氨酸、甜菜碱、可溶性糖(甘露醇、山梨醇、海藻糖等)、有机酸等[6,24]。这些渗透调节物质能够降低细胞渗透势,减缓原生质的脱水胁迫[7,25−26]。本试验中,3个抗旱性较强的品种,仅洛旱2号渗透势最低,晋麦47和豫麦18渗透势与抗旱性弱的石家庄8号和偃麦20无显著差异。逆境胁迫下细胞代谢产生的活性氧会对细胞膜造成氧化损伤,引起细胞膜流动性和稳定性下降,胞内离子大量外渗[27−29]。本试验中,抗旱性较强的品种仅洛旱2号在干旱胁迫15d后膜离子渗漏率较低,保持较高的膜稳定性。晋麦47和豫麦18的膜离子渗漏率与抗旱性弱的石家庄8号和偃麦20无显著差异。

干旱胁迫下,抗旱品种豫麦18大幅度降低气孔导度,而晋麦47和洛旱2号降低幅度较小,即维持相对较高的气孔导度。Bota等[30−32]的研究也发现,抗旱性较强的品种在胁迫下维持较高的气孔导度和蒸腾速率以及光合CO2固定能力。Halder等[33−36]将此现象归因于水分胁迫下气孔开度减小,蒸腾作用下降,加剧叶绿体光氧化损伤以及叶温升高导致的高温损伤。然而,从本研究结果可见,晋麦47和洛旱2号等强抗旱品种在干旱胁迫下气孔导度降低幅度相对较小,是因为这些品种不以气孔调节作为关键的干旱响应途径。洛旱2号气孔导度与敏感品种无差异,但是干旱条件下细胞渗透势显著降低,通过加强渗透调节作用减缓原生质的脱水胁迫。同时加强了细胞膜稳定性的调节。晋麦47在干旱胁迫下气孔导度、细胞渗透势以及细胞膜稳定性与敏感品种均无显著差异。但Wang等[37]开展了干旱胁迫下晋麦47蛋白质组学分析,发现抗氧化系统等代谢途径上的蛋白表达仅微弱上调,但LEA蛋白家族成员和分子伴侣显著上调,表明干旱胁迫下晋麦47加强脱水保护蛋白的合成以减缓原生质的脱水和维持蛋白质结构与功能是其干旱响应的主要途径。

农作物以收获籽粒产量为目标,以产量为核心指标的抗旱指数法鉴定抗旱性可信度最高。但是,其费时费工,不适合大批量品种的鉴定与筛选,因而需要探讨可用于大量品种鉴定的可信度高的生理指标。但是,从本研究结果可以看出,不同抗旱品种对干旱胁迫的关键响应途径存在显著差异。因而,依靠单一生理指标,难以提高抗旱材料鉴选效率和可靠性。因此,需要深入研究品种间干旱胁迫响应的差异及机理,发现可靠的生理指标,建立多指标联合鉴选体系,发掘优秀抗旱材料。

[1] Sui N,Li M,Tian J C,et al.Photosynthetic characteristics of a super high yield cultivar of winter wheat during late growth period[J].Agricultural Sciences in China,2010,9(3):346-354.

[2] 吕妍,王让会,蔡子颖.我国干旱半干旱地区气候变化及其影响[J].干旱区资源与环境,2009,23(11):65-71.

Lv Y,Wang R H,Cai Z Y.Climatic change and influence in arid and semi-arid area of China[J].Journal of Arid Land Resources and Environment,2009,23(11):65-71.(in Chinese)

[3] Wilkinson S,Davies W J.Drought,ozone,ABA and ethylene: new insights from cell to plant to community[J]. Plant Cell & Environment,2010,33(4):510-525.

[4] Lee S C,Luan S.ABA signal transduction at the crossroad of biotic and abiotic stress responses[J].Plant,Cell and Environment, 2012,35(1):53-60.

[5] Hossain Z,Nouri M Z,Komatsu S,et al.Plant cell organelle proteomics in response to abiotic stress[J].Journal of Proteome Research,2012,11(1):37-48.

[6] Chaves M M,Maroco J P,Pereira J S,et al.Understanding plant responses to drought:from genes to the whole plant[J]. Functional Plant Biology,2003,30(3):239-264.

[7] Hare P.Dissecting the roles of osmolyte accumulation during stress[J].Plant Cell Environ,1998,21(6):535-553.

[8] Reddy A R,Chaitanya K V,Vivekanandan M,et al.Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology, 2004,161(11):1189-1202.

[9] Mittler R.Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.

[10] Mittler R.Abiotic stress,the field environment and stress combination[J].Trends in Plant Science,2006,11(1):15-19.

[11] Welti R,Li W,Li M,et al.Profiling membrane lipids in plant stress responses:role of phospholipase D alpha in freezing- induced lipid changes in Arabidopsis[J].J Biol Chem, 2002,277:31994-32002.

[12] Hetherington A M,Woodward F I.The role of stomata in sensing and driving environmental change[J].Nature (London),2003,424(6951):901-908.

[13] Belko N,Zaman-Allah M,Cisse N,et al.Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea[J]. Functional Plant Biology,2012,39(4):306-325.

[14] Kholova J,Hash C T,Kakkera A,et al.Constitutive water- conserving mechanisms are correlated with the terminal drought tolerance of pearl millet[(L.) R.Br.][J].Journal of Experimental Botany,2010,61(2):369-377.

[15] Kholova J,Hash C T,Kumar P L,et al.Terminal drought-tolerant pearl millet[(L.)R.Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit[J].Journal of Experimental Botany,2010, 61(5):1431-1440.

[16] Devi M J,Sinclair T R,Vadez V,et al.Genotypic variation in peanut for transpiration response to vapor pressure deficit [J].Crop Science,2010,50(1):191-196.

[17] Merilo E,Yarmolinsky D,Jalakas P,et al.Stomatal VPD response:there is more to the story than ABA[J].Plant Physiology,2018,176 (1):851-864.

[18] Suzuki M,Umeda H,Matsuo S,et al.Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production[J].Scientia Horticulturae, 2015,187:44-49.

[19] Talbott L D,Rahveh E,Zeiger E,et al.Relative humidity is a key factor in the acclimation of the stomatal response to CO2[J].Journal of Experimental Botany,2003,54(390): 2141-2147.

[20] Haque M S,Alexandra D S,Cristiano S,et al.Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance[J].Frontiers in Plant Science,2017,8:1602-1615.

[21] Schultz H R.Leaf absorptance of visible radiation inL.:stimates of age and shade effects with a simple field method[J].Scientia Horticulturae(Amsterdam),1996, 66(1-2):93-102.

[22] Condon A G,Richards R A,Rebetzke G J,et al.Improving intrinsic water-use efficiency and crop yield[J].Crop Science, 2002,42(1):122-131.

[23] Lee J C.The stabilization of proteins by sucrose[J].Journal of Biological Chemistry,1981,256(14):7193-7201.

[24] Nambara E,Kawaide H,Kamiya Y,et al.Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation:ABA-dependent and ABA-independent accumulation of free amino acids during dehydration[J]. Plant & Cell Physiology,1998,39(8):853-858.

[25] Berglund A H,Norberg P,Quartacci M F,et al.Properties of plant plasma membrane lipid models-bilayer permeability and monolayer behaviour of glucosylceramide and phosphatidic acid in phospholipid mixtures[J].Physiologia Plantarum,2010,109(2):117-122.

[26] Cooke D T,Burden R S.Lipid modulation of plasma membrane-bound ATPases[J].Physiologia Plantarum,1990, 78(1):153-159.

[27] Liljenberg C,Kates M.Changes in lipid composition of oat root membranes as a function of water-deficit stress[J]. Biochemistry and Cell Biology,1985,63(2):77-84.

[28] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant Physiology and Biochemistry,2010,48(12):909-930.

[29] Jiang M.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J].Journal of Experimental Botany,2002,53 (379):2401-2410.

[30] Bota J,Flexas J,Medrano H,et al.Genetic variability of photosynthesis and water use in Balearic grapevine cultivars [J].Annals of Applied Biology,2001,138(3):353-361.

[31] Saeidi M,Abdoli M.Effect of drought stress during grain filling on yield and its components,gas exchange variables, and some physiological traits of wheat cultivars[J].Journal of Agricultural Science and Technology,2015,17(4):885-898.

[32] Ratnayaka I,Båga M,Fowler D B,et al.Construction and characterization of a BAC library of a cold-tolerant hexaploid wheat cultivar[J].Crop Science,2005,45(4): 1571-1577.

[33] Turan,Ekmekci Y.Activities of photosystem II and antioxidant enzymes in chickpea(L.) cultivars exposed to chilling temperatures[J].Acta Physiologiae Plantarum,2011,33(1):67-78.

[34] Zhang J,Kirkham M B.Drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species[J].Plant and Cell Physiology,1994,35(5): 785-791.

[35] 毛浩田,陈梦莹,吴楠,等.干旱胁迫对不同倍性小麦和八倍体小黑麦苗期光合能力与抗氧化系统的影响[J].麦类作物学报,2018,38(10):114-122.

Mao H T,Chen M Y,Wu N,et al.Effects of drought stress on photosynthetic capacity and antioxidant system in wheat with different ploidy levels and octoploid triticale at seedling stage[J].Journal of Triticeae Crops,2018,38(10): 114-122.(in Chinese)

[36] Halder K P,Burrage S W.Drought stress effects on water relations of rice grown in nutrient film technique[J].Pakistan Journal of Biological Sciences,2003,6(5):441-444.

[37] Wang Y,Zhang X,Huang G,et al.iTRAQ:based quantitative analysis of responsive proteins under peg-induced drought stress in wheat leaves[J].International Journal of Molecular Sciences,2019,20(11):2621-1640.

Cultivar Differences in Yield and Physiological Response of Winter Wheat after Exposed to Drought Stress at Jointing Stage

FENG Fu, HUANG Gui-rong, WANG Ya-jing, ZHANG Xin-ying, WANG Tao, ZHONG Xiu-li

(Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China)

Drought stress occurring at jointing stage has been restricted winter wheat production severely. This study explored the genotypic difference in physiological response to drought, aiming at providing informative guidance for selection and breeding of drought tolerant cultivars. Five cultivars, which were planted in larger areas in different regions of the North China Plain, and one stress sensitive cultivar were selected as materials. Pot cultivation and rain-shelter were adopted to carry out the experiment. In terms of grain yield, as well as stomatal traits, cellular membrane stability, and osmoregulation traits, genotypic difference in drought tolerance along with the drought response pathways after suffering drought stress at jointing stage were compared and analyzed. Under well-watered condition, winter wheat cultivars Jinmai 47, Luohan 2, and Shijiazhuang yielded higher, while Yuami 18 and Yanmai 20 yielded lower, with Zhengmai 9023 moderately yielding. Encountering drought stress at jointing stage, Jinmai 47, Luohan 2, and Yumai 18 yielded higher, in comparison, Shijiazhuang 8 and Yanmai 20 yielded lower, with Zhengmai 9023 moderately yielding. Being evaluated drought tolerance in term of yield after suffering from drought stress, Jinmai 47, Luohan 2, and Yumai 18 were cultivars of higher drought tolerance, while Shijiazhuang 8 and Yanmai 20, lower drought tolerance, and Zhengmai 9023, moderate drought tolerance. The 3 drought tolerant cultivars markedly differed in the key pathways of physiological responses to drought stress. Compared with lower drought tolerant cultivars, Shijiazhuang 8 and Yanmai 20, after exposed to drought stress at jointing stage, Yumai 18 showed significantly lower stomatal conductance, indicating its higher stomatal regulation ability; Luohan 2 had lower cellular osmotic potential, indicating its higher osmotic adjustment capability; Luohan 2 also had lower membrane ion leakage, showing stronger membrane stability; Jinmai 47 showed no significant difference from the lower drought tolerant cultivars in stomatal regulation, osmotic adjustment, and membrane stability. The significant difference among cultivars in the critical pathways of physiological response to drought stress suggested that drought tolerance of wheat cultivars can not be scientifically evaluated through sole physiological index, but through multiple indices.

Winter wheat; Yield; Drought tolerance; Stomatal regulation; Cellular osmotic adjustment; Membrane stability

10.3969/j.issn.1000-6362.2020.01.005

封富,黄桂荣,王雅静,等.拔节期干旱胁迫下冬小麦品种间产量及生理响应的差异[J].中国农业气象,2020,41(1):43-50

2019−07−08

钟秀丽,E-mail:zhongxiuli@caas.cn

国家十三五重点研发计划课题“化肥减施增效共性技术与评价研究”(2017YFD0201702)

封富,E-mail:82101176076@caas.cn

猜你喜欢

导度抗旱性气孔
云南小麦品种(系)萌发期抗旱性评价
孔内压力对规则多孔Cu-1.3Cr合金气孔形貌的影响
贵州火龙果的气孔特征及其日变化规律
南方丘陵区油茶气孔导度模型修正
玉米叶气孔特征对氮素和水分的响应及其与叶气体交换的关系
考虑植被类型的冠层气孔导度模型
不同玉米品种萌发期和苗期抗旱性鉴定与评价
蓄水坑灌下苹果树冠层导度日变化及影响因子研究
阿克苏地区成龄枣树气孔导度对气象因子的响应
KD490:一种软包锂离子电池及其制作工艺